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SEQUENCE OF FINSLER–HADWIGER REFINEMENTS

VINÍCIUS COELHO and EDVAN TRINDADE

Abstract. We demonstrated that, given an improvement of the Finsler–
Hadwiger inequality, it is possible to generate a sequence of enhancements
that converge exponentially to the left-hand side of the Finsler–Hadwiger
inequality.

1. Introduction

Geometric inequalities have attracted the attention of many generations
of mathematicians, shedding profound understanding not only on matters
of symmetry and optimality but also on the basic structure of geometric fig-
ures. A close relationship exists, particularly in triangle geometry, between
side lengths and angles, radius, and area. The Finsler–Hadwiger inequality
represents a significant contribution to this highly fruitful field. This elegant
inequality gives a sharper form of the classical Weitzenböck inequality and
relates to broader themes in Euclidean geometry as well as in the theory of
algebraic inequalities.

In triangle ABC, we use the standard notations: α, β, and γ represent
the measures of the angles, while a, b, and c denote the lengths of the sides
opposite angles A, B, and C, respectively. Additionally, R, r, s, and T
represent the circumradius, inradius, semiperimeter, and area of triangle
ABC, respectively. Throughout the text, we also use the notations N =
{1, 2, 3, . . . } and N0 = N ∪ {0}.

The Weitzenböck inequality states that:

a2 + b2 + c2 ≥ 4
√
3T,

with equality if and only if the triangle is equilateral. This result appeared
in the early 20th century with Julius Weitzenböck and acted as a geometric
analogue to inequalities involving means. It shows how equilateral triangles
are optimal in terms of minimizing the total squared side length for a given
area.

In 1937, Paul Finsler and Hans Hadwiger published a note in Commentarii
Mathematici Helvetici [2], refining Weitzenböck’s inequality by adding a
correction term that measures the asymmetry of the triangle:

(1) a2 + b2 + c2 ≥ 4
√
3T + (a− b)2 + (b− c)2 + (c− a)2,
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with equality if and only if the triangle is equilateral. The extra squared
terms provide something like a “distance” from the equilateral shape. This
refinement came during a time of very active research in geometric inequal-
ities, framed by other impressive results such as the Erdős–Mordell inequal-
ity (1935) and the “fundamental inequality of a triangle” [1] (also known as
“Blundon’s inequality”). The latter was originally proved by Rouché as a
solution to a problem posed by C. Ramus in 1851 [11]. All of these results
aimed to capture extremal properties of triangles via algebraic expressions.

For many years, the Finsler–Hadwiger inequality was not frequently used,
despite its elegance. Because of its potential applications in inequality theory
and its openness to improvement, a number of authors have expanded or
refined the inequality including D. S. Mitrinović, J. E. Pečarić, V. Volenec
[9], D. S. Mitrinović, J. E. Pečarić, V. Volenec, J. Chen. [10], S. Wu [13],
S. Wu and L. Debnat [14], C. Lupu and C. Pohoaţă [8], C. Lupu and V.
Nicula [7], M. Lukarevski [4, 5], M. Lukarevski and D. S. Marinescu [6], W.
D. Jiang [3], and Q. H. Tran [12].

An example of geometric interpretation. The quantitative indicator
of deviation from the equilateral shape is the squared differences (a− b)2 +
(b − c)2 + (c − a)2. Because (1) takes into account both global and local
geometric properties, it is especially powerful.

Consider a right triangle with side lengths a = 3, b = 4, and c = 5 as a
specific example. Since T = 6 is its area, the right-hand side of (1) is as
follows:

4
√
3 · 6 + (3− 4)2 + (4− 5)2 + (5− 3)2 = 24

√
3 + 6 = 47.5692 . . .

The left-hand side is:

32 + 42 + 52 = 50,

which demonstrates that, in this instance, the inequality is strictly satisfied.
In this study, we develop an infinite series of modifications of the Finsler–

Hadwiger inequality that become increasingly sharp.

Theorem 1.1. Let ABC be a triangle with sides a, b, and c, and let φ0 >
0 be a real number such that a2 + b2 + c2 ≥ φ0 + (b − a)2 + (c − a)2 +
(c − b)2. If φn = 16Rr + r

4R+rφ(n−1) for n ∈ {1, 2, 3, · · · }, then (φn)n is

increasing and satisfies (b−a)2+(c−a)2+(c−b)2+ lim
n→+∞

φn = a2+b2+c2,

and the convergence is exponential. Moreover, the following conditions are
equivalent:

(i) a2 + b2 + c2 = φ0 + (b− a)2 + (c− a)2 + (c− b)2;
(ii) a2 + b2 + c2 = φn + (b− a)2 + (c− a)2 + (c− b)2, for some n ∈ N0;
(iii) a2 + b2 + c2 = φn + (b− a)2 + (c− a)2 + (c− b)2, for all n ∈ N0.

Recently, Q. H. Tran [12] showed the following improvement of Finsler–
Hadwiger inequality.

(2)

a2+b2+c2 ≥ 4T

√
4− 2r

R
+

r2(R− 2r)

2(2R2 − r2)(R− r)
+(b−a)2+(c−a)2+(c−b)2
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In light of (2), consider φ0 = 4T
√

4− 2r
R + r2(R−2r)

2(2R2−r2)(R−r)
and apply The-

orem 1.1. Then φ1 = 16Rr + r
4R+rφ0 and

φ1 = 16Rr + r
4R+r4T

√
4− 2r

R + r2(R−2r)
2(2R2−r2)(R−r)

. This yields the following

result.

Corollary 1.1. If ABC is a triangle with sides a, b, and c, then the in-
equalities

a2 + b2 + c2 ≥
16Rr + r

4R+r4T
√

4− 2r
R + r2(R−2r)

2(2R2−r2)(R−r)
+ (b− a)2 + (c− a)2 + (c− b)2

and

(3) φ1 + (b− a)2 + (c− a)2 + (c− b)2 ≥ φ0 + (b− a)2 + (c− a)2 + (c− b)2

hold.

To illustrate the improvement provided by Corollary 1.1, consider the
triangle with side lengths a = 3, b = 4, and c = 5. In this case, we have:

a2 + b2 + c2 = 50, (a− b)2 + (a− c)2 + (b− c)2 = 6, T = 6,

R = 2.5, and r = 1.

Tran’s sharp inequality yields:

4T

√
4− 2r

R
+

r2(R− 2r)

2(2R2 − r2)(R− r)
+(b−a)2+(c−a)2+(c−b)2 = 49.0296 . . .

whereas the improved bound from Corollary 1.1 gives:

16Rr + (b− a)2 + (c− a)2 + (c− b)2+

r

4R+ r
4T

√
4− 2r

R
+

r2(R− 2r)

2(2R2 − r2)(R− r)
= 49.9117 . . .

Similarly, considering the Finsler–Hadwiger’s inequality (1), the Theorem
1.1 is applied with φ0 = 4

√
3T , and then φ1 = 16Rr + r

4R+rφ0 = 16Rr +
r

4R+r4
√
3T . We obtain the following.

Corollary 1.2. If ABC is a triangle with sides a, b, and c, then the in-
equalities

(4) a2 + b2 + c2 ≥ 16Rr +
r

4R+ r
4
√
3T + (b− a)2 + (c− a)2 + (c− b)2

and

(5) φ1 + (b− a)2 + (c− a)2 + (c− b)2 ≥ φ0 + (b− a)2 + (c− a)2 + (c− b)2

hold, with equality if and only if the triangle is equilateral.
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In Corollary 1.2, to verify that equality holds if and only if the triangle is
equilateral, note from equation (1) that the identity

a2 + b2 + c2 = φ0 + (b− a)2 + (c− a)2 + (c− b)2

holds if and only if the triangle is equilateral. This observation, together
with Theorem 1.1, completes the argument.

As an example demonstrating the refinement achieved in Corollary 1.2,
consider the triangle with side lengths a = 3, b = 4, and c = 5. For this
triangle, we compute:

a2 + b2 + c2 = 50, (a− b)2 + (a− c)2 + (b− c)2 = 6, T = 6,

R = 2.5, and r = 1.

Using the sharp form of the Finsler–Hadwiger inequality, we obtain:

4
√
3T + (b− a)2 + (c− a)2 + (c− b)2 = 47.5692 . . .

On the other hand, the bound provided by Corollary 1.2 results in:

16Rr +
r

4R+ r
· 4
√
3T = 49.7790 . . .

New refinements can be developed, as outlined in Corollaries 1.1 and 1.2,
by utilizing the bounds established in [3, 4, 5, 6, 7, 8, 13, 14].

2. Auxiliar result

Theorem 1.1 is a consequence of the following general result. Suppose
that ξ = u+ vξ such that 1 > v > 0 and u ̸= 0.

Theorem 2.1. Let φ0 be a real number such that ξ ≥ φ0. If φn = u+vφ(n−1)

for n ∈ {1, 2, 3, · · · }, then (φn)n is increasing and satisfies ξ ≥ · · · ≥ φn ≥
· · · ≥ φ2 ≥ φ1 ≥ φ0, with lim

n→+∞
φn = ξ, and the convergence is exponential.

Moreover, the following conditions are equivalent:

(i) ξ = φ0;
(ii) ξ = φn, for some n ∈ N0;
(iii) ξ = φn, for all n ∈ N0.

2.1. Proof of Theorem 2.1.

Lemma 2.1. Let φ0 be a number such that ξ ≥ φ0. If φ1 := u+ vφ0, then
ξ ≥ φ1 ≥ φ0.

Proof. Suppose that ξ ≥ φ0. Then ξ ≥ φ1 since ξ = u+vξ ≥ u+vφ0 = φ1.
Recall that ξ = u+ vξ, and then (1− v)ξ = u, so

φ1 ≥ φ0 ⇔ u+ vφ0 ≥ φ0 ⇔ u ≥
(
1− v

)
φ0 ⇔

(1− v)ξ ≥
(
1− v

)
φ0 ⇔ ξ ≥ φ0.

Given φ0 > 0 such that ξ ≥ φ0, define recursively

φn = u+ vφn−1, for n ∈ N.
By Lemma 2.1, (φn)n is an increasing sequence of real numbers such that

ξ ≥ · · · ≥ φn ≥ · · · ≥ φ2 ≥ φ1 ≥ φ0.
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Finally, we note that (φn)n converges to ξ.

Lemma 2.2. Let φ0 be a number such that ξ ≥ φ0. If φn = u+ vφn−1 for
n ∈ N, then lim

n→+∞
φn = ξ, and the convergence is exponential.

Proof. Note that

|φn − ξ| = |φn − (u+ vξ)| = |u+ vφ(n−1) − u− vξ| =
|vφ(n−1) − vξ| = v|φ(n−1) − ξ| = · · · = vn|φ0 − ξ|.

Since 0 < v < 1 and lim
n→+∞

vn = 0, we have that lim
n→+∞

φn = ξ.

In order to conclude the proof of Theorem 2.1, we need to prove that the
following conditions are equivalent:

(i) ξ = φ0.
(ii) ξ = φn, for some n ∈ N0.
(iii) ξ = φn, for all n ∈ N0.

Proof. Indeed, let’s see first that (i) implies (iii). We proceed by induction.
The equality holds for n = 0. Assuming that, for some fixed n ∈ N0, we
have that ξ = φn it follows that φn+1 = u+ vφn = u+ vξ = ξ.

Clearly, (iii) implies (ii), so it remains to prove that (ii) implies to (i).
Indeed, if n = 0, there is nothing to prove. Otherwise, ξ = φn implies
u+ vξ = u+ vφn−1 and we have ξ = φn−1. Repeating this process n times,
we get that ξ = φ0.

3. Proof of Theorem 1.1

Using that ab+ bc+ ca = s2 + 4Rr + r2 and T = rs, one has

(6) z = a2 + b2 + c2 − [(a− b)2 + (a− c)2 + (b− c)2] = 4r(4R+ r).

So,

(7) z = 16Rr + 4r2 = 16Rr +
r

(4R+ r)
4r(4R+ r)

Then

(8) z = 16Rr +
r

4R+ r
z

Suppose that φ0 > 0 be a number such that z ≥ φ0. By equation (8),
consider u = 16Rr and v = r

4R+r , and then z = u+vz. Given that u ̸= 0 and
0 < v < 1, considering z = ξ, Theorem 2.1 implies that if φn = u+ vφ(n−1)

for n ∈ {1, 2, 3, · · · }, then (φn)n is increasing and satisfies lim
n→+∞

φn = ξ.

Moreover, the following conditions are equivalent:

(i) ξ = φ0;
(ii) ξ = φn, for some n ∈ N0;
(iii) ξ = φn, for all n ∈ N0.

Since ξ = a2 + b2 + c2 − [(a− b)2 + (a− c)2 + (b− c)2] we have (a− b)2 +
(a − c)2 + (b − c)2 + lim

n→+∞
φn = a2 + b2 + c2 and the following conditions

are equivalent:

(i) a2 + b2 + c2 = φ0 + (b− a)2 + (c− a)2 + (c− b)2;
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(ii) a2 + b2 + c2 = φn + (b− a)2 + (c− a)2 + (c− b)2, for some n ∈ N0;
(iii) a2 + b2 + c2 = φn + (b− a)2 + (c− a)2 + (c− b)2, for all n ∈ N0.
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