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THE BEST MINORATION AND MAJORATION

FOR THE SUM
OF MEDIANS IN A TRIANGLE

MARIUS DRĂGAN and OVIDIU T. POP

Abstract. The purpose of this article is to find the best bounds f(R, r)
and g(R, r) such that f(R, r) ≤ ma + mb + mc ≤ g(R, r) which is true in
every triangle or in every non-obtuse triangle. Using the above result we

find the best constant α1 for which ma+mb+mc ≥ α1R+(288− 64α1)
r6

R5

is true in non-obtuse triangle and taking in account of inequality α1R +

(288−64α1)
r6

R5
≥ 4R+

32r6

R5
which is true in every triangle, we give a proof

for the conjecture of J. Liu from [7]. Also, we find the best constant α2 for
which ma+mb+mc ≥ α2R+(9−2α2)r is true in every non-obtuse triangle.

1. Introduction

In this section we will recall some known results, which we will use in the
following.
In a given triangle ABC, we denote the lengths of the sides with AB = c,
BC = a, CA = b, F the area, r,R the radius of the inscribed circle with the
center I, respectively of the circumscribed circle with the center O of the

triangle, s =
a+ b+ c

2
the semiperimeter, the distance between O and I by

d =
√
R2 − 2Rr , with A,B,C the measures of the angles and ma,mb,mc

the lengths of the medians in A,B and C respectively.
W.J. Blundon in [2] has proved in 1965 the following inequalities

2R2 + 10Rr − r2 − 2(R− 2r)
√
R2 − 2Rr ≤ s2 ≤(1)

≤ 2R2 + 10Rr − r2 + 2(R− 2r)
√
R2 − 2Rr.
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The inequalities from (1) represent necessary and sufficient conditions for
the existence of a triangle with given elements R, r and s.

Figure 1

Lemma 1. Let ABC be a given triangle.
(i) If d < r, then ABC is an acute triangle.
(ii) If d ≥ r, then ABC can be an obtuse, acute or right triangle.

Proof. (i) Because d < r it turns out that O is located inside the triangle
ABC (see Figure 1). We denote by C ′ the point where the line CO intersect
the circle C(O,R) for the second time and then it results that C ′ is located

inside the arc
⌢
AB. Then we have that

A =
1

2
measure(

⌢
BC) <

1

2
measure(ĊBC ′) =

1

2
· π, from which it follows

that A is an acute angle. The same is true for angle B and C.
(ii) If d ≥ r then in Figure 2 we have that triangle ABC is acute, triangle

A′B′C ′ is right and A”B”C” is obtuse
(
A” >

π

2

)
.

Let’s recall some results found in the paper [5].
In the following we consider given the triangle ABC, C(O,R) the circum-
scribed circle and C(I, r) the inscribed circle. The half-lines (OI, (IO inter-
sect C(O,R) in A1, respectively A2.
According to Poncelet’s Theorem, are obtained the triangles A1B1C1 and
A2B2C2, tangent to the circle C(O, I) (see Figure 3).

Lemma 2. (i) The lengths of the sides of the triangle A1B1C1 are given by

(2) a1 = 2
»

R2 − (r − d)2, b1 = c1 =
»
2R(R+ r − d),

while those of the sides of the triangle A2B2C2 are given by

(3) a2 = 2
»

R2 − (r + d)2, b2 = c2 =
»
2R(R+ r + d),
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Figure 2

Figure 3

(ii) The semiperimeter of the triangle A1B1C1 is

(4) s1 =

 
(R+ r − d)3

R− r − d
=

√
2R2 + 10Rr − r2 − 2

»
R(R− 2r)3,
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while that of the triangle A2B2C2 is

(5) s2 =

 
(R+ r + d)3

R− r + d
=

√
2R2 + 10Rr − r2 + 2

»
R(R− 2r)3.

Remark 1. It is immediately verified that a1 > b1 and a2 < b2.

Theorem 1 (Fundamental triangle inequalities of Blundon). The following
inequalities

(6) s1 ≤ s ≤ s2

hold. The equality occurs on the left-side and respectively on right-side of
inequality if and only if the triangle ABC becomes triangle A1B1C1, respec-
tively triangle A2B2C2, with the sides from the Lemma 2.

In [3], C. Ciamberlini proved the identity

(7) s2 − (2R+ r)2 = 4R2 cosA cosB cosC,

where A,B,C are the angles of the triangle ABC. From (7), the following
results emerge.

Lemma 3 (C. Ciamberlini, see [3]). In a triangle ABC we have
(i) s < 2R+ r if and only if the triangle is obtuse;
(ii) s = 2R+ r if and only if the triangle is right;
(iii) s > 2R+ r if and only if the triangle is acute.

In the following we will study the case d ≥ r, equivalently R ≥
Ä√

2 + 1
ä
r,

that is the case when the point O is exterior to the circle C(I, r). The
tangents through O to the circle C(I, r) intersect the circle C(O,R) in two
pairs of points B3, C3 and B4, C4. Next we construct the right triangles
A3B3C3 and A4B4C4 inscribed in C(O,R) and circumscribed to C(I, r) (see
the Figure 4).

Remark 2. Immediately check that triangles A3B3C3 and A4B4C4 are con-
gruent. If d = r, equivalent toR = (

√
2+1)r, then triangle A4B4C4 coincides

with triangle A3B3C3.

Lemma 4. If
R

r
≥

√
2 + 1, then the right triangle A3B3C3 has the sides

(8) a3 = 2R, b3 = R+ r−
√

R2 − 2Rr − r2, c3 = R+ r+
√
R2 − 2Rr − r2

and semiperimeter

(9) s3 = 2R+ r.

Lemma 5. If
R

r
≥

√
2 + 1, then the inequalities

(10) s1 ≤ s3 ≤ s2

hold. The equality occurs if and only if
R

r
= 1 +

√
2.

Proof. The first inequality from (10) is equivalent with

2R2 + 10Rr − r2 − 2
√

R(R− 2r)3 ≤ 4R2 + 4Rr + r2, equivalent with

−R2+3Rr−r2 ≤
√
R(R− 2r)3. If

R

r
>

3 +
√
5

2
, then −R2+3Rr−r2 < 0,
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Figure 4

so inequality holds. If 2 ≤
R

r
≤

3 +
√
5

2
, then −R2 + 3Rr − r2 ≥ 0 and

by squaring we have (−R2 + 3Rr − r2)2 ≤ R(R − 2r)3, equivalent after

performing some calculation with 0 ≤ R2 − 2Rr − r2, or
R

r
≥ 1 +

√
2.

The inequality s2 ≥ s3 is equivalent to
2R2 + 10Rr − r2 + 2

√
R(R− 2r)3 ≥ 4R2 + 4Rr + r2,

equivalent to
√

R(R− 2r)3 ≥ R2 − 3Rr + r2. If
R

r
∈
ï
2,

3 +
√
5

2

ã
, the

inequality occurs because the right-hand side is negative.

If
R

r
≥ 3 +

√
5

2
then R2 − 3Rr + r2 ≥ 0 and by squaring we have

R(R − 2r)3 ≥ (R2 − 3Rr + r2)2, equivalent after performing some calcu-

lation to R2 − 2Rr − r2 ≥ 0, or
R

r
≥

√
2 + 1.

Lemma 6. Triangles A1B1C1 and A2B2C2 can be equilateral triangles, but
triangle A3B3C3 cannot.

Proof. From (2), A1B1C1 can be equilateral, equivalent to a1 = b1, equiv-

alent to R − 2r + 2
√

R(R− 2r) = 0, equivalent to R = 2r, which is true
equality in an equilateral triangle. Similar for triangle A2B2C2. If triangle
A3B3C3 was equilateral, then from (8) we have a3 = b3 = c3, equivalent
to R2 − 2Rr − r2 = 0 and 2R = R + r from where R = r which is a false
equality.
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Theorem 2. Let ABC be a triangle with the property that
R

r
≥

√
2 + 1.

(i) If ABC is acute or right triangle, then

(11) s1 ≤ s3 ≤ s,

with equality on the right-side if and only if the triangle ABC becomes tri-
angle A3B3C3.
(ii) If ABC is obtuse or right triangle, then

(12) s ≤ s3 ≤ s2,

with equality on the left-side if and only if the triangle ABC becomes triangle
A3B3C3.

Proof. Inequalities (11) and (12) are obtained from Theorem 1, Lemma 3
and Lemma 5.

Remark 3. In the above we showed the existence of triangles A1B1C1,
A2B2C2 and A3B3C3 for which the equalities in (10)-(12) hold.

Using the above results we obtain the following theorems.

Theorem 3. Let ABC an acute or right triangle. If 2 ≤ R

r
≤

√
2+1, then

(13) s1 ≤ s ≤ s2,

the equality on the left-side and respectively on the right-side of inequality
hold if and only if the triangle ABC becomes triangle A1B1C1, respectively
triangle A2B2C2, with the sides from Lemma 2.

If
R

r
≥

√
2 + 1, then

(14) s3 ≤ s ≤ s2

the equality on the left-side and respectively on the right-side of inequality
hold if and only if the triangle ABC becomes triangle A3B3C3, respectively
A2B2C2, with the sides from Lemma 2 and Lemma 4.

Theorem 4. If ABC is obtuse or right triangle and
R

r
≥

√
2 + 1, then

(15) s1 ≤ s ≤ s3,

with equality in (1.15) on the left-side and respectively on the right-side if and
only if the triangle ABC becomes triangle A1B1C1, respectively A3B3C3.

Remark 4. If the triangle ABC is acute or obtuse triangle then the left-
side of inequality from (14) and the right-side of the inequality from (15)
are strict.

2. Main results

In the following, we will denote bymai ,mbi ,mci the lengths of the medians
in Ai, Bi and Ci respectively, from the triangle AiBiCi, where i ∈ {1, 2, 3}.
The triangles A1B1C1, A2B2C2 and A3B3C3 are defined in Introduction.
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Lemma 7. The following equalities

(16) ma1 = R+ r − d, mb1 = mc1 =
1

2

»
2(R+ r − d)(5R− 4r + 4d)

and

(17) ma2 = R+ r + d, mb2 = mc2 =
1

2

»
2(R+ r + d)(5R− 4r − 4d)

hold.

Proof. Taking (2) into account, we have

ma1 =

 
2(b21 + c21)− a21

4
=

 
4b21 − a21

4

=
1

2

»
8R(R+ r − d)− 4

(
R2 − (r − d)2

)
=
»
(R+ r − d)2 = R+ r − d

and

mb1 = mc1 =
1

2

»
2a21 + b21 =

1

2

»
8
(
R2 − (r − d)2

)
+ 2R(R+ r − d)

=
1

2

»
2(R+ r − d)

(
4(R− r + d) +R

)
=

1

2

»
2(R+ r − d)(5R− 4r + 4d).

The equalities in (17) are proven similarly.

Lemma 8. If
R

r
≥

√
2 + 1 then the equalities

(18) ma3 = R

and

mb3 =
1

2

»
10R2 + 6(R+ r)

√
R2 − 2Rr − r2,

mc3 =
1

2

»
10R2 − 6(R+ r)

√
R2 − 2Rr − r2(19)

Proof. The relations from (8) are used.

Theorem 5. In every triangle ABC are true the following inequalities.

R+ r − d+
»

2(R+ r − d)(5R− 4r + 4d) ≤ ma +mb +mc ≤

≤ R+ r + d+
»

2(R+ r + d)(5R− 4r − 4d).(20)

The equality occurs on the left-side and respectively on the right-side of the
inequality if and only if the triangle ABC becomes triangle A1B1C1, respec-
tively triangle A2B2C2, with the sides from Lemma 2.

Proof. We denote w = ma + mb + mc =
∑√

m2
a and after squaring we

obtain

w2 =
∑

m2
a + 2

∑
mamb =

∑
m2

a + 2

…Ä∑
mamb

ä2
=∑

m2
a + 2

√∑
m2

am
2
b + 2mambmc · w.
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The following identities are very well known∑
m2

a =
3

4
(a2 + b2 + c2) =

3

2
(s2 −−r2 − 4Rr)∑

m2
am

2
b =

9

16

[
(s2 + r2 + 4Rr)2 − 16Rrs2

]
and 16m2

am
2
bm

2
c = s6 + (33r2 − 12Rr)s4 − (60R2r2 + 120Rr3 + 33r4)s2 −

(4Rr + r2)3.
We define the functions f, g, h : [s1, s2] → R, f(s) =

∑
m2

a, g(s) =
∑

m2
am

2
b ,

h(s) = mambmc. According to the identities above, this functions depend on

s, where s ∈ [s1, s2]. We have w2 = f(s)+2
√
g(s) + 2h(s) · w, equivalent to

w2 − f(s) = 2
√
g(s) + 2h(s) · w. If we consider the variable u, the equality

above becomes

(21) u2 − f(s) = 2
»
g(s) + 2h(s) · u,

where u ≥
√
f(s), and for u(s) = w in (21) the equality holds.

Let F : [
√
f(s),+∞) → R be a function defined by

F (u) =
(
u2−f(s)

)2−4
(
g(s)+2h(s)u

)
= u4−2f(s)u2−8h(s)u+f2(s)−4g(s),

where u ∈ [
√
f(s),+∞). We have F (w) = 0 and F ′(u) = 4u3 − 4f(s)u −

8h(s) = 4u
(
u2 − f(s)

)
− 8h(s), u ∈ [

√
f(s),+∞).

It follows that F ′ is increasing on [
√
f(s),+∞).

But F ′(√f(s)
)
= −8h(s) < 0 and lim

u→∞
F ′(u) = +∞, it follows that F ′ has

a single root in [
√

f(s),+∞).

Since F
(√

f(s)
)
= −8h(s)

√
f(s)−4g(s) < 0, lim

u→∞
F (u) = +∞ and F (w) =

0, it results that the equation F (u) = 0 has w as it’s only root on [
√
f(s),+∞).

So, the equation F (u) = 0 is equivalent with

(22) u4 − 2f(s)u2 − 8h(s)u+ f2(s)− 4g(s) = 0,

equivalent, taking identities above, with

u4 − 3(s2 − r2 − 4Rr)u2(23)

−2
»

s6 + (33r2 − 12Rr)s4 − (60R2r2 + 120Rr3 + 33r4)s2 − (4Rr + r2)3 · u

+
9

4
(s2 − r2 − 4Rr)2 − 9

4
[(s2 + r2 + 4Rr)2 − 16Rrs2] = 0.

Taking into account [8], it follows that the positive root of the equation from
(23) is expressed as operations with differentiable functions, so the root of
(23) is a differentiable function, u : [s1, s2] → R, the variable of the function
u being s. Differentiating relation (22), we can write it

2
(
u(s)

(
u2(s)− f(s)

)
− 2f(s)

)
u′(s)(24)

= f ′(s)
(
u2(s)− f(s)

)
+ 2g′(s) + 4h′(s)u(s),
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where s ∈ [s1, s2].
Applying the inequality of means, we have

g(s) + 2h(s)u(s) =
∑

m2
am

2
b + 2mambmc(ma +mb +mc)

=
∑

m2
am

2
b +

∑
2m2

ambmc ≥ 6 6
»
8m8

am
8
bm

8
c

= 6
√
2 3
»

(mambmc)4 = 6
√
2 3
»
h4(s)]

and taking (2.6) into account we have u2(s)− f(s) = 2
√
g(s) + 2h(s)u(s) ≥

2
»
6
√
2 3
√
h4(s) = 2

√
6
√
2 3
√

h2(s). From this inequality it follows that

u2(s) > 2
√
6
√
2 3
√

h2(s), from where u(s) >
»
2
√
6
√
2 3
√
h(s). From the in-

equalities above we have u(s)
(
u2(s)−f(s)

)
−2h(s) ≥

(
2
√
2 4
»

(6
√
2)3−2

)
h(s),

from where

(25) u(s)
(
u2(s)− f(s)

)
− 2h(s) > 0,

for every s ∈ [s1, s2].

Because f(s) =
∑

m2
a =

3

2
(s2 − r2 − 4Rr), then f ′(s) = 3s, so

(26) f ′(s) > 0,

for any s ∈ [s1, s2].

We have g(s) =
∑

m2
am

2
b =

9

16

(
(s2 + r2 + 4Rr)2 − 16Rrs2

)
, from where

g′(s) =
9

4
s(s2+r2−4Rr) and taking Gerretsen’s Inequality s2 ≥ 16Rr−5r2

into account, we have

(27) g′(s) ≥ 0,

for any s ∈ [s1, s2].

We have h(s) = mambmc =
1

4

√
z(s), where z(s) = s6 + (33r2 − 12Rr)s4 −

(60R2r2 + 120Rr3 + 33r4)s2 − (4Rr + r2)3 and if noting s2 = t, we obtain
the function p : [s21, s

2
2] → R, p(t) = t2 + (33r2 − 12Rr)t − (60R2r2 +

120Rr3 + 33r4), t ∈ [s21, s
2
2] and z(s) = tp(t) − (4Rr + r2)3, s ∈ [s1, s2].

Then p(t) = t
(
t− (12Rr− 33r2)

)
− (60R2r2+120Rr3+33r4) and according

Gerretsen’s Inequality we have t = s2 ≥ 16Rr − 5r2 > 12Rr − 33r2, so p
is an increasing function on [s21, s

2
2]. After calculus, we have that p(t) ≥

p(16Rr − 5r2) = r2(4R2 + 308Rr − 173r2) > 0, so p is a positive function
on [s21, s

2
2].

From above it results that z(s) is increasing on [s1, s2], from where z′(s) ≥ 0,
for any s ∈ [s1, s2].

From these remarks, follows that the function h(s) =
1

4

√
z(s) is increasing

on [s1, s2], so

(28) h′(s) ≥ 0,

for any s ∈ [s1, s2]. Taking (21), (25)-(28) into account, from (24) we obtain
u′(s) ≥ 0 for all s ∈ [s1, s2], so function u is increasing on [s1, s2], from where
u(s1) ≤ u(s) ≤ u(s2), for any s ∈ [s1, s2], equivalent to ma1 +mb1 +mc1 ≤
ma +mb +mc ≤ ma2 +mb2 +mc2 , for any s ∈ [s1, s2].
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Theorem 6. Let ABC be a triangle with the property that
R

r
≥

√
2 + 1.

(i) If ABC is acute or right triangle, then

R+ r − d+
»

2(R+ r − d)(5R− 4r + 4d) ≤

(29) ≤ R +
1

2

Å»
10R2 + 6(R + r)

√
R2 − 2Rr − r2 +

»
10R2 − 6(R + r)

√
R2 − 2Rr − r2

ã
≤

≤ ma +mb +mc,

with equality on the right-side if and only if the triangle ABC becomes tri-
angle A3B3C3.
(ii) If ABC is obtuse or right triangle, then

ma +mb +mc ≤

(30) ≤ R +
1

2

Å»
10R2 + 6(R + r)

√
R2 − 2Rr − r2 +

»
10R2 − 6(R + r)

√
R2 − 2Rr − r2

ã
≤

≤ R+ r + d+
»
2(R+ r + d)(5R− 4r − 4d),

with equality on the left-side if and only if the triangle ABC becomes triangle
A3B3C3.

Proof. The results of this theorem are obtained taking into account The-
orem 2, Lemmas 7 and 8 and that from the proof of Theorem 5 it follows
that the function u is increasing.

According Theorem 5 and Theorem 6 we obtained the following theorems.

Theorem 7. Let ABC an acute or right triangle.
(i) If 2 ≤ R

r ≤
√
2 + 1, then

R+ r − d+
»

2(R+ r − d)(5R− 4r + 4d) ≤ ma +mb +mc ≤

(31) ≤ R+ r + d+
»
2(R+ r + d)(5R− 4r − 4d),

with equality on the left-side and respectively on the right-side of inequality if
and only if the triangle ABC becomes A1B1C1, respectively triangle A2B2C2.

(ii) If
R

r
≥

√
2 + 1, then

(32) R +
1

2

Å»
10R2 + 6(R + r)

√
R2 − 2Rr − r2 +

»
10R2 − 6(R + r)

√
R2 − 2Rr − r2

ã
≤ ma +mb +mc ≤ R+ r + d+

»
2(R+ r + d)(5R− 4r − 4d),

with equality on the left-side and respectively on the right-side of inequality if
and only if the triangle ABC becomes A3B3C3, respectively triangle A2B2C2.

Theorem 8. If ABC is obtuse or right triangle and
R

r
≤

√
2 + 1, then

ma +mb +mc

(33) ≤ R +
1

2

Å»
10R2 + 6(R + r)

√
R2 − 2Rr − r2 +

»
10R2 − 6(R + r)

√
R2 − 2Rr − r2

ã
,

with equality if and only if the triangle ABC becomes A3B3C3.

Lemma 9. The following inequality

(34) R+ r + d+
»

2(R+ r + d)(5R− 4r − 4d) ≤ 4R+ r,

holds, with equality if and only if ABC is an equilateral triangle.
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Proof. The inequality from (34) is equivalent to√
2R2 + 18Rr − 8r2 + 2d(R− 8r) ≤ 3R − d. Since 3R − d > 0, squaring

it we have 2R2+18Rr−8r2+2d(R−8r) ≤ 10R2−6Rd−2Rr, equivalent to
0 ≤ (R−2r)(2R−r)−2d(R−2r), equivalent to 0 ≤ (R−2r)(2R−r−2d). We
demonstrate that 2R−r > 2d. Because R ≥ 2r, it results that 2R−r > 0 and
squaring we have 4R2 − 4Rr+ r2 > 4(R2 − 2Rr), which is a true inequality.
So, 2R− r − 2d > 0 and R > 2r, it results that (R− 2r)(2R− r − 2d) ≥ 0.
Equality holds if and only if R = 2r, equivalent to ABC is an equilateral
triangle.

From Theorem 7 and Lemma 8 we obtain a well known inequality con-
tained in Corollary 1.

Corollary 1. In every triangle ABC is true the inequality

(35) ma +mb +mc ≤ 4R+ r,

with equality if and only if the triangle ABC is an equilateral triangle.

In the following, we find the best constants α, β ∈ R such that αR+βr ≤
ma + mb + mc is true in every triangle ABC, with the condition that the
equality holds for the equilateral triangle ABC, so R = 2r. Then, we have

that ma = mb = mc =
l
√
3

2
, R =

l
√
3

3
, r =

l
√
3

6
, where l is the length of

the side of the triangle ABC, so α · l
√
3

3
+ β · l

√
3

6
= 3 · l

√
3

2
, from where

2α+ β = 9, so β = 9− 2α.

Remark 5. From above it follows that if α ∈ R verify the inequality αR+
(9 − 2α)r ≤ ma +mb +mc, then for R = 2r the equality in the inequality
above holds.

Lemma 10. Let ABC be a triangle and α ≤ 3
√
10 + 4

√
5 − 7

√
6 − 6 ≈

2, 53161. If

(i) 2 ≤ R

r
≤

√
2 + 1, then

(36) αR+ (9− 2α)r ≤ R+ r − d+
»

2(R+ r − d)(5R− 4r + 4d);

(ii)
R

r
≥

√
2 + 1, then

αR+ (9− 2α)r ≤ R+
1

2

Å»
10R2+ 6(R+ r)

√
R2− 2Rr− r2+(37)

+
»
10R2− 6(R+ r)

√
R2− 2Rr− r2

ã
;

(iii) α0 = 3
√
10 + 4

√
5− 7

√
6− 6, then the equalities in (36) and (37) hold

if and only if
R

r
∈ {2,

√
2 + 1}.

Proof. (i) If we note
R

r
= x, d(x) =

√
x2 − 2x, dividing in (36) by r2, we

obtain αx+(9−2α) ≤ x+1−d(x)+
»

2
(
x+ 1− d(x)

)(
5x− 4 + 4d(x)

)
, from

where α ≤
x− 8− d(x) +

»
2
(
x+ 1− d(x)

)(
5x− 4 + 4d(x)

)
x− 2

, for



The best minoration and majoration for the sum of medians in a triangle 81

x ∈ (2,
√
2 + 1]. We have that

lim
x→2
x>2

x− 8− d(x) +
»

2
(
x+ 1− d(x)

)(
5x− 4 + 4d(x)

)
x− 2

= lim
x→2
x>2

Ñ
1 +

»
2
(
x+ 1− d(x)

)(
5x− 4 + 4d(x)

)
−
(
d(x) + 6

)
x− 2

é
= lim

x→2
x>2

Ñ
1 +

(x− 2)(x+ 22)− 2d(x)(x− 2)(»
2
(
x+ 1− d(x)

)(
5x− 4 + 4d(x)

)
+
(
d(x) + 6

))
(x− 2)

é
= 3
and let u1 : [2,

√
2 + 1] → R be a function defined by

u1(x) =


x− 8− d(x) +

√
2(x+ 1− d(x))(5x− 4 + 4d(x))

x− 2
, x ∈ (2,

√
2 + 1]

3, x = 2.

Using the program Wolfram|Alpha we have

α ≤ inf
2≤x≤

√
2+1

u1(x) = 3
√
10 + 4

√
5− 7

√
2− 6.

From the above it follows that inequality (36) holds.

(ii) According to the idea from (i) if we note t(x) =
√
x2 − 2x− 1, we

have αx+(9−2α) ≤ x+
1

2

Ä√
10x2 + 6(x+ 1)t(x) +

√
10x2 − 6(x+ 1)t(x)

ä
and then let v1 : [

√
2 + 1,+∞) → R be a function defined by v1(x) =

x− 9 +
1

2

Ä√
10x2 + 6(x+ 1)t(x) +

√
10x2 − 6(x+ 1)t(x)

ä
x− 2

, x ∈ [
√
2+1,+∞).

Using the program Wolfram|Alpha we have

α ≤ inf
x≥

√
2+1

v1(x) = 3
√
10 + 4

√
5− 7

√
2− 6.

From (i), (ii), Theorem 7, Remark 5 and program Wolfram|Alpha,
follows (iii).

Theorem 9. In every acute or right triangle is true the inequality

(38) (3
√
10+4

√
5−7

√
2−6)R+(21+14

√
2−6

√
10−8

√
5)r ≤ ma+mb+mc,

with equality if and only if
R

r
∈ {2,

√
2 + 1}.

Proof. It follows from Lemma 10.

Corollary 2. In every acute or right triangle, the following inequalities

(39) ma +mb +mc ≥ α0R+ (9− 2α0)r ≥ 5

2
R+ 4r

and

(40) ma +mb +mc ≥
5

2
R+ 4r

hold.
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Proof. We consider the function w : (0,+∞) → R defined by w(α) =
αR+(9−2α)r = α(R−2r)+9r, α ∈ (0,+∞). Because R ≥ 2r, the function

w is increasing on (0,+∞) and α0 >
5

2
it results that w(α0) ≥ w

Å
5

2

ã
, so

(39) is obtained. The equality holds if and only if R = 2r, equivalent to
ABC is an equilateral triangle. From (39) follows (40).

Remark 6. Inequality (40) is proven in [7] and then the first inequality in
(39) is a refinement of the inequality (40).

Lemma 11. Let ABC be a triangle and α ≤ 4. If

(i) 2 ≤ R

r
≤

√
2 + 1, then

(41) αR+ (288− 64α)
r6

R5
≤ R+ r − d+

»
2(R+ r − d)(5R− 4r + 4d);

(ii)
R

r
≥

√
2 + 1, then

αR+ (288− 64α)
r6

R5
≤ R+

1

2

Å»
10R2+ 6(R+ r)

√
R2− 2Rr− r2+(42)

+
»

10R2 − 6(R+ r)
√
R2 − 2Rr − r2

ã
;

(iii) α1 = 4 then the equalities in (41) and (42) hold if and only if
R

r
= 2.

Proof. Because
R

r
≥ 2 we have that ma + mb + mc ≥ αR + (9 − 2α)r ≥

αR+ (9− 2α)r · 32
( r

R

)5
= αR+ (288− 64α)

r6

R5
and taking Remark 5 into

account, then for R = 2r the inequalities above the equalities become equal.
Using the ideas from Lemma 10, from (41) we have

α ≤ x5

x6 − 64

Å
x+ 1− 288

x5
− d(x) +

»
2
(
x+ 1− d(x)

)(
5x− 4 + 4d(x)

)ã
, for

x ∈ (2,
√
2 + 1]. Because

lim
x→2
x>2

x5

x6 − 64

Å
x+ 1− 288

x5
− d(x) +

»
2
(
x+ 1− d(x)

)(
5x− 4 + 4d(x)

)ã
is equal to

17

4
, let u2 : [2,

√
2 + 1] → R be a function defined by

u2(x) =

{
x5

x6 − 64

Å
x + 1 −

288

x5
− d(x) +

»
2
(
x + 1 − d(x)

)(
5x − 4 + 4d(x)

)ã
, x ∈ (2,

√
2 + 1]

17

4
, x = 2.

Using the program Wolfram|Alpha we have

α ≤ inf
2≤x≤

√
2+1

u2(x) =
1

245
(181

√
10 + 256

√
5− 448

√
2 + 469) ≈ 4, 00097

and is touched for x =
√
2 + 1. From the above it follows that inequality

(41) holds. From (42) we obtain that

α ≤ v2(x)=
x5

x6− 64

Å
x− 288

x5
+
1

2

(»
10x2+ 6(x+ 1)t(x) +

»
10x2− 6(x+ 1)t(x)

)ã
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and using the program Wolfram|Alpha we have α ≤ inf
x≥

√
2+1

v2(x) = 4,

at the limit when x tends to infinity. From the above the best constant
is 4. From (i), (ii), Theorem 7, Remark 5 and program Wolfram|Alpha
follows (iii).

Corollary 3. In every acute or right triangle ABC, the inequality

(43) ma +mb +mc ≥ 4R+
32r6

R5

holds, with equality if and only if ABC is an equilateral triangle.

Proof. Is obtained immediately from Lemma 11.

Remark 7. The inequality from (43) represent the Conjecture 5.1 from [7].
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[1] Bencze, M., Drăgan, M., The Blundon Theorem in an Acute Triangle and Some
Consequences, Forum Geometricum, 18(2018), 185-194.

[2] Blundon, W.J., Inequalities associated with the triangle, Canad. Math. Bull. 8(1965),
615–626.

[3] Ciamberlini, C., Sulla condizione neccesaria e suficiente affinchè un triangolo sia
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BUCUREŞTI, ROMANIA
E-mail address: marius.dragan2005@yahoo.com

NATIONAL COLLEGE “MIHAI EMINESCU”
5 MIHAI EMINESCU, 440014 SATU MARE, ROMANIA
E-mail address: ovidiutiberiu@yahoo.com


