

THE BEST MINORATION AND MAJORATION FOR THE SUM OF MEDIANAS IN A TRIANGLE

MARIUS DRĂGAN and OVIDIU T. POP

Abstract. The purpose of this article is to find the best bounds $f(R, r)$ and $g(R, r)$ such that $f(R, r) \leq m_a + m_b + m_c \leq g(R, r)$ which is true in every triangle or in every non-obtuse triangle. Using the above result we find the best constant α_1 for which $m_a + m_b + m_c \geq \alpha_1 R + (288 - 64\alpha_1) \frac{r^6}{R^5}$ is true in non-obtuse triangle and taking in account of inequality $\alpha_1 R + (288 - 64\alpha_1) \frac{r^6}{R^5} \geq 4R + \frac{32r^6}{R^5}$ which is true in every triangle, we give a proof for the conjecture of J. Liu from [7]. Also, we find the best constant α_2 for which $m_a + m_b + m_c \geq \alpha_2 R + (9 - 2\alpha_2)r$ is true in every non-obtuse triangle.

1. INTRODUCTION

In this section we will recall some known results, which we will use in the following.

In a given triangle ABC , we denote the lengths of the sides with $AB = c$, $BC = a$, $CA = b$, F the area, r , R the radius of the inscribed circle with the center I , respectively of the circumscribed circle with the center O of the triangle, $s = \frac{a+b+c}{2}$ the semiperimeter, the distance between O and I by $d = \sqrt{R^2 - 2Rr}$, with A, B, C the measures of the angles and m_a, m_b, m_c the lengths of the medians in A, B and C respectively.

W.J. Blundon in [2] has proved in 1965 the following inequalities

$$(1) \quad 2R^2 + 10Rr - r^2 - 2(R - 2r)\sqrt{R^2 - 2Rr} \leq s^2 \leq 2R^2 + 10Rr - r^2 + 2(R - 2r)\sqrt{R^2 - 2Rr}.$$

Keywords and phrases: Inequalities in triangle, the best minoration and majoration.
(2021) Mathematics Subject Classification: 26D05; 26D15; 51N35

Received: 29.07.2025. In revised form: 15.10.2025. Accepted: 22.11.2025

The inequalities from (1) represent necessary and sufficient conditions for the existence of a triangle with given elements R, r and s .

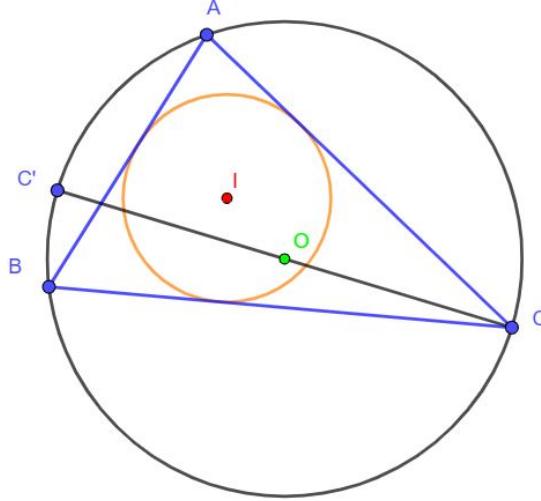


FIGURE 1

Lemma 1. *Let ABC be a given triangle.*

- (i) *If $d < r$, then ABC is an acute triangle.*
- (ii) *If $d \geq r$, then ABC can be an obtuse, acute or right triangle.*

Proof. (i) Because $d < r$ it turns out that O is located inside the triangle ABC (see Figure 1). We denote by C' the point where the line CO intersect the circle $\mathcal{C}(O, R)$ for the second time and then it results that C' is located inside the arc \widehat{AB} . Then we have that

$A = \frac{1}{2} \text{measure}(\widehat{BC}) < \frac{1}{2} \text{measure}(\widehat{CBC'}) = \frac{1}{2} \cdot \pi$, from which it follows that A is an acute angle. The same is true for angle B and C .

(ii) If $d \geq r$ then in Figure 2 we have that triangle ABC is acute, triangle $A'B'C'$ is right and $A''B''C''$ is obtuse $\left(A'' > \frac{\pi}{2}\right)$.

Let's recall some results found in the paper [5].

In the following we consider given the triangle ABC , $\mathcal{C}(O, R)$ the circumscribed circle and $\mathcal{C}(I, r)$ the inscribed circle. The half-lines $(OI, (IO$ intersect $\mathcal{C}(O, R)$ in A_1 , respectively A_2 .

According to Poncelet's Theorem, are obtained the triangles $A_1B_1C_1$ and $A_2B_2C_2$, tangent to the circle $\mathcal{C}(O, I)$ (see Figure 3).

Lemma 2. (i) *The lengths of the sides of the triangle $A_1B_1C_1$ are given by*

$$(2) \quad a_1 = 2\sqrt{R^2 - (r - d)^2}, \quad b_1 = c_1 = \sqrt{2R(R + r - d)},$$

while those of the sides of the triangle $A_2B_2C_2$ are given by

$$(3) \quad a_2 = 2\sqrt{R^2 - (r + d)^2}, \quad b_2 = c_2 = \sqrt{2R(R + r + d)},$$

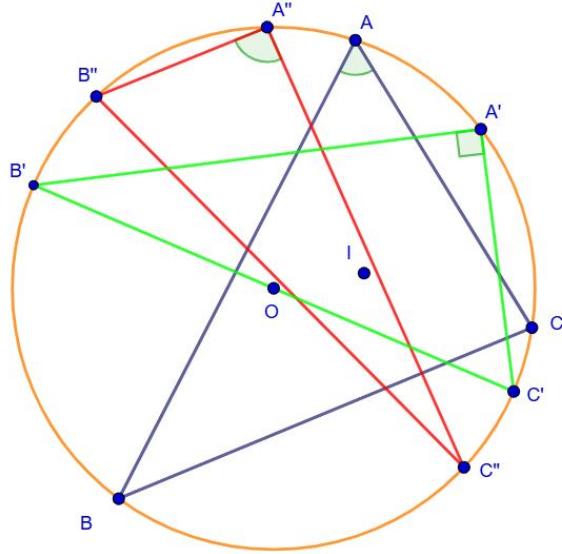


FIGURE 2

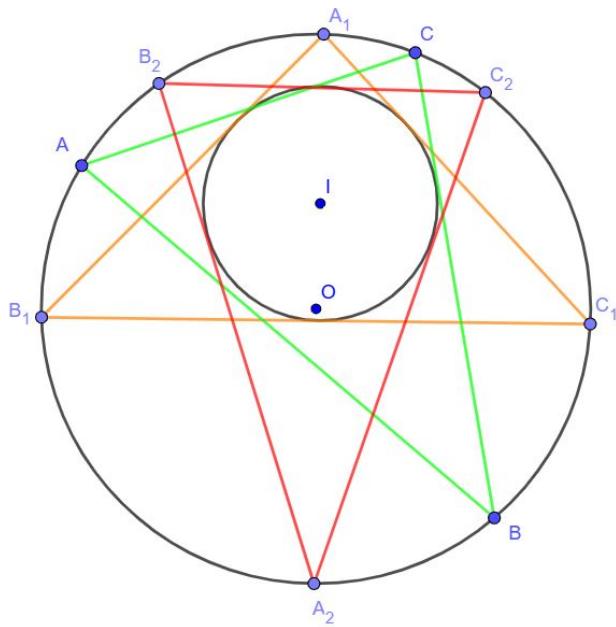


FIGURE 3

(ii) The semiperimeter of the triangle $A_1B_1C_1$ is

$$(4) \quad s_1 = \sqrt{\frac{(R+r-d)^3}{R-r-d}} = \sqrt{2R^2 + 10Rr - r^2 - 2\sqrt{R(R-2r)^3}},$$

while that of the triangle $A_2B_2C_2$ is

$$(5) \quad s_2 = \sqrt{\frac{(R+r+d)^3}{R-r+d}} = \sqrt{2R^2 + 10Rr - r^2 + 2\sqrt{R(R-2r)^3}}.$$

Remark 1. It is immediately verified that $a_1 > b_1$ and $a_2 < b_2$.

Theorem 1 (Fundamental triangle inequalities of Blundon). *The following inequalities*

$$(6) \quad s_1 \leq s \leq s_2$$

hold. The equality occurs on the left-side and respectively on right-side of inequality if and only if the triangle ABC becomes triangle $A_1B_1C_1$, respectively triangle $A_2B_2C_2$, with the sides from the Lemma 2.

In [3], C. Ciamberlini proved the identity

$$(7) \quad s^2 - (2R+r)^2 = 4R^2 \cos A \cos B \cos C,$$

where A, B, C are the angles of the triangle ABC . From (7), the following results emerge.

Lemma 3 (C. Ciamberlini, see [3]). *In a triangle ABC we have*

- (i) $s < 2R+r$ if and only if the triangle is obtuse;
- (ii) $s = 2R+r$ if and only if the triangle is right;
- (iii) $s > 2R+r$ if and only if the triangle is acute.

In the following we will study the case $d \geq r$, equivalently $R \geq (\sqrt{2}+1)r$, that is the case when the point O is exterior to the circle $\mathcal{C}(I, r)$. The tangents through O to the circle $\mathcal{C}(I, r)$ intersect the circle $\mathcal{C}(O, R)$ in two pairs of points B_3, C_3 and B_4, C_4 . Next we construct the right triangles $A_3B_3C_3$ and $A_4B_4C_4$ inscribed in $\mathcal{C}(O, R)$ and circumscribed to $\mathcal{C}(I, r)$ (see the Figure 4).

Remark 2. Immediately check that triangles $A_3B_3C_3$ and $A_4B_4C_4$ are congruent. If $d = r$, equivalent to $R = (\sqrt{2}+1)r$, then triangle $A_4B_4C_4$ coincides with triangle $A_3B_3C_3$.

Lemma 4. *If $\frac{R}{r} \geq \sqrt{2}+1$, then the right triangle $A_3B_3C_3$ has the sides*

$$(8) \quad a_3 = 2R, \quad b_3 = R+r - \sqrt{R^2 - 2Rr - r^2}, \quad c_3 = R+r + \sqrt{R^2 - 2Rr - r^2}$$

and semiperimeter

$$(9) \quad s_3 = 2R+r.$$

Lemma 5. *If $\frac{R}{r} \geq \sqrt{2}+1$, then the inequalities*

$$(10) \quad s_1 \leq s_3 \leq s_2$$

hold. The equality occurs if and only if $\frac{R}{r} = 1 + \sqrt{2}$.

Proof. The first inequality from (10) is equivalent with

$$2R^2 + 10Rr - r^2 - 2\sqrt{R(R-2r)^3} \leq 4R^2 + 4Rr + r^2,$$

equivalent with $-R^2 + 3Rr - r^2 \leq \sqrt{R(R-2r)^3}$. If $\frac{R}{r} > \frac{3 + \sqrt{5}}{2}$, then $-R^2 + 3Rr - r^2 < 0$,

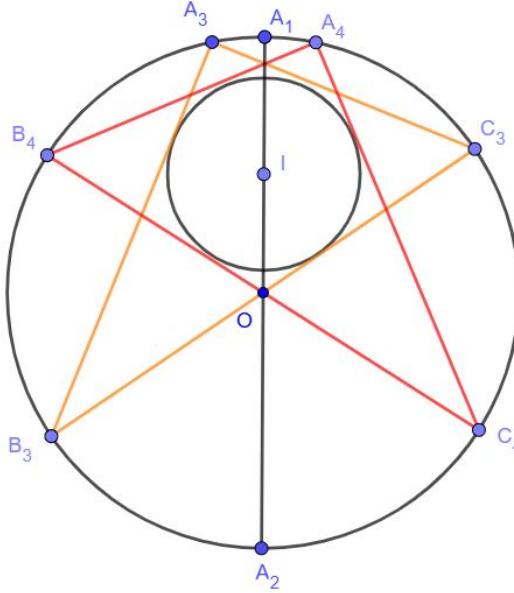


FIGURE 4

so inequality holds. If $2 \leq \frac{R}{r} \leq \frac{3 + \sqrt{5}}{2}$, then $-R^2 + 3Rr - r^2 \geq 0$ and by squaring we have $(-R^2 + 3Rr - r^2)^2 \leq R(R - 2r)^3$, equivalent after performing some calculation with $0 \leq R^2 - 2Rr - r^2$, or $\frac{R}{r} \geq 1 + \sqrt{2}$.

The inequality $s_2 \geq s_3$ is equivalent to

$$2R^2 + 10Rr - r^2 + 2\sqrt{R(R - 2r)^3} \geq 4R^2 + 4Rr + r^2,$$

equivalent to $\sqrt{R(R - 2r)^3} \geq R^2 - 3Rr + r^2$. If $\frac{R}{r} \in \left[2, \frac{3 + \sqrt{5}}{2}\right)$, the inequality occurs because the right-hand side is negative.

If $\frac{R}{r} \geq \frac{3 + \sqrt{5}}{2}$ then $R^2 - 3Rr + r^2 \geq 0$ and by squaring we have $R(R - 2r)^3 \geq (R^2 - 3Rr + r^2)^2$, equivalent after performing some calculation to $R^2 - 2Rr - r^2 \geq 0$, or $\frac{R}{r} \geq \sqrt{2} + 1$.

Lemma 6. *Triangles $A_1B_1C_1$ and $A_2B_2C_2$ can be equilateral triangles, but triangle $A_3B_3C_3$ cannot.*

Proof. From (2), $A_1B_1C_1$ can be equilateral, equivalent to $a_1 = b_1$, equivalent to $R - 2r + 2\sqrt{R(R - 2r)} = 0$, equivalent to $R = 2r$, which is true equality in an equilateral triangle. Similar for triangle $A_2B_2C_2$. If triangle $A_3B_3C_3$ was equilateral, then from (8) we have $a_3 = b_3 = c_3$, equivalent to $R^2 - 2Rr - r^2 = 0$ and $2R = R + r$ from where $R = r$ which is a false equality.

Theorem 2. Let ABC be a triangle with the property that $\frac{R}{r} \geq \sqrt{2} + 1$.

(i) If ABC is acute or right triangle, then

$$(11) \quad s_1 \leq s_3 \leq s,$$

with equality on the right-side if and only if the triangle ABC becomes triangle $A_3B_3C_3$.

(ii) If ABC is obtuse or right triangle, then

$$(12) \quad s \leq s_3 \leq s_2,$$

with equality on the left-side if and only if the triangle ABC becomes triangle $A_3B_3C_3$.

Proof. Inequalities (11) and (12) are obtained from Theorem 1, Lemma 3 and Lemma 5.

Remark 3. In the above we showed the existence of triangles $A_1B_1C_1$, $A_2B_2C_2$ and $A_3B_3C_3$ for which the equalities in (10)-(12) hold.

Using the above results we obtain the following theorems.

Theorem 3. Let ABC an acute or right triangle. If $2 \leq \frac{R}{r} \leq \sqrt{2} + 1$, then

$$(13) \quad s_1 \leq s \leq s_2,$$

the equality on the left-side and respectively on the right-side of inequality hold if and only if the triangle ABC becomes triangle $A_1B_1C_1$, respectively triangle $A_2B_2C_2$, with the sides from Lemma 2.

If $\frac{R}{r} \geq \sqrt{2} + 1$, then

$$(14) \quad s_3 \leq s \leq s_2$$

the equality on the left-side and respectively on the right-side of inequality hold if and only if the triangle ABC becomes triangle $A_3B_3C_3$, respectively $A_2B_2C_2$, with the sides from Lemma 2 and Lemma 4.

Theorem 4. If ABC is obtuse or right triangle and $\frac{R}{r} \geq \sqrt{2} + 1$, then

$$(15) \quad s_1 \leq s \leq s_3,$$

with equality in (1.15) on the left-side and respectively on the right-side if and only if the triangle ABC becomes triangle $A_1B_1C_1$, respectively $A_3B_3C_3$.

Remark 4. If the triangle ABC is acute or obtuse triangle then the left-side of inequality from (14) and the right-side of the inequality from (15) are strict.

2. MAIN RESULTS

In the following, we will denote by $m_{a_i}, m_{b_i}, m_{c_i}$ the lengths of the medians in A_i, B_i and C_i respectively, from the triangle $A_iB_iC_i$, where $i \in \{1, 2, 3\}$. The triangles $A_1B_1C_1, A_2B_2C_2$ and $A_3B_3C_3$ are defined in Introduction.

Lemma 7. *The following equalities*

$$(16) \quad m_{a_1} = R + r - d, \quad m_{b_1} = m_{c_1} = \frac{1}{2} \sqrt{2(R + r - d)(5R - 4r + 4d)}$$

and

$$(17) \quad m_{a_2} = R + r + d, \quad m_{b_2} = m_{c_2} = \frac{1}{2} \sqrt{2(R + r + d)(5R - 4r - 4d)}$$

hold.

Proof. Taking (2) into account, we have

$$\begin{aligned} m_{a_1} &= \sqrt{\frac{2(b_1^2 + c_1^2) - a_1^2}{4}} = \sqrt{\frac{4b_1^2 - a_1^2}{4}} \\ &= \frac{1}{2} \sqrt{8R(R + r - d) - 4(R^2 - (r - d)^2)} = \sqrt{(R + r - d)^2} = R + r - d \end{aligned}$$

and

$$\begin{aligned} m_{b_1} = m_{c_1} &= \frac{1}{2} \sqrt{2a_1^2 + b_1^2} = \frac{1}{2} \sqrt{8(R^2 - (r - d)^2) + 2R(R + r - d)} \\ &= \frac{1}{2} \sqrt{2(R + r - d)(4(R - r + d) + R)} = \frac{1}{2} \sqrt{2(R + r - d)(5R - 4r + 4d)}. \end{aligned}$$

The equalities in (17) are proven similarly.

Lemma 8. *If $\frac{R}{r} \geq \sqrt{2} + 1$ then the equalities*

$$(18) \quad m_{a_3} = R$$

and

$$\begin{aligned} m_{b_3} &= \frac{1}{2} \sqrt{10R^2 + 6(R + r) \sqrt{R^2 - 2Rr - r^2}}, \\ (19) \quad m_{c_3} &= \frac{1}{2} \sqrt{10R^2 - 6(R + r) \sqrt{R^2 - 2Rr - r^2}} \end{aligned}$$

Proof. The relations from (8) are used.

Theorem 5. *In every triangle ABC are true the following inequalities.*

$$\begin{aligned} R + r - d + \sqrt{2(R + r - d)(5R - 4r + 4d)} &\leq m_a + m_b + m_c \leq \\ (20) \quad R + r + d + \sqrt{2(R + r + d)(5R - 4r - 4d)}. \end{aligned}$$

The equality occurs on the left-side and respectively on the right-side of the inequality if and only if the triangle ABC becomes triangle $A_1B_1C_1$, respectively triangle $A_2B_2C_2$, with the sides from Lemma 2.

Proof. We denote $w = m_a + m_b + m_c = \sum \sqrt{m_a^2}$ and after squaring we obtain

$$\begin{aligned} w^2 &= \sum m_a^2 + 2 \sum m_a m_b = \sum m_a^2 + 2 \sqrt{\left(\sum m_a m_b\right)^2} = \\ &= \sum m_a^2 + 2 \sqrt{\sum m_a^2 m_b^2 + 2m_a m_b m_c \cdot w}. \end{aligned}$$

The following identities are very well known

$$\begin{aligned}\sum m_a^2 &= \frac{3}{4}(a^2 + b^2 + c^2) = \frac{3}{2}(s^2 - r^2 - 4Rr) \\ \sum m_a^2 m_b^2 &= \frac{9}{16} [(s^2 + r^2 + 4Rr)^2 - 16Rrs^2]\end{aligned}$$

and $16m_a^2 m_b^2 m_c^2 = s^6 + (33r^2 - 12Rr)s^4 - (60R^2r^2 + 120Rr^3 + 33r^4)s^2 - (4Rr + r^2)^3$.

We define the functions $f, g, h : [s_1, s_2] \rightarrow \mathbb{R}$, $f(s) = \sum m_a^2$, $g(s) = \sum m_a^2 m_b^2$, $h(s) = m_a m_b m_c$. According to the identities above, this functions depend on s , where $s \in [s_1, s_2]$. We have $w^2 = f(s) + 2\sqrt{g(s) + 2h(s) \cdot w}$, equivalent to $w^2 - f(s) = 2\sqrt{g(s) + 2h(s) \cdot w}$. If we consider the variable u , the equality above becomes

$$(21) \quad u^2 - f(s) = 2\sqrt{g(s) + 2h(s) \cdot u},$$

where $u \geq \sqrt{f(s)}$, and for $u(s) = w$ in (21) the equality holds.

Let $F : [\sqrt{f(s)}, +\infty) \rightarrow \mathbb{R}$ be a function defined by

$$F(u) = (u^2 - f(s))^2 - 4(g(s) + 2h(s)u) = u^4 - 2f(s)u^2 - 8h(s)u + f^2(s) - 4g(s),$$

where $u \in [\sqrt{f(s)}, +\infty)$. We have $F(w) = 0$ and $F'(u) = 4u^3 - 4f(s)u - 8h(s) = 4u(u^2 - f(s)) - 8h(s)$, $u \in [\sqrt{f(s)}, +\infty)$.

It follows that F' is increasing on $[\sqrt{f(s)}, +\infty)$.

But $F'(\sqrt{f(s)}) = -8h(s) < 0$ and $\lim_{u \rightarrow \infty} F'(u) = +\infty$, it follows that F' has a single root in $[\sqrt{f(s)}, +\infty)$.

Since $F(\sqrt{f(s)}) = -8h(s)\sqrt{f(s)} - 4g(s) < 0$, $\lim_{u \rightarrow \infty} F(u) = +\infty$ and $F(w) = 0$, it results that the equation $F(u) = 0$ has w as its only root on $[\sqrt{f(s)}, +\infty)$. So, the equation $F(u) = 0$ is equivalent with

$$(22) \quad u^4 - 2f(s)u^2 - 8h(s)u + f^2(s) - 4g(s) = 0,$$

equivalent, taking identities above, with

$$(23) \quad \begin{aligned} &u^4 - 3(s^2 - r^2 - 4Rr)u^2 \\ &- 2\sqrt{s^6 + (33r^2 - 12Rr)s^4 - (60R^2r^2 + 120Rr^3 + 33r^4)s^2 - (4Rr + r^2)^3} \cdot u \\ &+ \frac{9}{4}(s^2 - r^2 - 4Rr)^2 - \frac{9}{4}[(s^2 + r^2 + 4Rr)^2 - 16Rrs^2] = 0.\end{aligned}$$

Taking into account [8], it follows that the positive root of the equation from (23) is expressed as operations with differentiable functions, so the root of (23) is a differentiable function, $u : [s_1, s_2] \rightarrow \mathbb{R}$, the variable of the function u being s . Differentiating relation (22), we can write it

$$(24) \quad \begin{aligned} &2 \left(u(s)(u^2(s) - f(s)) - 2f(s) \right) u'(s) \\ &= f'(s)(u^2(s) - f(s)) + 2g'(s) + 4h'(s)u(s),\end{aligned}$$

where $s \in [s_1, s_2]$.

Applying the inequality of means, we have

$$\begin{aligned} g(s) + 2h(s)u(s) &= \sum m_a^2 m_b^2 + 2m_a m_b m_c (m_a + m_b + m_c) \\ &= \sum m_a^2 m_b^2 + \sum 2m_a^2 m_b m_c \geq 6 \sqrt[6]{8m_a^8 m_b^8 m_c^8} \\ &= 6\sqrt{2} \sqrt[3]{(m_a m_b m_c)^4} = 6\sqrt{2} \sqrt[3]{h^4(s)} \end{aligned}$$

and taking (2.6) into account we have $u^2(s) - f(s) = 2\sqrt{g(s) + 2h(s)u(s)} \geq 2\sqrt{6\sqrt{2} \sqrt[3]{h^4(s)}} = 2\sqrt{6\sqrt{2} \sqrt[3]{h^2(s)}}$. From this inequality it follows that $u^2(s) > 2\sqrt{6\sqrt{2} \sqrt[3]{h^2(s)}}$, from where $u(s) > \sqrt{2\sqrt{6\sqrt{2} \sqrt[3]{h(s)}}}$. From the inequalities above we have $u(s)(u^2(s) - f(s)) - 2h(s) \geq (2\sqrt{2} \sqrt[4]{(6\sqrt{2})^3} - 2)h(s)$, from where

$$(25) \quad u(s)(u^2(s) - f(s)) - 2h(s) > 0,$$

for every $s \in [s_1, s_2]$.

Because $f(s) = \sum m_a^2 = \frac{3}{2}(s^2 - r^2 - 4Rr)$, then $f'(s) = 3s$, so

$$(26) \quad f'(s) > 0,$$

for any $s \in [s_1, s_2]$.

We have $g(s) = \sum m_a^2 m_b^2 = \frac{9}{16}((s^2 + r^2 + 4Rr)^2 - 16Rrs^2)$, from where $g'(s) = \frac{9}{4}s(s^2 + r^2 - 4Rr)$ and taking Gerretsen's Inequality $s^2 \geq 16Rr - 5r^2$ into account, we have

$$(27) \quad g'(s) \geq 0,$$

for any $s \in [s_1, s_2]$.

We have $h(s) = m_a m_b m_c = \frac{1}{4}\sqrt{z(s)}$, where $z(s) = s^6 + (33r^2 - 12Rr)s^4 - (60R^2r^2 + 120Rr^3 + 33r^4)s^2 - (4Rr + r^2)^3$ and if noting $s^2 = t$, we obtain the function $p : [s_1^2, s_2^2] \rightarrow \mathbb{R}$, $p(t) = t^2 + (33r^2 - 12Rr)t - (60R^2r^2 + 120Rr^3 + 33r^4)$, $t \in [s_1^2, s_2^2]$ and $z(s) = tp(t) - (4Rr + r^2)^3$, $s \in [s_1, s_2]$. Then $p(t) = t(t - (12Rr - 33r^2)) - (60R^2r^2 + 120Rr^3 + 33r^4)$ and according Gerretsen's Inequality we have $t = s^2 \geq 16Rr - 5r^2 > 12Rr - 33r^2$, so p is an increasing function on $[s_1^2, s_2^2]$. After calculus, we have that $p(t) \geq p(16Rr - 5r^2) = r^2(4R^2 + 308Rr - 173r^2) > 0$, so p is a positive function on $[s_1^2, s_2^2]$.

From above it results that $z(s)$ is increasing on $[s_1, s_2]$, from where $z'(s) \geq 0$, for any $s \in [s_1, s_2]$.

From these remarks, follows that the function $h(s) = \frac{1}{4}\sqrt{z(s)}$ is increasing on $[s_1, s_2]$, so

$$(28) \quad h'(s) \geq 0,$$

for any $s \in [s_1, s_2]$. Taking (21), (25)-(28) into account, from (24) we obtain $u'(s) \geq 0$ for all $s \in [s_1, s_2]$, so function u is increasing on $[s_1, s_2]$, from where $u(s_1) \leq u(s) \leq u(s_2)$, for any $s \in [s_1, s_2]$, equivalent to $m_{a_1} + m_{b_1} + m_{c_1} \leq m_a + m_b + m_c \leq m_{a_2} + m_{b_2} + m_{c_2}$, for any $s \in [s_1, s_2]$.

Theorem 6. Let ABC be a triangle with the property that $\frac{R}{r} \geq \sqrt{2} + 1$.

(i) If ABC is acute or right triangle, then

$$(29) \quad \begin{aligned} R + r - d + \sqrt{2(R + r - d)(5R - 4r + 4d)} &\leq \\ &\leq R + \frac{1}{2} \left(\sqrt{10R^2 + 6(R + r)\sqrt{R^2 - 2Rr - r^2}} + \sqrt{10R^2 - 6(R + r)\sqrt{R^2 - 2Rr - r^2}} \right) \leq \\ &\leq m_a + m_b + m_c, \end{aligned}$$

with equality on the right-side if and only if the triangle ABC becomes triangle $A_3B_3C_3$.

(ii) If ABC is obtuse or right triangle, then

$$(30) \quad \begin{aligned} m_a + m_b + m_c &\leq \\ &\leq R + \frac{1}{2} \left(\sqrt{10R^2 + 6(R + r)\sqrt{R^2 - 2Rr - r^2}} + \sqrt{10R^2 - 6(R + r)\sqrt{R^2 - 2Rr - r^2}} \right) \leq \\ &\leq R + r + d + \sqrt{2(R + r + d)(5R - 4r - 4d)}, \end{aligned}$$

with equality on the left-side if and only if the triangle ABC becomes triangle $A_3B_3C_3$.

Proof. The results of this theorem are obtained taking into account Theorem 2, Lemmas 7 and 8 and that from the proof of Theorem 5 it follows that the function u is increasing.

According Theorem 5 and Theorem 6 we obtained the following theorems.

Theorem 7. Let ABC an acute or right triangle.

(i) If $2 \leq \frac{R}{r} \leq \sqrt{2} + 1$, then

$$(31) \quad \begin{aligned} R + r - d + \sqrt{2(R + r - d)(5R - 4r + 4d)} &\leq m_a + m_b + m_c \leq \\ &\leq R + r + d + \sqrt{2(R + r + d)(5R - 4r - 4d)}, \end{aligned}$$

with equality on the left-side and respectively on the right-side of inequality if and only if the triangle ABC becomes $A_1B_1C_1$, respectively triangle $A_2B_2C_2$.

(ii) If $\frac{R}{r} \geq \sqrt{2} + 1$, then

$$(32) \quad \begin{aligned} R + \frac{1}{2} \left(\sqrt{10R^2 + 6(R + r)\sqrt{R^2 - 2Rr - r^2}} + \sqrt{10R^2 - 6(R + r)\sqrt{R^2 - 2Rr - r^2}} \right) \\ \leq m_a + m_b + m_c \leq R + r + d + \sqrt{2(R + r + d)(5R - 4r - 4d)}, \end{aligned}$$

with equality on the left-side and respectively on the right-side of inequality if and only if the triangle ABC becomes $A_3B_3C_3$, respectively triangle $A_2B_2C_2$.

Theorem 8. If ABC is obtuse or right triangle and $\frac{R}{r} \leq \sqrt{2} + 1$, then

$$m_a + m_b + m_c$$

$$(33) \quad \leq R + \frac{1}{2} \left(\sqrt{10R^2 + 6(R + r)\sqrt{R^2 - 2Rr - r^2}} + \sqrt{10R^2 - 6(R + r)\sqrt{R^2 - 2Rr - r^2}} \right),$$

with equality if and only if the triangle ABC becomes $A_3B_3C_3$.

Lemma 9. The following inequality

$$(34) \quad R + r + d + \sqrt{2(R + r + d)(5R - 4r - 4d)} \leq 4R + r,$$

holds, with equality if and only if ABC is an equilateral triangle.

Proof. The inequality from (34) is equivalent to

$\sqrt{2R^2 + 18Rr - 8r^2 + 2d(R - 8r)} \leq 3R - d$. Since $3R - d > 0$, squaring it we have $2R^2 + 18Rr - 8r^2 + 2d(R - 8r) \leq 10R^2 - 6Rd - 2Rr$, equivalent to $0 \leq (R - 2r)(2R - r) - 2d(R - 2r)$, equivalent to $0 \leq (R - 2r)(2R - r - 2d)$. We demonstrate that $2R - r > 2d$. Because $R \geq 2r$, it results that $2R - r > 0$ and squaring we have $4R^2 - 4Rr + r^2 > 4(R^2 - 2Rr)$, which is a true inequality. So, $2R - r - 2d > 0$ and $R > 2r$, it results that $(R - 2r)(2R - r - 2d) \geq 0$. Equality holds if and only if $R = 2r$, equivalent to ABC is an equilateral triangle.

From Theorem 7 and Lemma 8 we obtain a well known inequality contained in Corollary 1.

Corollary 1. *In every triangle ABC is true the inequality*

$$(35) \quad m_a + m_b + m_c \leq 4R + r,$$

with equality if and only if the triangle ABC is an equilateral triangle.

In the following, we find the best constants $\alpha, \beta \in \mathbb{R}$ such that $\alpha R + \beta r \leq m_a + m_b + m_c$ is true in every triangle ABC , with the condition that the equality holds for the equilateral triangle ABC , so $R = 2r$. Then, we have that $m_a = m_b = m_c = \frac{l\sqrt{3}}{2}$, $R = \frac{l\sqrt{3}}{3}$, $r = \frac{l\sqrt{3}}{6}$, where l is the length of the side of the triangle ABC , so $\alpha \cdot \frac{l\sqrt{3}}{3} + \beta \cdot \frac{l\sqrt{3}}{6} = 3 \cdot \frac{l\sqrt{3}}{2}$, from where $2\alpha + \beta = 9$, so $\beta = 9 - 2\alpha$.

Remark 5. From above it follows that if $\alpha \in \mathbb{R}$ verify the inequality $\alpha R + (9 - 2\alpha)r \leq m_a + m_b + m_c$, then for $R = 2r$ the equality in the inequality above holds.

Lemma 10. *Let ABC be a triangle and $\alpha \leq 3\sqrt{10} + 4\sqrt{5} - 7\sqrt{6} - 6 \approx 2,53161$. If*

(i) $2 \leq \frac{R}{r} \leq \sqrt{2} + 1$, then

$$(36) \quad \alpha R + (9 - 2\alpha)r \leq R + r - d + \sqrt{2(R + r - d)(5R - 4r + 4d)};$$

(ii) $\frac{R}{r} \geq \sqrt{2} + 1$, then

$$(37) \quad \alpha R + (9 - 2\alpha)r \leq R + \frac{1}{2} \left(\sqrt{10R^2 + 6(R + r)\sqrt{R^2 - 2Rr - r^2}} + \sqrt{10R^2 - 6(R + r)\sqrt{R^2 - 2Rr - r^2}} \right);$$

(iii) $\alpha_0 = 3\sqrt{10} + 4\sqrt{5} - 7\sqrt{6} - 6$, then the equalities in (36) and (37) hold if and only if $\frac{R}{r} \in \{2, \sqrt{2} + 1\}$.

Proof. (i) If we note $\frac{R}{r} = x$, $d(x) = \sqrt{x^2 - 2x}$, dividing in (36) by r^2 , we obtain $\alpha x + (9 - 2\alpha) \leq x + 1 - d(x) + \sqrt{2(x + 1 - d(x))(5x - 4 + 4d(x))}$, from where $\alpha \leq \frac{x - 8 - d(x) + \sqrt{2(x + 1 - d(x))(5x - 4 + 4d(x))}}{x - 2}$, for

$x \in (2, \sqrt{2} + 1]$. We have that

$$\begin{aligned} & \lim_{\substack{x \rightarrow 2 \\ x > 2}} \frac{x - 8 - d(x) + \sqrt{2(x+1-d(x))(5x-4+4d(x))}}{x-2} \\ &= \lim_{\substack{x \rightarrow 2 \\ x > 2}} \left(1 + \frac{\sqrt{2(x+1-d(x))(5x-4+4d(x))} - (d(x) + 6)}{x-2} \right) \\ &= \lim_{\substack{x \rightarrow 2 \\ x > 2}} \left(1 + \frac{(x-2)(x+22) - 2d(x)(x-2)}{\left(\sqrt{2(x+1-d(x))(5x-4+4d(x))} + (d(x) + 6) \right) (x-2)} \right) \\ &= 3 \end{aligned}$$

and let $u_1 : [2, \sqrt{2} + 1] \rightarrow \mathbb{R}$ be a function defined by

$$u_1(x) = \begin{cases} \frac{x - 8 - d(x) + \sqrt{2(x+1-d(x))(5x-4+4d(x))}}{x-2}, & x \in (2, \sqrt{2} + 1] \\ 3, & x = 2. \end{cases}$$

Using the program Wolfram|Alpha we have

$$\alpha \leq \inf_{2 \leq x \leq \sqrt{2}+1} u_1(x) = 3\sqrt{10} + 4\sqrt{5} - 7\sqrt{2} - 6.$$

From the above it follows that inequality (36) holds.

(ii) According to the idea from (i) if we note $t(x) = \sqrt{x^2 - 2x - 1}$, we have $\alpha x + (9 - 2\alpha) \leq x + \frac{1}{2} (\sqrt{10x^2 + 6(x+1)t(x)} + \sqrt{10x^2 - 6(x+1)t(x)})$ and then let $v_1 : [\sqrt{2} + 1, +\infty) \rightarrow \mathbb{R}$ be a function defined by $v_1(x) = \frac{x - 9 + \frac{1}{2} (\sqrt{10x^2 + 6(x+1)t(x)} + \sqrt{10x^2 - 6(x+1)t(x)})}{x-2}$, $x \in [\sqrt{2} + 1, +\infty)$.

Using the program Wolfram|Alpha we have

$$\alpha \leq \inf_{x \geq \sqrt{2}+1} v_1(x) = 3\sqrt{10} + 4\sqrt{5} - 7\sqrt{2} - 6.$$

From (i), (ii), Theorem 7, Remark 5 and program Wolfram|Alpha, follows (iii).

Theorem 9. *In every acute or right triangle is true the inequality*

$$(38) \quad (3\sqrt{10} + 4\sqrt{5} - 7\sqrt{2} - 6)R + (21 + 14\sqrt{2} - 6\sqrt{10} - 8\sqrt{5})r \leq m_a + m_b + m_c,$$

with equality if and only if $\frac{R}{r} \in \{2, \sqrt{2} + 1\}$.

Proof. It follows from Lemma 10.

Corollary 2. *In every acute or right triangle, the following inequalities*

$$(39) \quad m_a + m_b + m_c \geq \alpha_0 R + (9 - 2\alpha_0)r \geq \frac{5}{2}R + 4r$$

and

$$(40) \quad m_a + m_b + m_c \geq \frac{5}{2}R + 4r$$

hold.

Proof. We consider the function $w : (0, +\infty) \rightarrow \mathbb{R}$ defined by $w(\alpha) = \alpha R + (9 - 2\alpha)r = \alpha(R - 2r) + 9r$, $\alpha \in (0, +\infty)$. Because $R \geq 2r$, the function w is increasing on $(0, +\infty)$ and $\alpha_0 > \frac{5}{2}$ it results that $w(\alpha_0) \geq w\left(\frac{5}{2}\right)$, so (39) is obtained. The equality holds if and only if $R = 2r$, equivalent to ABC is an equilateral triangle. From (39) follows (40).

Remark 6. Inequality (40) is proven in [7] and then the first inequality in (39) is a refinement of the inequality (40).

Lemma 11. *Let ABC be a triangle and $\alpha \leq 4$. If*

(i) $2 \leq \frac{R}{r} \leq \sqrt{2} + 1$, then

$$(41) \quad \alpha R + (288 - 64\alpha) \frac{r^6}{R^5} \leq R + r - d + \sqrt{2(R + r - d)(5R - 4r + 4d)};$$

(ii) $\frac{R}{r} \geq \sqrt{2} + 1$, then

$$(42) \quad \alpha R + (288 - 64\alpha) \frac{r^6}{R^5} \leq R + \frac{1}{2} \left(\sqrt{10R^2 + 6(R + r)\sqrt{R^2 - 2Rr - r^2}} + \sqrt{10R^2 - 6(R + r)\sqrt{R^2 - 2Rr - r^2}} \right);$$

(iii) $\alpha_1 = 4$ then the equalities in (41) and (42) hold if and only if $\frac{R}{r} = 2$.

Proof. Because $\frac{R}{r} \geq 2$ we have that $m_a + m_b + m_c \geq \alpha R + (9 - 2\alpha)r \geq \alpha R + (9 - 2\alpha)r \cdot 32 \left(\frac{r}{R}\right)^5 = \alpha R + (288 - 64\alpha) \frac{r^6}{R^5}$ and taking Remark 5 into account, then for $R = 2r$ the inequalities above the equalities become equal. Using the ideas from Lemma 10, from (41) we have

$$\alpha \leq \frac{x^5}{x^6 - 64} \left(x + 1 - \frac{288}{x^5} - d(x) + \sqrt{2(x + 1 - d(x))(5x - 4 + 4d(x))} \right), \text{ for } x \in (2, \sqrt{2} + 1].$$

Because

$$\lim_{\substack{x \rightarrow 2 \\ x > 2}} \frac{x^5}{x^6 - 64} \left(x + 1 - \frac{288}{x^5} - d(x) + \sqrt{2(x + 1 - d(x))(5x - 4 + 4d(x))} \right)$$

is equal to $\frac{17}{4}$, let $u_2 : [2, \sqrt{2} + 1] \rightarrow \mathbb{R}$ be a function defined by

$$u_2(x) = \begin{cases} \frac{x^5}{x^6 - 64} \left(x + 1 - \frac{288}{x^5} - d(x) + \sqrt{2(x + 1 - d(x))(5x - 4 + 4d(x))} \right), & x \in (2, \sqrt{2} + 1] \\ \frac{17}{4}, & x = 2. \end{cases}$$

Using the program Wolfram|Alpha we have

$$\alpha \leq \inf_{2 \leq x \leq \sqrt{2} + 1} u_2(x) = \frac{1}{245} (181\sqrt{10} + 256\sqrt{5} - 448\sqrt{2} + 469) \approx 4,00097$$

and is touched for $x = \sqrt{2} + 1$. From the above it follows that inequality (41) holds. From (42) we obtain that

$$\alpha \leq v_2(x) = \frac{x^5}{x^6 - 64} \left(x - \frac{288}{x^5} + \frac{1}{2} \left(\sqrt{10x^2 + 6(x + 1)t(x)} + \sqrt{10x^2 - 6(x + 1)t(x)} \right) \right)$$

and using the program Wolfram|Alpha we have $\alpha \leq \inf_{x \geq \sqrt{2}+1} v_2(x) = 4$, at the limit when x tends to infinity. From the above the best constant is 4. From (i), (ii), Theorem 7, Remark 5 and program Wolfram|Alpha follows (iii).

Corollary 3. *In every acute or right triangle ABC, the inequality*

$$(43) \quad m_a + m_b + m_c \geq 4R + \frac{32r^6}{R^5}$$

holds, with equality if and only if ABC is an equilateral triangle.

Proof. Is obtained immediately from Lemma 11.

Remark 7. The inequality from (43) represent the Conjecture 5.1 from [7].

REFERENCES

- [1] Bencze, M., Drăgan, M., *The Blundon Theorem in an Acute Triangle and Some Consequences*, Forum Geometricum, **18**(2018), 185-194.
- [2] Blundon, W.J., *Inequalities associated with the triangle*, Canad. Math. Bull. **8**(1965), 615–626.
- [3] Ciamberlini, C., *Sulla condizione necessaria e sufficiente affinchè un triangolo sia acutangolo, rectangolo o ottusangolo*, Boll. Unione Math. Ital. **5**(1945), 37–41.
- [4] Drăgan M., Stanciu N., *A new proof of Blundon inequality*, Recreări Matematice, no 2, iulie-decembrie (2017), 100-105.
- [5] Drăgan, M., Pop, O.T., *The best majoration for the sums $\sum \sin \frac{A}{2}$, $\sum \cos \frac{A}{2}$, $\sum \frac{1}{\sin \frac{A}{2}}$ and $\sum \frac{1}{\cos \frac{A}{2}}$ in a triangle*, Int. J. Geom., **13**(2)(2024), 17-27.
- [6] Drăgan, M., *Câteva rafinări pentru inegalități geometrice*, Revista Matematică din Timișoara, **2**(2025), 12-15.
- [7] Liu, Jian, *Two new proofs and applications of an acute triangle inequality involving medians and sides*, Int. J. Geom., **11**(1)(2022), 104-121.
- [8] The Quartic Formula, available at:
https://mathcenter.oxford.emory.edu/site/math108/quartic/quartic_formula.php

HIGH SCHOOL ”MIRCEA CEL BĂTRÂN”
BUCUREŞTI, ROMANIA
E-mail address: marius.dragan2005@yahoo.com

NATIONAL COLLEGE “MIHAI EMINESCU”
5 MIHAI EMINESCU, 440014 SATU MARE, ROMANIA
E-mail address: ovidiu.tiberiu@yahoo.com