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THE BEST MINORATION AND MAJORATION

FOR THE SUM
OF MEDIANS IN A TRIANGLE

MARIUS DRAGAN and OVIDIU T. POP

Abstract. The purpose of this article is to find the best bounds f(R,7)
and g(R,r) such that f(R,r) < mg + my + m. < g(R,r) which is true in
every triangle or in every non-obtuse triangle. Using the above result we

6
find the best constant oy for which mg +my, +m. > a3 R+ (288 — 64a) %
is true in non-obtuse triangle and taking in account of inequality a1 R +

6 32 6
(288 — 64a1)% > 4R+ R—Z which is true in every triangle, we give a proof
for the conjecture of J. Liu from [7]. Also, we find the best constant ay for
which mg +mp+me > aa R+ (9 —2a2)r is true in every non-obtuse triangle.

1. INTRODUCTION

In this section we will recall some known results, which we will use in the
following.
In a given triangle ABC, we denote the lengths of the sides with AB = ¢,
BC =a, CA =0, F the area, r, R the radius of the inscribed circle with the
center I, respectively of the circumscribed circle with the center O of the

a+b+c

triangle, s = — the semiperimeter, the distance between O and I by
d = vR? —2Rr , with A, B,C the measures of the angles and mg, my, m.
the lengths of the medians in A, B and C respectively.

W.J. Blundon in [2] has proved in 1965 the following inequalities

(1) 2R* + 10Rr — 1% —2(R — 2r)\/R?2 — 2Rr < s* <
< 2R?* + 10Rr — ® + 2(R — 2r)\/R% — 2Rr-.
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The inequalities from (1) represent necessary and sufficient conditions for
the existence of a triangle with given elements R,r and s.

FIGURE 1

Lemma 1. Let ABC be a given triangle.
(i) If d < r, then ABC' is an acute triangle.
(ii) If d > r, then ABC' can be an obtuse, acute or right triangle.

Proof. (i) Because d < r it turns out that O is located inside the triangle
ABC (see Figure 1). We denote by C” the point where the line CO intersect
the circle C(O, R) for the second time and then it results that C” is located

inside the arc AB. Then we have that
A= §measure(BC') < —measure(CBC") = — - m, from which it follows
that A is an acute angle. The same is true for angle B and C.
(ii) If d > r then in Figure 2 we have that triangle ABC is acute, triangle
A'B'C" is right and A” B”C” is obtuse (A” > g)

Let’s recall some results found in the paper [5].
In the following we consider given the triangle ABC, C(O, R) the circum-
scribed circle and C(I,r) the inscribed circle. The half-lines (OI, (IO inter-
sect C(O, R) in Ay, respectively Aj.
According to Poncelet’s Theorem, are obtained the triangles A; B1C7 and
A9 By, tangent to the circle C(O, I) (see Figure 3).

Lemma 2. (i) The lengths of the sides of the triangle Ay B1C} are given by

(2) a1=2\/R2—(7“—d)2, 51201:\/2R(R+T—d),

while those of the sides of the triangle Ao BoCo are given by

(3) as =2\/R2 — (r+d)2, by=cy=/2R(R+7+4d),
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FIGURE 2

FIGURE 3

(1) The semiperimeter of the triangle A1B1C is

_ )3
4) s = ,/—(ZEZ _‘2 = \/2R2 + 10Rr — 12 — 2/R(R — 2r)?,
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while that of the triangle AsBsCy is

/ 3
(B)  s2= m = \/2R2+10Rr—r2+2\/R(R—2r)3.

Remark 1. It is immediately verified that a; > b; and as < bo.

Theorem 1 (Fundamental triangle inequalities of Blundon). The following
inequalities

(6) S1 S S S S92

hold. The equality occurs on the left-side and respectively on right-side of

inequality if and only if the triangle ABC' becomes triangle A1B1C1, respec-
tively triangle Ao BsoCo, with the sides from the Lemma 2.

In [3], C. Ciamberlini proved the identity
(7) s — (2R +r)* = 4R* cos A cos B cos C,
where A, B, C are the angles of the triangle ABC. From (7), the following

results emerge.

Lemma 3 (C. Ciamberlini, see [3]). In a triangle ABC we have
(i) s < 2R + r if and only if the triangle is obtuse;

(i) s = 2R + r if and only if the triangle is right;

(iii) s > 2R + r if and only if the triangle is acute.

In the following we will study the case d > r, equivalently R > (\/5 + 1) r,
that is the case when the point O is exterior to the circle C(I,r). The
tangents through O to the circle C(I,r) intersect the circle C(O, R) in two
pairs of points Bs,C3 and By, Cy. Next we construct the right triangles
A3B3C5 and A4B4C}y inscribed in C(O, R) and circumscribed to C(I,7) (see
the Figure 4).

Remark 2. Immediately check that triangles A3 BsC3 and A4 B4Cy are con-
gruent. If d = r, equivalent to R = (\/§+1)r, then triangle A4B4C} coincides
with triangle A3B3Cj.

R
Lemma 4. If — > /2 + 1, then the right triangle A3B3C3 has the sides
T

(8) a3 =2R,bs=R+r—+/R?>—2Rr —1r2, ¢c3=R+r++\R?—2Rr —r?

and semiperimeter
(9) S3 = 2R + 7.
R _ .
Lemma 5. If — > /2 + 1, then the inequalities
r
(10) 51 < 83 < 89
R
hold. The equality occurs if and only if — =1+ /2.
r

Proof. The first inequality from (10) is equivalent with
2R?2 + 10Rr — 1% — 24/R(R — 2r)3 < 4R? + 4Rr + r?, equivalent with

R_3+45
—R?*+3Rr—r? < \/R(R—2r)3. If —> +2\[, then —R?+3Rr—1* <0,
T
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FIGURE 4

R 34+V5

so inequality holds. If 2 < — < \f, then —R? + 3Rr —r? > 0 and
r

by squaring we have (—R? + 3Rr — r2)? < R(R — 2r)3, equivalent after

. . . 2 2 R
performing some calculation with 0 < R —2Rr —r“, or —> 1+ V2.
T

The inequality so > s3 is equivalent to

2R? 4+ 10Rr — 2 +2/R(R — 2r)3 > 4R? + 4Rr + 12,
mmmmnu>Mmﬁ—2n3zR$—wﬁ+r?IfRe[z

,
inequality occurs because the right-hand side is negative.

H§23+ﬁ

3 +2\/5) , the

then R? — 3Rr + 2 > 0 and by squaring we have
,
R(R — 2r)® > (R? — 3Rr + r?)2, equivalent after performing some calcu-
R
lation to RZ — 2Ry — r2 >0, or — >/2+1.
r

Lemma 6. Triangles A1B1Cy and AsBsCo can be equilateral triangles, but
triangle A3B3C3 cannot.

Proof. From (2), A1 B1C} can be equilateral, equivalent to a; = by, equiv-
alent to R — 2r + 24/R(R — 2r) = 0, equivalent to R = 2r, which is true
equality in an equilateral triangle. Similar for triangle Ao BsCy. If triangle
A3B3C3 was equilateral, then from (8) we have ag = b3 = c3, equivalent
to R? —2Rr —r? = 0 and 2R = R + r from where R = r which is a false
equality.
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R
Theorem 2. Let ABC' be a triangle with the property that — > /2 + 1.
r
(i) If ABC is acute or right triangle, then

(11) s1 < s3<s,

with equality on the right-side if and only if the triangle ABC becomes tri-
angle A3B3Cs.
(i) If ABC is obtuse or right triangle, then

(12) s < 53 < 89,

with equality on the left-side if and only if the triangle ABC becomes triangle
AngCg.

Proof. Inequalities (11) and (12) are obtained from Theorem 1, Lemma 3
and Lemma 5.

Remark 3. In the above we showed the existence of triangles A1 B1C1,
Ay ByCy and A3B3C5 for which the equalities in (10)-(12) hold.

Using the above results we obtain the following theorems.

R
Theorem 3. Let ABC an acute or right triangle. If 2 < — < /241, then
r

(13) S1 S S S S92,

the equality on the left-side and respectively on the right-side of inequality
hold if and only if the triangle ABC' becomes triangle A1 B1C1, respectively
triangle As BoCla, with the sides from Lemma 2.

IfE > V241, then
T
(14) s3 <5< 89

the equality on the left-side and respectively on the right-side of inequality
hold if and only if the triangle ABC becomes triangle A3BsC3, respectively
Ao BsCo, with the sides from Lemma 2 and Lemma 4.

R
Theorem 4. If ABC is obtuse or right triangle and — > /2 + 1, then
r

(15) s1 < s < s3,

with equality in (1.15) on the left-side and respectively on the right-side if and
only if the triangle ABC' becomes triangle A1 B1C1, respectively A3BsCs.

Remark 4. If the triangle ABC' is acute or obtuse triangle then the left-
side of inequality from (14) and the right-side of the inequality from (15)
are strict.

2. MAIN RESULTS

In the following, we will denote by mg,, mys,, m., the lengths of the medians
in A;, B; and C; respectively, from the triangle A;B;C;, where i € {1,2,3}.
The triangles A1 B1C1, Ao BoCy and A3 BsC3 are defined in Introduction.
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Lemma 7. The following equalities

1
(16) mg, =R+7r—d, my, =mg = 5\/2(R+rfd)(5Rf4r+4d)

and

1
(17)  me, =R+7r+d, mp, =mg, = 5\/2(R+r+d)(5R74r74d)
hold.

Proof. Taking (2) into account, we have

2(b3 + ¢3) — a? 42 — a?
Mo = 1 VT

:%\/SR(R+r—d)—4(R2_(T_d)2) R AP =R

and

My, = M, = %\/Qa% + b2 = %\/S(RQ —(r—d)?) +2R(R+r—d)

1 1
= 5\/2(R+r—d)(4(R—r+al)+R) = 5\/2(1~2+r—d)(5R—4r+4d).

The equalities in (17) are proven similarly.

Lemma 8. If E > /241 then the equalities
T

(18) Mg = R

and

1
My, = 5V 10R2 + 6(R +1)/R2 —2Rr — 12,
(19) Mey = %\/IOR2 —6(R+7r)VR?>—2Rr —r?

Proof. The relations from (8) are used.

Theorem 5. In every triangle ABC are true the following inequalities.

R+7—d+/2(R+r—d)(5R — 4r +4d) < mg +my +m. <
(20) < R4r+d+\/2(R+7+d)(5R — 4r — 4d).

The equality occurs on the left-side and respectively on the right-side of the
inequality if and only if the triangle ABC becomes triangle A1B1C1, respec-
tively triangle Ao BoCo, with the sides from Lemma 2.

Proof. We denote w = mg + mp + me = > y/m?2 and after squaring we

obtain
w? = Zmz + QZmamb = Zm?l + 24/ (Zmamb)2 =
Z m2 + 2\/2 m2mg + 2mgmpme - w.
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The following identities are very well known

3 3
ng = Z(a2 + b4+ P) = 5(52 — —r? — 4Rr)

9
Z mimi = G [(32 + 1% + 4Rr)? — 16R7‘s2]

and 16m§mgmg = 58 + (33r2 — 12Rr)s* — (60R?r? + 120Rr3 + 33r1)s? —

(4Rr + 12)3.

We define the functions f, g, h : [s1,s2] = R, f(s) = > m2, g(s) =Y m2mZ,

h(s) = mgmpm,. According to the identities above, this functions depend on

s, where s € [s1, 82]. We have w? = f(s)+2+/9(s) + 2h(s) - w, equivalent to
= 2\/ g(s) + 2h(s) - w. If we con51der the Variable u, the equality

above becornes

(21) ) = 24/g(s) + 2h(s

where u > +/f(s), and for u(s) = w in (21) the equality holds.
Let F : [\/f(s),+00) = R be a function defined by

F(u) = (u2—f(s))2—4(g(8)+2h(s)u) = u4—2f(s)u2—8h(s)u+f2(s)—4g(s),

where u € [\/f(s), +00). WehaveF( )—OandF’(u):4u3—4f(s)u—

8h(8):4u(u2—f( )) —8h(s), u € \/ ), +00).
It follows that F’ is increasing on [/ f ,+oo .
But F'(\/f(s)) = —8h(s) < 0 and le F'(u) = 400, it follows that F”’ has

a single root in [/ f +oo

Since F(1/f(s)) = —8h )\ f(s)—4g(s) <0, uh_}noio F(u) = +o0 and F(w) =
0, it results that the equation F(u) = 0 has w as it’s only root on [/ f(s), +00).
So, the equation F'(u) = 0 is equivalent with

(22) ut — 2f(s)u® — 8h(s)u + f2(s) — 4g(s) =0,
equivalent, taking identities above, with

(23) ut —3(s* — % — 4Rr)u®

~24/55 + (3372 — 12Rr)st — (60R2r2 + 120Rr3 + 33r1)s® — (4Rr + 2)? - u

—i—%(s2 —r? —4Rr)? — Z[(s2 + 1% 4+ 4Rr)? — 16Rrs*] = 0.

Taking into account [8], it follows that the positive root of the equation from
(23) is expressed as operations with differentiable functions, so the root of
(23) is a differentiable function, u : [s1, s3] — R, the variable of the function
u being s. Differentiating relation (22), we can write it

(24) 2(u(s) (u(s) — £(5)) = 2f(5) ) (5)
= /() (u%() = £(5)) +29'(5) + 4 (s)u(s),
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where s € [s1, s2].
Applying the inequality of means, we have
g(s) + 2h(s)u(s) = Z m2m2 + 2mamyme(mg 4+ mp + me)
= Z m2mg + Z 2m2myme > 6/8mEmim?
= 6v23/ (mampme)* = 6v2/hA(s)]
and taking (2.6) into account we have u%(s) — f(s) = 21/g(s) + 2h(s)u(s) >
21/6v23/h%(s) = 2v/6v2{/h2(s). From this inequality it follows that

u?(s) > 2v/6v23/h2(s), from where u(s) > \/2v/6v/2/h(s). From the in-
equalities above we have u(s) (u?(s)— f(s)) —2h(s) > (2v/2/(6v/2)3=2)h(s),

from where

(25) u(s)(13(5) — f(s)) — 2h(s) > 0,

for every s € [s1, sa].

Because f(s) =Y m?2 = 2(52 — 72 —4Rr), then f'(s) = 3s, so
(26) f'(s) >0,

for any s € [s1, s2].

We have g(s) = Y- m2m? = %((52 + 1% + 4Rr)? — 16Rrs?), from where

g(s) = 23(32 +7? —4Rr) and taking Gerretsen’s Inequality s* > 16 Rr — 5r?
into account, we have

(27) g'(s) =0,

for any s € [s1, s2].

We have h(s) = mgmpme = %m, where 2(s) = 5% + (33r2 — 12Rr)s* —

(60R%r? 4 120Rr3 + 33r*)s? — (4Rr + )3 and if noting s?> = t, we obtain
the function p : [s2,s3] — R, p(t) = t? + (33r% — 12Rr)t — (60R?*r% +
120Rr3 + 33r4), t € [s2,53] and z(s) = tp(t) — (4Rr + r?)3, s € [s1,53).
Then p(t) = t(t — (12Rr — 33r?)) — (60R%*r* + 120Rr* + 33r?) and according
Gerretsen’s Inequality we have t = s> > 16Rr — 5r2 > 12Rr — 3312, so p
is an increasing function on [s?,s3]. After calculus, we have that p(t) >
p(16Rr — 5r2) = r?(4R? 4+ 308 Rr — 173r2) > 0, so p is a positive function
on [s,53].

From above it results that z(s) is increasing on [s1, s3], from where 2/(s) > 0,

for any s € [s1, s2].

1
From these remarks, follows that the function h(s) = 1 z(s) is increasing

on [s1, s3], so

(28) h'(s) >0,

for any s € [s1, so]. Taking (21), (25)-(28) into account, from (24) we obtain
u'(s) > 0 for all s € [s1, s2], so function u is increasing on [s1, so], from where
u(s1) < u(s) < u(sq), for any s € [s1, s2], equivalent to mg, + mp, + me, <
Ma + mp + me < Mg, + mp, + Mme,, for any s € [sq, sal.
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R
Theorem 6. Let ABC' be a triangle with the property that — > /2 + 1.
r
(i) If ABC' is acute or right triangle, then

R+7—d+/2(R+r—d)(5R — 4r + 4d) <

(29) <R+ % (\/10R2 1 6(R+7)VER2 — 2Rr — 72 + /10R? — 6(R + r)v/R? — 2Rr — 7-2) <
S Mg + My + me,

with equality on the right-side if and only if the triangle ABC becomes tri-
angle A3B3Cs.
(ii) If ABC' is obtuse or right triangle, then

Mg +mp +m. <

1
(30) <R+ (\/10R2 £ 6(R+7)VER2 — 2Rr — 72 + /10R? — 6(R + r)v/R? — 2Rr — 7-2) <

<R+ 7+d+\/2(R+7+d)(5R — 4r — 4d),

with equality on the left-side if and only if the triangle ABC becomes triangle
AgB;gCg.

Proof. The results of this theorem are obtained taking into account The-
orem 2, Lemmas 7 and 8 and that from the proof of Theorem 5 it follows
that the function u is increasing.

According Theorem 5 and Theorem 6 we obtained the following theorems.

Theorem 7. Let ABC an acute or right triangle.
(i) If2< B <241, then

R+7—d+/2(R+r—d)(5R — 4r +4d) < mg +my +m. <

(31) < R47+d+\/2(R+7+d)(5R — 4r — 4d),

with equality on the left-side and respectively on the right-side of inequality if
and only if the triangle ABC becomes A1 B1CY, respectively triangle A3 BaCl.

(ii) If R > /241, then
T

1
(32) R+ (\/10R2 +6(R+1)VR® —2Rr — 72 + \/10R? — 6(R + r)VR? — 2Rr — r2)

< Mg+ mp+me <R+ +d+/2(R+7+d)(5R — 4r — 4d),
with equality on the left-side and respectively on the right-side of inequality if
and only if the triangle ABC' becomes A3 BsC's, respectively triangle A3 BaCl.

R
Theorem 8. If ABC is obtuse or right triangle and — < /2 + 1, then
r

Mg + Mmp + me

(33) <R+ % (\/101?,2 +6(R+r)VR? — 2Rr — 12 + \/10R? — 6(R + r)m) ,
with equality if and only if the triangle ABC' becomes A3B3Cs.
Lemma 9. The following inequality

(34) R+7+d+\/2(R+r+d)(5R —4r — 4d) < 4R +r,
holds, with equality if and only if ABC' is an equilateral triangle.
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Proof. The inequality from (34) is equivalent to

V2R2 +18Rr — 8r2 + 2d(R — 8r) < 3R — d. Since 3R — d > 0, squaring
it we have 2R? + 18Rr — 872 +2d(R — 8r) < 10R? —6Rd — 2Rr, equivalent to
0 < (R—2r)(2R—r)—2d(R—2r), equivalent to 0 < (R—2r)(2R—r—2d). We
demonstrate that 2R—r > 2d. Because R > 2r, it results that 2R—r > 0 and
squaring we have 4R% — 4Rr 4 r? > 4(R? — 2Rr), which is a true inequality.
So, 2R —r —2d > 0 and R > 2r, it results that (R —2r)(2R —r —2d) > 0
Equality holds if and only if R = 2r, equivalent to ABC' is an equilateral
triangle.

From Theorem 7 and Lemma 8 we obtain a well known inequality con-
tained in Corollary 1.

Corollary 1. In every triangle ABC' is true the inequality
(35) mq +mp +me < AR+,
with equality if and only if the triangle ABC' is an equilateral triangle.

In the following, we find the best constants «, 5 € R such that aR+ gr <
me + mp + me is true in every triangle ABC, with the condition that the
equality holds for the equilateral triangle ABC, so R = 2r. Then, we have

l l l
that mg = mp = m, = \2/§, R = \?{g = \6[’ where [ is the length of
V3 V3 _ l\f

the side of the triangle ABC', so « - = + 8- o ——, from where
204+ 3 =9,80 8 =9 — 2a.

Remark 5. From above it follows that if a € R verify the inequality aR +
(9 — 2a)r < mg + my + me, then for R = 2r the equality in the inequality
above holds.

Lemma 10. Let ABC be a triangle and o < 34/10 + 45 — 76 — 6 ~
2,53161. If

(i)2§§§ﬁ+1, then
T

(36)  aR+(9—2a)r < R+7r—d+/2(R+r—d)(5R — 4r + 4d);
R

(i) = V241, then
(37) aR+ (9 —2a)r < R+ - (\/10R2+ 6(R+ 1)V R?—2Rr—r2+
+V/10R?— 6(R + r)\/R*— 2Rr— r2);

(iii) g = 3v/10 + 4+/5 — 7/6 — 6, then the equalities in (36) and (37) hold
R
if and only if . c{2,V2+1}.

R
Proof. (i) If we note =9 d(x) = vx? — 2z, dividing in (36) by 2, we
obtain azx+(9—2a) < x+1—d ac)—i—\/ (z4+1—d(x))(5x — 4+ 4d(x)), from
z—8—d@)+/2(x+1-d )(5x—4+4d( )

z—2 ’

where « <

or
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x € (2,v/2+ 1]. We have that

i r—8—d(z +\/2x+17d(:c))(5:v74+4d(x))
= 2

. \/21:+1— (2)) (52 — 4 + 4d(x)) — (d(z) + 6)

r—2 xr—2
z>2

~ lim (x —2)(x +22) — 2d(z)(z — 2)
23 <\/2x+1— (2)) (52 — 4+ 4d(2)) + (d(z) +6) ) (& — 2)
=3
and let u; : [2,v/2 + 1] = R be a function defined by
z—8—d(z)++2(x+1—d(z))(5z — 4 +4d(z))

ui () = z—2 ’
3, x=2.

€ (2,vV2+1]

Using the program Wolfram|Alpha we have

a< inf  w(z) =3V10 +4V5 — 7V2 — 6.

2<z<V2+1

From the above it follows that inequality (36) holds.
(ii) According to the idea from (i) if we note t( ) = Va2 -2z —1, we

1
have ax 4+ (9—2a) < z+ = (\/10952 +6(z + 1)t(x) + /1022 — 6(x + 1)t(3:))
and then let v1 : [V2 —|— 1 +oo) — R be a functlon defined by vy (z) =
T—94 = (\/10m2+6(x+ z) + /1027 = 6(z + 1)i(x))

€ [V2+1, +00).

Using the program Wolfram|Alpha we have

a< inf wv(z) =3vV10+4V5 - 7V2 - 6.

T>V2+1

From (i), (ii), Theorem 7, Remark 5 and program Wolfram|Alpha,
follows (iii).

Theorem 9. In every acute or right triangle is true the inequality

(38) (3v10+4V5—7v2—6)R+(21+14v2—6V10—8V5)r < ma+mp+me,
R

with equality if and only if = € {2,v/2 + 1}.
r

Proof. It follows from Lemma 10.

Corollary 2. In every acute or right triangle, the following inequalities

5
(39) Mg + mp +me > agR + (9 — 2a9)r > §R+4r
and
5
(40) ma+mb+mCZ§R+4r

hold.
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Proof. We consider the function w : (0,400) — R defined by w(a) =

aR+(9—2a)r = a(R—2r)+9r, a € (0,400). Because R > 2r, the function
5 5

w is increasing on (0, +o00) and oy > 5 it results that w(ag) > w <§>, S0

(39) is obtained. The equality holds if and only if R = 2r, equivalent to
ABC is an equilateral triangle. From (39) follows (40).

Remark 6. Inequality (40) is proven in [7] and then the first inequality in
(39) is a refinement of the inequality (40).

Lemma 11. Let ABC be a triangle and o« < 4. If
R

(i) 2 < = < V241, then
r

6
(41) aR + (288 — 64@)% < R4r—d+/2(R+r—d)(5R — 4r + 4d);

(i) R > /241, then
T

6

1
(42) aR+ (288— 6404)% <R+ 3 (\/10R2+ 6(R+7)VR>—2Rr—r2+

—|—\/10R2 —6(R+1r)VR?—2Rr — 7“2>;

(#i7) ay = 4 then the equalities in (41) and (42) hold if and only if R 2.
T

R
Proof. Because — > 2 we have that mq, + mp + me > aR + (9 — 2a)r >
r
5 6
aR+(9—2a)r-32 (%) = aR+ (288 — 6404)% and taking Remark 5 into
account, then for R = 2r the inequalities above the equalities become equal.
Using the ideas from Lemma 10, from (41) we have

5
26— 64 (x +1-— 29%8 —d(z) + \/2(95 +1—d(x))(5z — 4+4d(x))>, for
r € (2,v/2+ 1]. Because

a <

i 2
:}:l—%ﬁ (w—l— 1- g —d(z) + \/Q(x—l— 1 —d(:c))(B:c—4+4d(a:))>
>2

1
is equal to Z7’ let ug : [2,v/2 + 1] — R be a function defined by

z6 — 64
17

, x*=2.
4

5
L (x+1f ﬁ 7d(a:)+\/2(z+17d(m))(5m74+4d(z))>,x €(2,V2Z+1]
uz(z) = v

Using the program Wolfram|Alpha we have

1
a< inf ug(z) = — (181V10 + 256v/5 — 448v/2 + 469) ~ 4,00097
2<a<V2+1 245

and is touched for z = v/2 + 1. From the above it follows that inequality
(41) holds. From (42) we obtain that

x® 288 1

o < vy)= <:c - t3 (\/le2+ 6(x + 1)t(x) ++/1022 - 6(x + 1)t(x)))
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and using the program Wolfram|Alpha we have o < i\r/lf vo(z) = 4,
z>V2+1

at the limit when x tends to infinity. From the above the best constant

is 4. From (i), (ii), Theorem 7, Remark 5 and program Wolfram|Alpha

follows (iii).
Corollary 3. In every acute or right triangle ABC, the inequality

32r0
(43) ma+mb+mCZ4R+F

holds, with equality if and only if ABC is an equilateral triangle.
Proof. Is obtained immediately from Lemma 11.

Remark 7. The inequality from (43) represent the Conjecture 5.1 from [7].
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