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CHARACTERIZATIONS OF PARALLELOGRAMS
PART 3

MARTIN JOSEFSSON

Abstract. We collect, categorize and prove an additional 56 necessary
and sufficient conditions for when a convex quadrilateral is a parallelogram.

1. INTRODUCTION

In the paper [39] from 1940, Yates wrote about the parallelogram that it
is a “rather unpretentious figure” that “has been laid aside to rust”. This
is an accurate description of how I felt about the parallelogram a few years
ago until I read [13] and realized there is more to this figure than first meets
the eye. The goal with Yates’ paper was “to apply a bit of polish to see if
its lustre cannot be brought fourth in true brilliance”. That was also one of
my intentions with the two part papers [21, 22] about characterizations of
parallelograms, which will be referred to as Part 1 and Part 2 respectively.
I worked almost a year on them and when they were finished I thought for
sure I had collected most of the existing necessary and sufficient conditions
for when a convex quadrilateral is a parallelogram. Surpassing one hundred
characterizations was a goal I had thought was unattainable, especially since
I knew of only a quarter of these a year before that work began.

When writing Part 1 and Part 2 I realized there is nothing unpretentious
about the parallelogram, and it became one of my favorite quadrilaterals.
Hence it’s not so surprising it was hard to stop thinking about new possible
sufficient conditions that might characterize parallelograms. After another
year has passed, I have now collected an additional 56 characterizations that
are the subject of this third part. About half of these were found online as
former Olympiad problems or in less known papers or books, but the other
half are, as far as I know, new sufficient conditions for a convex quadrilat-
eral to be a parallelogram, although some of these are known properties of
parallelograms. The total number of characterizations of parallelograms in
the three parts is 159.
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The parallelogram is studied early in geometry courses since its basic
necessary and sufficient conditions can be proved with just congruence the-
orems. However, several other mathematical tools are required when proving
many of the more advanced characterizations as was shown in Part 1 and
Part 2, like trigonometry, vectors, coordinates, and proof by contradiction
to mention a few. We shall see more of this in the present paper, but be-
fore we get started, let us formulate one characterization that was used in
the proof of Theorem 2.1 (g) in Part 2 without being stated as a theorem
there. We will apply this necessary and sufficient condition in six proofs
throughout this paper.

Theorem 1.1. A convex quadrilateral ABC'D placed in a coordinate system
such that A = (0,0), B = (a,0), C = (b,c), and D = (d,e) satisfies c = e
and b= a + d if and only if it’s a parallelogram.

D=(d, e) . C=(b, c)

A=(0, 0) ’ B=(a, 0)
FiGURE 1. Coordinates of the vertices

Proof. These equalities are equivalent to that a pair of opposite sides are
parallel (¢ = e) and have equal length (b = a + d), which characterize
parallelograms according to Theorem 2.1 (b) in Part 1 (see Figure 1). O

2. ANGLES AND TRIANGLES

Here we shall prove six characterizations of parallelograms that are about
angles or triangles. The first four as well as the last one were discovered by
the author. To prove the penultimate necessary and sufficient condition was
a shortlisted problem on the 1993 Cono Sur Mathematical Olympiad [30].

Theorem 2.1. A convex quadrilateral ABCD, where My, M., My are the
midpoints of the sides BC', CD, DA respectively, satisfies any one of:

(a) it has two pairs of equal opposite exterior angles

(b) triangles DEF and BGH are directly similar, where F € DC and
G € BC, and the line FG intersect the extensions of AD and AB
at E and H respectively

(c) triangle BIJ is directly similar to CDJ and AID, where I € AB
and the extension of DI intersects the extension of BC at J

(d) any triangle with its base equal to one of the quadrilateral sides and
its third vertex on the opposite side has a constant area

(e) the diagonal intersection is the centroid of triangle AMyM.

(f) the centroids of triangles AMyM,. and BM.My coincide

if and only if it’s a parallelogram.
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Proof. (a) A convex quadrilateral is a parallelogram if and only if /A = ZC
and ZB = ZD according to Theorem 4.1 (a) in Part 1 [21]. Denoting the
exterior angles at A, B, C, D by «, 3, 7, § respectively, we have /A = 7 —«
and similar relations for the other three vertices. We get that ABCD is a
parallelogram if and only if 1 —a =7 — v and 7 — 8 = w — §, which are
equivalent to « = v and 8 = 6.

(b) In a parallelogram ABCD, /B = /D so /GBH = ZEDF, and since
DC || AB, we get /ZDFFE = /BHG making triangles DEF and BGH
directly similar (see Figure 2).

/A\<

FIGURE 2. Transversal F'G

Conversely, when triangles DEF and BGH are directly similar, /BGH =
ZDEF implies BC || AD and Z/BHG = Z/DFE = ZCFG implies AB ||
DC'. This proves that ABCD is a parallelogram.

(c) In a parallelogram, the three triangles BI.J, CDJ and AID are similar
(AA) due to opposite sides of the quadrilateral being parallel. Conversely,
if triangles BIJ and C'DJ are similar, then ZIBJ = ZDC'J, implying that
AB || DC (see Figure 3). In the same way, in similar triangles BI.J and AID
we have ZIBJ = ZIAD, so AD || BC. Hence ABCD is a parallelogram.

sy

J

FIGURE 3. Transversal DI

(d) In a parallelogram, any such triangle always has an area equal to one
half of the area of the parallelogram, which is a constant.

Conversely, if two such triangles with base AB have the same area, then
AB and CD are parallel, since two lines are parallel if and only if they are
everywhere equidistant. In the same way BC and DA must be parallel,
making ABCD a parallelogram.

(e) Assume the quadrilateral ABC'D is placed in a coordinate system such
that A = (0,0), B = (a,0), C = (b,¢), D = (d,e). Then M, = (%2, £) and
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B =(a, 0)
FIGURE 4. The centroid of triangle AM, M,

M. = (%, %) The midpoint M7 of AMj has coordinates My = (aTer, g),
see Figure 4, so the centroid G4 of AMyM, lies on M;M,. such that its

coordinates satisfy

(1) GAZQ(“” C>+1<b+d c—l—e):<a—|—2b—|—d 2c+e>.

3 4 74 3 2 72 6 "6
The line through (a,0) and (d, e) has the equation
e ae

Yo a—ad" T d—a
and the line through (0,0) and (b,c) has the equation y = fz. Equating
these lines, we have

e ae c abe ace
d—ax_ d—a :Bx - = ac+ be — cd - V= ac+ be — cd
so the diagonals in ABCD intersect at
5 abe ace
) (achbecd’ ac+becd>'
If this point shall coincide with the centroid of AMM,, it is required that
abe _a+2b+d
ac+be —cd 6
ace 2c+e

ac+be—cd 6
which we rewrite as
a+2b+d 6ae _2c+te
b ac+be—cd ¢
Equating the first and third fractions yields be —cd = ac after simplification.
From the second and third fractions, we have

6ace = (2c+e)(ac+ be —cd) = (2¢+¢€) - 2ac = 4dacle—¢c) =0

and since ac # 0, this yields e = ¢ and thus b = a + d. These equalities are
equivalent to that ABCD is a parallelogram according to Theorem 1.1.

(f) Using the same method as in the previous proof, we get that the
centroid of triangle BM_ .M, has coordinates

g 2a +d e +1 b+d c+e B 2a +b+2d c+ 2e
3 4 4 3 2 7 2 N 6 "6 ’
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Equating this with (1), we obtain that the two centroids coincide if and only
if the following two equalities hold:

{2a+b+2d:a—|—2b+d - {b:a+d

c+2e=2c+e c=e,

where the latter two formulas characterize a parallelogram according to The-
orem 1.1. U

3. BISECTORS AND BIMEDIANS

Next we have nine necessary and sufficient conditions for when a convex
quadrilateral is a parallelogram that concern bisectors or bimedians. A bi-
median is a line segment that connects the midpoints of opposite sides. The
first three characterizations are my own discoveries, while (d) was stated in
[5, p. 275] but not proved there. Those four conditions are closely related
to Theorem 5.1 (a), (b) and (¢) in Part 1. (e) and (f) are closely related
to Theorem 5.1 (j) in Part 1 and Theorem 2.1 (e) in this paper respec-
tively; they were discovered by the author. The last three conditions are
Russian Olympiad problems. Characterization (g) was Problem 1 on the
1987 Leningrad Mathematical Olympiad for Grade 7 [11, p. 5] and (h) is
from a 2014 Mathematical Reggata proposed by A. Shapovalov [2] (we cite
a translation of this Russian proof). (i) is from the 2006 Southern Tourna-
ment Math Fights [31] and was also used as a problem on Round 4 of the
2010 German Mathematical Olympiad [34].

Theorem 3.1. A convex quadrilateral ABC D with consecutive sides a, b,
¢, d and their respective midpoints My, My, M., My satisfies any one of:

(a) it has two pairs of opposite parallel exterior angle bisectors

(b) it has one interior angle bisector parallel to two exterior angle bisec-
tors that are adjacent to it

(c) it has two adjacent interior angle bisectors perpendicular to opposite
exterior angle bisectors

(d) all four exterior angle bisectors form a rectangle

(e) MyM, = 1(b+d) and MyM, = %(a+c)

(f) the bimedians intersect at the centroid of triangle AMyM.

(g9) the bimedians divide ABCD into four quadrilaterals of equal peri-
meter

(h) the interior angle bisectors at A and C are parallel and intersect
diagonal BD in two distinct points QQ and R respectively such that
BR = DQ

(i) AMy || CMy and BM, || DM,

if and only if it’s a parallelogram.

Proof. (a) A convex quadrilateral is a parallelogram if and only if it has
two pairs of parallel opposite interior angle bisectors according to Theorem
5.1 (a) in Part 1. An exterior angle bisector is always perpendicular to an
interior angle bisector at the same vertex in a convex quadrilateral, so the
quadrilateral is a parallelogram if and only if it has two pairs of opposite
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parallel exterior angle bisectors (since two lines that are perpendicular to
two parallel lines are themselves parallel).

(b) A convex quadrilateral is a parallelogram if and only if one interior
angle bisector is perpendicular to two adjacent interior angle bisectors ac-
cording to Theorem 5.1 (b) in Part 1. Hence one interior angle bisector
parallel to two exterior angle bisectors adjacent to it characterize a parallel-
ogram since an exterior angle bisector is always perpendicular to an interior
angle bisector at the same vertex in a convex quadrilateral, and two lines
that are both perpendicular to a third line are themselves parallel.

(¢) This is a direct consequence of (a) and the fact that an exterior angle
bisector is always perpendicular to an interior angle bisector at the same
vertex in a convex quadrilateral (see Figure 5).

FI1GURE 5. The interior and exterior angle bisectors

(d) The angle between the exterior angle bisectors at A and B is given by

W—AA_W—ZB_ZA—FZB
2 2 2

T —

and in the same way, the angle between the exterior angle bisectors at B and
C is given by % (see Figure 5). Similar expressions hold at the other
two intersections of exterior angle bisectors. A rectangle is characterized by
four right vertex angles, so the proof concludes by applying Theorem 4.1 (b)
in Part 1. (Hence we don’t need all four angles between the exterior angle
bisectors to be right, but just two adjacent such angles.)

(e) In the proof of Theorem 5.1 (j) in Part 1, we proved that M,M. <
%(b + d) where equality holds if and only if the angle between the extensions
of b and d is zero, and that MMy < 1(a + ¢) where equality holds if and
only if the angle between the extensions of a and c¢ is zero. Hence equality
in both hold if and only if the quadrilateral is a parallelogram according to
Theorem 4.1 (d) in Part 1.

(f) We consider a convex quadrilateral ABCD placed in a coordinate
system such that A = (0,0), B = (a,0), C = (b,c), and D = (d,e), so here
b, ¢, d does not denote side lengths. Then the bimedians intersect at a point
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with coordinates

3) 1<a+b—|—d c+e>:<a+b—|—d c—l—e)

2\ 2 2 72 4 T4
and the centroid of AMyM,. has coordinates
(a+2b+d 2c+e>
6 6
according to (1). Equating these, we get that the bimedians intersect at the
centroid of AMyM., if and only if

4(a+2b+d)=6(a+b+d) - b=a+d
4(2c+¢€) =6(c+e)

c=¢e

which is equivalent to that ABCD is a parallelogram according to Theo-
rem 1.1.

(9) The bimedians are the diagonals in Varignon’s parallelogram, so they
bisect each other in all quadrilaterals. The four quadrilaterals they create
have equal perimeter if and only if

d oo m n_a b om mn_ b oc om n_c d m_ n
2 2 2 2 2 2 2 92 2292 92 2 2 2 2

where m = M,M_. and n = MM, which is equivalent to a = ¢ and b = d.
The latter equalities characterize parallelograms according to Theorem 2.1
(a) in Part 1.

(h) In a parallelogram ABCD, triangles ABQ and CDR are congruent
(ASA), so BQ = DR. Then ZAQD = ZCRB, proving that AQ and CR
are parallel.

C

]

L

A

FIGURE 6. Two interior parallel angle bisectors

Conversely, when AQ and C'R are parallel angle bisectors and BR = D@,
assume for the sake of contradiction that AQ > CR. Extend the seg-
ment RC beyond C so that the resulting segment RE is equal to AQ (see
Figure 6). Then triangles AQD and ERB are congruent (SAS), imply-
ing that ZQAD = ZREB and AD = BE. In the same way we get that
/ZQAB = ZRED and AB = DE. From this we conclude that ABED is
a parallelogram. If points C' and E do not coincide, then triangles BEC
and CED are congruent (ASA). We get that triangle BC'D is isosceles and
R is the midpoint of side BD. But then point ) must coincide with point
R, which contradicts the assumption. Hence AQ > CR is not possible,
and in a similar way AQ < C'R is not possible either, so we conclude that
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AQ = CR. This means that points C' and E coincide, proving that ABCD
is a parallelogram.

A=(0,0)

FI1GURE 7. Slopes of four medians

(i) We place quadrilateral ABC'D in a coordinate system in such a way
that A = (0,0), B = (a,0), C = (b,c), and D = (d,e). Then the side
midpoints are M, = (%)0)7 M, = (a;ba %)7 M. = (%7%)7 Mg = (%a %)7
see Figure 7. The slopes of the lines AM}; and C' My are given by

ky = aib and ks = ;Z:Z
respectively. They are parallel if and only if
c 2c—e
a+b 2b-d

which is equivalent to cd = —2ac + ae + be. The other two lines BM, and
DM, have slopes

cte —2e
k2_b+d—2a and k4_a—2d
respectively, and they are parallel if and only if
c+e —2e

b+d—2a a—2d
which is equivalent to 2be — 3ae + ac = 2c¢d. Now solving the system of
equations

cd = —2ac + ae + be
2be — 3ae + ac = 2¢d

we obtain, by inserting the first equation into the second and simplifying,
that 5a(—c+ e) = 0. Thus ¢ = e since a # 0. Inserting this into the first
equation yields ¢(d + a — b) = 0, and with ¢ # 0 we have b = a + d. The
equalities ¢ = e and b = a + d characterize a parallelogram according to
Theorem 1.1. O

Theorem 5.1 (i) in Part 1 states that the diagonals and the bimedians
in a convex quadrilateral are concurrent if and only if the quadrilateral is a
parallelogram, which we proved with geometrical methods. We can now get
a coordinate proof of this characterization by using (2) and (3). Equating
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the abscissa and the ordinate for the intersection of the two diagonals and
the two bimedians yields

(a+ b+ d)(ac+ be — cd) = 4abe
(c+ e)(ac+ be — cd) = 4ace.

We let the interested reader solve this system of equations and thus complete
this alternative proof.

4. TRAPEZOIDS

In the following theorem, we study twelve necessary and sufficient condi-
tions for when a trapezoid is a parallelogram. This is possible when using
inclusive definitions so that a parallelogram is a special case of a trapezoid,
as advocated in [16, p. 23], which is the preferred way in higher mathematics.
The first two characterizations are from [37, p. 46]. The necessary condi-
tion in (d) was a longlisted problem proposed by USA to the International
Mathematical Olympiad in 1977 [8, p. 120], the sufficient condition in (e)
is from the 2007 Macedonian Mathematical Olympiad [27], (h) is a refor-
mulation of Problem 3 (version for junior students) from the Final round of
the 2015 Dutch Mathematical Olympiad [9, p. 330], the sufficient condition
in (k) is from the 1991 Savin Competition [29] and our proof is based on a
translation from the original Russian at [25], and the sufficient condition in
(1) is from the 2004 Regional All-Russian Mathematical Olympiad Round 4,
proposed by N. Agakhanov [32]. The characterizations (7) and (j) are from
the book [35, p. 184]. The rest were discovered by the author.

Theorem 4.1. A convex trapezoid ABCD with consecutive sides a, b, c,
d, their respective midpoints My, My, M., My, and diagonal intersection P
satisfies any one of:

(a) AB || CD and ZDAC = LACB

(b) AB || CD and £C+ 4D =

(¢) AB || CD and E1G,, F1Hy, BD are concurrent, where E1 € DA,
e BC,Gi€ AB, HH e CD, E1F || AB and G1H; ” BC

(d) AB | CD and BE>, DGy, CI are concurrent, where Ey € DA,
Fy € BC, Gy € AB, Hy € CD, ExFy | AB, GH» | BC and
I = FEsFyNGoHs

(e) AB || CD and AK, CL, and the line BO are concurrent, where
K eCD and L € AD such that AK1CD and CLLAD, and O s
the circumcenter of triangle ABC

(f) AB || CD and % = %, where M € AB and N € CD are points
such that M N bisects the area of the trapezoid and M N # M, M.

(9) AB || CD || F3Hs and the area of E3F3G3Hs is half the area of
ABCD, where E5 € AB, F3 € BC, Gg3 € CD, Hs € DA and
F3H3 # MyMy

(h) AB || CD and FyG, || E4Hy, where Ey, Fy, G4, Hy are the inter-
sections of the angle bisectors at A and B, B and C, C and D, D
and A respectively

(i) AB || CD and P, Q, R are collinear, where Q € AB and R € CD
such that PR || AD and PQ || BC
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(j) AB || CD and QR = “H where Q € AB and R € CD such that
PR || AD and PQ || BC

(k) AB || CD, B'C" || D’A" and AB=A'B', BC = B'C', CD =C'D/,
DA = D'A", where ABCD and A’B'C'D’ are two different trapezoids

(1) AB || CD and MMy bisects O102, where O1 and Oz are the cir-
cumcenters of triangles ABD and BCD respectively, and they do

not lie on the bimedian MM,

if and only if it’s a parallelogram.

Proof. (a) ZDAC = ZACB is equivalent to AD || BC.
(b) £C' + £D = 7 is equivalent to AD || BC.

H, c
~
~
~
~
S
= RES Fi
~
~
~
~
~
SQ
A B
G, S
N
\\\Q1
Q, \S

FIGURE 8. Transversals F1G1 and Hi F}

(c) In a parallelogram ABCD, we apply Menelaus’ theorem (with non-
directed distances) in triangle ABD with transversal F1Gp (see Figure 8)
to get
@) AGy BQ: DE; .

GiB Q1D EA
where @)1 is the intersection between E1G; and DB. In the same way in
triangle C'BD with transversal HiFy, we get
) CFi BQy DHi _

F\B QD H,C
where ()9 is the intersection between H1F; and DB. It holds that AG; =
DH, and G1B = H,C and also CFy} = DFE; and E1A = F1 B, so from (4)
and (5), we obtain

BQ1  BQ:
Q1D QD
This proves that ()1 = ()2 and we conclude that F1G1, H1F}, and DB are
concurrent in a parallelogram.
Conversely, if E1G1, H1Fy, and DB are concurrent in a trapezoid ABC D
where AB || C'D, from the two applications of Menelaus’ theorem, we have

AGy BQy DE, CF, BQ; DH;
GiB Q1D FE\A B QD H\C
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which, with the help of gﬂ = gﬁ% that holds in a trapezoid, simplifies into

AGy = DH;. This in turn implies AB = DC, and since also AB || DC, we

get that ABCD is a parallelogram according to Theorem 2.1 (b) in Part 1.
(d) In a parallelogram ABCD, where J = BE>NDG4, we apply Menelaus’

theorem in triangle DAGy with transversal BE; (see Figure 9) to get

_ DEy AB GoJ Hel DC GaJ

 EsA BGy JD IGy CHy JD

where the second equality follows from properties due to ExFy || AB, GoH ||

BC, and I = ExF5sNGoHy. According to the converse to Menelaus’ theorem

applied in triangle DGoHsy with transversal C'J, we conclude that points C,

1, J are collinear, proving that BFEs, DG4, and C1 are concurrent at J.

1

FIGURE 9. Five transversals

Conversely, suppose that BFEy, DGo, and C1 are concurrent at a point
J in a trapezoid ABCD with AB || CD. This implies that C, I, J are
collinear, so by Menelaus’ theorem, we get

HyI GoJ DC
IG, JD CH,
Applying Menelaus’ theorem in triangle DAG2 with transversal BFs yields
DEy, AB GoJ
E2A BG, JD
and we get, by equating the previous two left-hand sides, that
H,] DC DE, AB
IGy CH; E;A BG,

which via CHs = BGo and % = %Ej (the latter is the basic proportionality
theorem in a trapezoid) reduces to AB = DC. Together with AB || CD
this concludes the proof that ABCD is a parallelogram.

(e) In a parallelogram ABCD where these assumptions hold and M =
AK N CL, we directly get that ABCM is a cyclic quadrilateral with two
opposite right angles at A and C, so M, O, B are collinear points (see
Figure 10), proving that AK, C'L, and the line BO are concurrent at M.

Conversely, if AK, CL, and the line BO are concurrent at a point M in
a trapezoid with AB || CD, we have that ABCM is a cyclic quadrilateral
with two opposite right angles at A and C, since ZMAB = 90°, O € M B,
and OB = 0A,so OB =0A=0M. Now ZMCB = 90°, so BCLCL, and

1.




Characterizations of parallelograms part 3 33

B
/
FIGURE 10. Circumcircle to triangle ABC
we get that AD || BC since CLLAD by assumption. Hence ABCD is a
parallelogram due to two pairs of opposite parallel sides.
(f) In a parallelogram ABC D, any line that bisects the area goes through

the diagonal intersection (Theorem 2.1 (d) in Part 2), and then it is trivial
that % = % holds since AM = CN and MB = ND.

VAN

FIGURE 11. An area bisecting transversal

In a trapezoid where % = % holds, the area bisection yields (see

Figure 11)
AM-h DN-h BM-h CN-h
> T2 T T2 T
where h is the distance between AB and CD, so we get AM + DN =
BM + CN. Inserting AM = 2 J\g-}(\?N and simplifying yields

(CN — DN)(BM — DN) = 0.

Here we cannot have CN = DN, since that would imply AM = BM and
we assumed that M N # M,M.. Hence we get BM = DN, which implies
AM = CN, and so

AB =AM+ MB =CN+ DN =CD

which together with AB || C'D proves that ABCD is a parallelogram.

(g) This is such a simple conclusion that a PWW will suffice (see Fig-
ure 12). We let the reader write the words if they are needed.

(h) In a parallelogram, both pairs of opposite angle bisectors are parallel
by Theorem 5.1 (a) in Part 1. Conversely, let J be the intersection of the
line CG4 and AB (see Figure 13). Then

$/BAD = /E4AB = /CJB = /JCD = 1/DCB
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w

FIGURE 12. A proof without words

by corresponding angles and alternate interior angles. Hence the trapezoid
ABCD has a pair of opposite equal angles, so it is a parallelogram according

to Theorem 6.1 (b) in Part 1.

FI1GURE 13. Two pairs of opposite parallel line segments

(i) In triangle PQR it holds that P, @, R are collinear if and only if
PQ || PR (see Figure 14), which is equivalent to AD || BC since it was
given that PR || AD and PQ || BC. Trapezoid ABCD was defined by
AB || CD, so it is a parallelogram if and only if AD || BC, which is thus

equivalent to that P, @), R are collinear.

FIGURE 14. Two pairs of parallel line segments

(7) In triangles ABC and ADC (see Figure 14), we get

PQ AP PR PC

— =— and —=—

BC AC AD AC

due to PQ || BC and PR || AD. Triangles ABP and CDP are similar
(AA), so
AP AB AP+ PC AB+CD AC-CD
pc=cp © T pc ~ op T o BT




Characterizations of parallelograms part 3 35

Combining these equalities, we get that
PO - BC - AP :&.PC-AB _ BC-AB
AC AC CD AB+CD
and in a similar way,

CD-DA

AB+CD’

Applying the triangle inequality in triangle PQR yields

AB-BC+CD-DA
AB+CD

where equality holds if and only if P, @), R are collinear, that is, if and only
if ABCD is a parallelogram according to (7).

(k) It is trivial that these assumptions are satisfied in a parallelogram
ABCD, so let us consider the converse. In [16, p. 34] we proved (as part of
a larger discussion on trapezoids) that in a trapezoid, the sum of the longest
base and any of the legs is greater than the sum of the shorter base and the
other leg. Thus there are two different inequalities here.

PR =

QR< PQ+ PR=

FIGURE 15. The two trapezoids

The assumptions in the sufficient condition are a || ¢, V' || d', a = d/,
b=10V,c=(,and d = d. We also assume first that a > ¢ and ' > d’ (see
Figure 15). From the quoted property of trapezoids, we get in trapezoid
ABCD:

a+b>c+d and a+d>b+c
and in trapezoid A'B'C'D’:
V4d>cd+d and V+ >d+d
which, since a = da/, b=10, c = ¢, and d = d’, implies
b+a>c+d and b+c>a+d.

Here we have reached a contradiction, that we have both a +d > b+ ¢ and
a+d < b+ ¢, so the assumption that a > ¢ must be wrong. A similar study
of the assumption a < ¢ will also lead to a contradiction, so we conclude
that we must have a = ¢. Then we have both a || ¢ and a = ¢, proving that
ABCD is a parallelogram according to Theorem 2.1 (b) in Part 1.

Finally we note that there is another case where we assume b’ < d’ instead,
but it leads to the similar contradiction a +b > c+d and a4+ b < c+d.

(1) In a parallelogram ABCD, triangles ABD and CDB are congruent,
so O1 P = O3 P where P is the midpoint of diagonal BD. The diagonals and
the bimedians are concurrent at P according to Theorem 5.1 (4) in Part 1,
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FIGURE 16. Two circumcircles

and since the diagonals bisect each other at P, we get that MM, bisects
01 02 at P.

Conversely, suppose MMy bisects 0105 in a trapezoid ABCD. It is well-
known that the bimedian MM, passes through the midpoint P’ of diagonal
BD when AB || CD (see Figure 16). Since the center of the circumcircle
to a triangle lies on the perpendicular bisectors of its sides, we have that
O1P'LBD and O3 P’ . BD. Then segment 0105 passes through P’ € MMy,
so P’ bisects segment O105. Therefore the diagonals of the quadrilateral
BO1 DOy are bisected by point P’ and are perpendicular. This proves that
BO1 DO is a rthombus. Hence O1B || O2D and so ZO1BA = Z02DC. We
get that triangles O1 BA and O2DC' are congruent (they are isosceles with
equal lateral sides and base angles), and therefore AB = C'D. Since AB
and C'D are both parallel and have equal length, ABCD is a parallelogram
according to Theorem 2.1 (b) in Part 1. O

5. TWO-DIMENSIONAL METRIC RELATIONS

In this section we shall prove six necessary and sufficient conditions for
when a convex quadrilateral is a parallelogram that are expressed as two-
dimensional metric relations or equalities between quotas of lengths. Con-
dition (b) is a special case of an inequality for n-sided polygons that was
proved as Problem 3.2.10 in [4, pp. 97, 208-210], (¢) is stated as a special
case of an inequality proved in [7, p. 102], and (e) was proposed by Virgil
Nicula at [28]. The remaining three were discovered by the author

We denote by T'xy 7 the area of triangle XY Z.

Theorem 5.1. A convex quadrilateral ABC D with consecutive sides a, b,
¢, d and their respective midpoints My, My, M., My satisfies any one of:
(a) a®> +b* = +d* and d* + a® = b* + 2
(b) (a+c)?+ (b+d)? = 4(m? + n?), where m, n are the bimedians
(c) w*+ 22 +y? + 2% = 2(a® + b? + ¢* + d?), where w, z, y, z are the
distances between neighboring free vertices of external squares erected
on the sides
(d) 25 = £% and B4 = DL where F € AB, G € CD, H € BC,
I € DA such that FG, HI, AC, BD are concurrent
(e) %:%—% and%: ﬁ%, where J € AD, L € BC, O e CJNDL,
M e AONCD and N € BONCD
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(f) Tapm, = Tcpm, and Tpem, = Tpam,
if and only if it’s a parallelogram.

Proof. (a) We solve the system of equations
a2+ b2 =c?+d? 2a2 + b? + d? = b% + 2% + d? o a=c
d>+a%=b>+c2 b —d?=d*—-1? b=d
which proves that the quadrilateral is a parallelogram if and only if these
two equations are satisfied according to Theorem 2.1 (a) in Part 1.

(b) In the proof of Theorem 8.1 (¢) in Part 1 we noted that in a convex
quadrilateral, it holds that

2(]32 + q2) =+ + VP +d*+ 2accos & + 2bd cos Y

where p and ¢ are the diagonal lengths, and £ and i are the angles between
the extensions of a, ¢ and b, d respectively. Applying the Parallelogram Law
in Varignon’s parallelogram shows that p? 4 ¢ = 2(m? + n?) also holds in
all convex quadrilaterals. By combining these two equalities, we get

4(m?* 4+ n?) = a® + & + b* + d* 4 2accos & + 2bd cos
= (a+c)? + (b+d)* — dac - sin® (g) — 4bd - sin® <15>
<(a+¢)’+ (b+d)

where equality holds if and only if € = ¥ = 0, which according to Theorem
4.1 (d) in Part 1 is equivalent to that the quadrilateral is a parallelogram.

(c¢) Applying the Law of Cosines in the two triangles with sides a, b, p and
a, b, w yields p? = a® 4+ b? — 2abcos B and w? = a? + b?> — 2abcos (1 — B) =
a® + b? 4 2abcos B (see Figure 17). Adding these, we get

(6) p? 4+ w? = 2(a® 4+ b?).
In the same way we obtain from other pairs of neighboring triangles that
(M) P +y? =2 +d), ¢+a2?=20"+c), ¢"+2"=2(a"+d).
Adding the four equalities (6) and (7) yields
20 + ¢*) + (W + 22 + y? + 2%) = 4(a® + b + S + 7).
Next we apply Euler’s quadrilateral theorem (for a proof, see [3, pp. 9-10]),
which states that
P+ E+d? =+ ¢+ 42
where v is the distance between the diagonal midpoints, to eliminate the
sum of the squared diagonals. We get
w? + 2+ 2+ 22 =20+ 02+ 2+ d%) + 802 > 2(a> + 02+ 2+ d?)
where equality holds if and only if ABCD is a parallelogram according to
Theorem 3.1 (a) in Part 1. This proves that the area of the four outer
squares is at least twice the area of the four inner squares and that equality
holds if and only if the original quadrilateral is a parallelogram.

(d) In a parallelogram ABCD, we have AP = CP, ZAPF = ZCPQG,
and F'P = PG (see Theorem 2.1 (d) in Part 2), so triangles APF and CPG
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FIGURE 17. Eight external squares

are congruent (SAS), implying that AF = C'G and hence also BF = DG.
Then ?—g = % and in the same way the second equality is satisfied.

FIGURE 18. The transversals F'G and HI

Conversely, in a convex quadrilateral, we get that ?—g = g—g implies

Tarp  Tccp N %AP-FPsina %C’P‘GPsina

Trpp  Tapp 5FP-BPsin3  3GP-DPsinp’
where « is the angle between AC and F'G, and (3 is the angle between BD
and FG (see Figure 18). This simplifies into
AP  BP
CP  DP
and together with ZAPB = ZCPD, we get that triangles ABP and CDP
are similar (SAS), so ZPAB = ZPCD. Hence AB || CD. In the same way
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we prove that % = % implies BC' || DA, confirming that ABCD is a
parallelogram.

(e) In a parallelogram ABCD, we apply Menelaus’ theorem (with non-
directed distances) in triangle ADM with transversal C'J to get

AJ DC MO _,

(®) JD CM OA —
Triangles ABO and M NO are similar (AA), so
OA AB
MO MN
and we can rewrite (8) as
JA AB 1 MC
“ — MC. . =
JD ¢ MN DC MN
since AB = DC in a parallelogram. In the same way we prove that
LB _ ND
LC NM’
D N M c
O
J L
A B

FIGURE 19. Four concurrent transversals

To prove the converse, we rewrite (8) as

AJ CM OA MC
JD ~ DC MO MN
where the last equality is due to one of the assumptions. We get
Q 9L -
MO MN
A second application of Menelaus’ theorem, this time in triangle BC'N with
transversal DL (see Figure 19), yields

BL ¢D NO _, _ BL_DN OB

LC DN OB LC CD NO

and with the help of the second assumption, this rewrites as
ND DN OB OB CD

NM _CD NO ~ NO NM’
and by (9), as
0A OB
MO ~ NO
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Together with ZAOB = ZMON, this implies that triangles AOB and
MON are similar, so AB || MN || CD, and

AO AB

MO MN’
Comparing with (9), we conclude that AB = DC' also holds, proving that
ABCD is a parallelogram according to Theorem 2.1 (b) in Part 1.

(f) Assume the quadrilateral is placed in a coordinate system such that

A = (0,0), B = (a,0), C = (b,c), D = (d,e), see Figure 7, so here b, ¢, d
does not denote side lengths. Applying the formula for the area of a triangle
in terms of the coordinates of its vertices, we get that 27 4py. = 270par, is
equivalent to

c+e b+d c+e b+d
0-04+a- > —I—T-O—O- 5 —a-O—T~O
:g-c+b-e+d-0—g-e—b-0—d-c
which simplifies into 2ae = 2be — 2¢d, that is,
c e
d = e(b— & =- & k=k
cd =clb—a) b—a d L

where k1 and ko are the slopes of the lines BC and AD respectively. This
proves that Tapy, = Topu, is equivalent to BC || AD.

In the same way we prove that Tpon, = Tpam, is equivalent to AB || CD.
Hence the two area equalities together characterize parallelograms. O

6. AREA

Next we prove six different formulas for the area of a quadrilateral that
are characterizations of parallelograms. Condition (a) was proved earlier
in [15] and (f) is the equality case of an inequality that was proposed as
Problem 10560 in [1] (we reproduce this proof). The remaining four were
discovered by the author.

Theorem 6.1. In a conver quadrilateral ABCD with consecutive sides a,
b, ¢, d, diagonal intersection P, and semidiagonals o' = AP, V/ = BP,
d =CP,d = DP, let T,, Ty, T., T, be the arcas of the quarter-triangles
ABP, BOCP, CDP, DAP respectively, ¢ be one of the angles between the
bimedians, and 0 be one of the angles between the diagonals. The area K of
ABCD satisfies any one of:
(a) K = 3/(a®+ ) (b2 + d?)sin ¢
(b)) K =2vad'b'dd sinf
(c) K =4VT,T, or K = 4yTpTy
(d) K = 4yT,TyT. T,
(¢) K = (VT + VT, + VT + VTo)*
(f) K =8yTATBTcTp, where Ta, Tp, Tc, Tp are the areas of triangles
SAU, UBQ, QCR, RDS respectively and U € AB, QQ € BC, R €
CD, Se DA

if and only if it’s a parallelogram.
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Proof. (a)It was proved in [15, p. 20] that the area of a convex quadrilateral
is equal to

K= i\/(Q(QQ +¢2) — 4v2)(2(b? + d?) — 4v2) sin ¢
where v is the distance between the diagonal midpoints. We get that
K < 1/2(a2 +¢2) - 2(b2 + d?)sin ¢

where equality holds if and only if the diagonals bisect each other (v = 0),
which characterize parallelograms according to Theorem 3.1 (@) in Part 1.
Simplification leads to the desired formula.

(b) The area of a convex quadrilateral with diagonals p and ¢ is given by

K = ipgsing = 3(a' + )b + d)sind
> 1.2V - 2V d sinf = 2V a'b/d/d’ sin 0
where equality holds if and only if '’ = ¢’ and &’ = d’ according to the AM-
GM inequality, that is, only when the diagonals bisect each other, which is
a well-known characterization of parallelograms.
(c) The area of a convex quadrilateral is given by
K=T,+T.+Ty+ Ty > 2/TuT. + 2/ T, T4

where equality holds if and only if T, = T, and Ty = Ty according to the AM-
GM inequality. These two equalities characterize a parallelogram according
to Theorem 8.1 (h) in Part 1. The proof concludes by applying the quite
well-known fact that the quarter-triangle areas satisfy T, 7. = T Ty (proved
for instance in [16, pp. 27-28]), which holds in all convex quadrilaterals.
(d) Using the inequalities K > 4v/T, T, and K > 4/T,T; from the previ-
ous characterization, we get that the area of a convex quadrilateral satisfies

K? > 16\/T, T, T.T,

where equality holds if and only if T, = T, and T} = Ty, that is, only when
it is a parallelogram according to Theorem 8.1 (h) in Part 1.
(e) For the area of a convex quadrilateral, we have

K=Ty+Ty+T.+Ty=Ty+T.+2T,T. —2/TyTy + Ty, + T,
since T,T. = Ty Ty holds in all convex quadrilaterals, so we get

K =T+ V) + (VTy - VT

In the same way we derive

K = (T, - VT + (VT + VTu).

Taking the square root of the last two formulas and adding them yields
2WE =/ (VTa + VT2 + (VT — VT

(VT = VT2 + (VT + T2
> (VT +VTo) + (VT + Vo)

where equality holds if and only if Ty, = Ty and T, = T, which is equivalent
to the quadrilateral being a parallelogram according to Theorem 8.1 (h) in
Part 1. Now the desired formula follows by solving for K.
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FiGURE 20. The areas Ta, T, Tc, 1o

(f) Let U, Q, R, S divide their respective sides in the ratios « : (1 — k),
Ar(1=XN),p:(1—p),v:(1—v), where 0 < k, A\, u, v < 1. Also, let Fy, Fp,
Feo, Fp denote the areas of triangles DAB, ABC, BCD, C'D A respectively.
Then we trivially have Fy + Fo = K and Fp+ Fp = K. Triangles SAU and
D AU have collinear bases and the same height from U, so the ratio of their
areas is AS/AD = 1 — v (see Figure 20). Similarly, the ratio of the areas of
triangles DAU and DAB is AU/AB = k. It follows that T4 = Fa(1 — v)k,
and by symmetry, we also have Tp = Fp(1 — k)\, Tc = Fo(1 — \)p, and
Tp = Fp(1 — p)v. Hence we get

TuTTeTp = [(1— R)][(L = WA = w1 — )[FaFel[FaFp).

For each of the six products in the square brackets, the sum of its two factors
is constant, either equal to 1 or K. Applying the AM-GM inequality in the
form xy < ((z + y)/2)? yields

ramn= (2 (8 (3 () (5 (2 - 5

where equality holds if and only if there is equality in all six applications of
the AM-GM inequality. Hence equality holds if and only if Kk = A = p =
V= % and F)p = Fg = Fo = Fp = %K The equalities between the Greek
letters hold if and only if U, @, R, S bisect their respective sides. Triangles
ABC and ABD, having the same base, have the same area (Fy = Fp) if
and only if they have the same height. Thus Fy = Fgp = Fo = Fp = %K
hold if and only if ABCD is a parallelogram. (]

7. ONE-DIMENSIONAL METRIC RELATIONS

Here we will prove eight characterizations of parallelograms that are re-
lations between different lengths. Conditions (a), (b), (c¢), (g9) and (h) are
due to the author, where the third can be considered a reverse version of the
Varignon parallelogram theorem. (d) was expressed in [24] as a by-product
when deriving another inequality, (e) was inspired by Problem 4 for Grade
9 on the 1994 Ukrainian Mathematical Olympiad (this was about proving
an inequality in a general convex quadrilateral, but the equality case was
not mentioned, so the sufficient condition is due to the author), and (f) was
used in a proof of another characterization of parallelograms in [38, p. 19].
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Theorem 7.1. A convex quadrilateral ABC D with perimeter L and diag-
onal intersection P satisfies any one of:

(a) w =y and x = z, where w, x, y, z are the distances between neigh-
boring free vertices of external squares erected on the sides

(b) AGs = CGy and BG4y = DGs, where G, Ga2, Gs, G4 are the
centroids of triangles BCD, CDA, DAB, ABC respectively

(¢c) GC = CH and FB = BH, where E is a random point outside
AD such that E— A—F and E — D — G are collinear points with
EA=AF and ED = DG, and rays GC and F' B intersect at H

(d) L = IB + BJ, where I and J are points such that IB and BJ are
both parallel to and have equal length as diagonal AC

(e) L = E,E.+ EyEq, where E,, Ey, E., E; are the intersections of the
exterior angle bisectors at consecutive vertices

(f) S1P = S3P and SoP = SyP, where S1, Sz, S3, Sy form exte-
rior isosceles triangles with the sides of ABCD as bases such that
AS1BP, BSsCP, CS3DP, and DS4AP are cyclic quadrilaterals

(9) o = re and 1y, = 14, where rq, Ty, Te, Tq are the inradii of triangles
ABP, BCP, CDP, DAP respectively

(h) pa = pe and py, = pq, where pg, pp, pPe, pa are the exradii to triangles
ABP, BCP, CDP, DAP respectively that are tangent to the sides
AB, BC, CD, DA

if and only if it’s a parallelogram.
Proof. (a) In a parallelogram with consecutive sides a, b, ¢, d, opposite
sides satisfy a = ¢ and b = d. It directly follows from (6) and (7) that
p2+w2 :2(a2+b2) :2(62+d2) :p2_|_y2
which implies w = y (see Figure 17). In the same way we have z = z.
Conversely, when w = y and = z hold in a convex quadrilateral, we
obtain from (6) and (7) that
2(a® + b?) = p* + w? = p* +y? = 2( + d?),
so a® 4+ b? = ¢ + d?, and in the same way that d® + a®> = b + ¢. Then the
quadrilateral is a parallelogram according to Theorem 5.1 (a).
(b) In a convex quadrilateral with consecutive sides a, b, ¢, d and diagonal
q = BD, it holds that
AGs=2-1\/2(a®+d?) — ¢ and CGy=31/2002+2)— ¢
where we used a well-known property of the medians in a triangle and Apol-
lonius’ theorem. Hence
AGy=CG, & d+d>=bv+¢
and in the same way we get
BGy=DGy & d*+bv¥=c+d%

The two equalities a? + d?> = b + ¢® and a® + b = ¢® + d? characterize
parallelograms according to Theorem 5.1 (a).

(c) When ABCD is a parallelogram, EA = AF and ED = DG imply
that AD || FG (see Figure 21). Since we know that AD || BC, we get
BC | FG. But AD = BC and AD = LFG, so BC = 1FG, which proves
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that B and C are midpoints on F'H and GH respectively. Hence FB = BH
and GC' = CH.

G

JAC

F

FIGURE 21. A Varignon-related characterization

Conversely, when FFB = BH and GC' = C'H in a convex quadrilateral
ABCD, then it follows directly that ABCD is a parallelogram since A, B,
C, D are the midpoints of the sides of EFGH (ABCD is the Varignon
parallelogram of EFGH).

(d) From the construction of the points I and J, quadrilaterals ACBI and
ACJB are parallelograms with AI = CB and CJ = AB (see Figure 22).
Applying the triangle inequality to triangles ADI and DCJ yields AD +
BC > 1D and DC + AB > DJ, so

L=AB+BC+CD+DA>ID + DJ.

Equality holds if and only if each pair of segments IA, AD and C'D,CJ are
collinear, which is equivalent to that opposite sides in ABC' D are parallel,
so it is a parallelogram.

FIGURE 22. IB and BJ are both parallel to AC

(e) If the extensions of AB and DC intersect at O in a convex quadrilat-
eral and the angle at O is 2w, then by the angle sum in triangle ADO, we
have

T— LA+ nm—4D42w=1 & 2w=LA+/1D-—n.
With notations as in Figure 23, we get

X1Xo = B4 Xy < EgEp
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with equality if and only if w = 0, which is equivalent to LA + £ZD = m,
that is, AB || DC. In the same way for the other two escribed circles, there
holds

X3Xy < EqE.
with equality if and only if x = 0, which is equivalent to ZC'+ZD = =, that
is, AD || BC (here 2x is the angle between the extensions of AD and BC).

E
X c X
4 N\ 6
\\
DL <
/7 s
Xs , S~ E

FIGURE 23. Distances between centers in opposite escribed circles
Next we note that L = X1 X9 + X5Xg = 2X1 X5 and X1 X9 = X3X4 (the
reader can supply the details via equal tangent lengths), so
L=X1Xo+X3Xy <E,E.+ EyEy

where equality holds if and only if AD || BC and AB || CD, that is, only
when ABCD is a parallelogram.
(f) Applying Ptolemy’s theorem in the cyclic quadrilateral ASyBP yields

S1P-AB =SB -PA+ S1A-PB
and since S1A = S1B (see Figure 24), this simplifies into
(10) S1P-AB = S,A(PA+ PB).
Next we apply the Law of Cosines in triangle AS;B to get
|AB|* = |S1A> 4 |S1B|* — 251 A - S1Bcos (1 — a) = |S1 A|*(2 + 2 cos )
where o := ZAPB. Hence

AB = S1A+/2(1 + cos )

and inserting this into (10), we get

PA+ PB
(11) S1P = ;

2(1+ cosa)
By symmetry

PC+ PD

12 S3P = ———
(12) ’ 2(1+cosa)
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and in the same way,
PB+ PC PD+ PA
(13) SoP = ot TC and SiP = oA
2(1 + cos ) 2(1 4 cos 3)

where § := Z/BPC.

FIGURE 24. Four cyclic quadrilaterals

According to Theorem 3.1 (f) in Part 1, ABCD is a parallelogram if and
only if

PA+PB=PC+PD
PB+ PC =PD+ PA

which is equivalent to

PA+PB _ PC+PD
V2(1+cosa) /2(1+ cosa)
PB+ PC PD + PA

V/2(1 4+ cos 3) N V2(1 + cos )

and, in turn, is equivalent to

S1P = S3P
SoP = S, P

according to (11), (12) and (13), completing this proof.

(9) That r, = r. and r, = r4 hold in a parallelogram is a direct conse-
quence of the fact that each pair of triangles ABP, CDP and BCP, DAP
are congruent (via SSS or SAS or ASA).

We prove the converse with contradiction. Assume that r, = r. and
rp, = rq hold in a convex quadrilateral that is not a parallelogram. Then at
least one of the diagonals is not bisected, but triangles ABP and CDP have
an equal angle at P. Assume without loss of generality that BP < DP and
AP < CP. Then there are points A" and B’ on CP and DP respectively
such that AP = A’P and BP = B'P (see Figure 25). Thus ABA'B’ is
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F1cURrE 25. Comparison of opposite quarter-triangles

a parallelogram, so the incircles in triangles ABP and A’B’P have equal
inradii. Next we prove that the incircles in triangles CDP and A’B’'P do
not have equal inradii. We get (deriving the applied triangle formula is left
as an exercise for the reader)

cpP AP

Te = > =TBAP =Ta
cot g + cot ZDQCP cot g + cot %

since we can assume without loss of generality that /DCP > /B'A'P,
which implies cot % < cot %. We have reached a contradiction:
re = 14 and r. > r,. Hence we cannot have that r, = r. and r, = r4 hold
in a convex quadrilateral that is not a parallelogram, so ABC'D is indeed a
parallelogram.

(h) That p, = p. and p, = pg hold in a parallelogram is a direct conse-
quence of the fact that each pair of triangles ABP, CDP and BCP, DAP
are congruent (via SSS or SAS or ASA), see Figure 26.

FIGURE 26. Excircles to the four quarter-triangles
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The proof of the converse is very similar to that of (g) and we again
use contradiction. Assume that p, = p. and p, = pg hold in a convex
quadrilateral that is not a parallelogram. Then at least one of the diagonals
is not bisected, but triangles ABP and CDP have an equal angle at P.
Assume without loss of generality that BP < DP and AP < CP. Then
there are points A’ and B’ on CP and DP respectively such that AP =
A'P and BP = B'P. Thus ABA'B’ is a parallelogram, so the excircles
to triangles ABP and A’B’P have equal exradii. Next we prove that the
excircles to triangles CDP and A’B’P do not have equal inradii. We get
(deriving the applied triangle formula is left as an exercise for the reader)

DP B'P

>
pe = tan £ 5 + tan ZCDP

ZA’B’P = PA’B'P = Pa

tan + tan =———

since we can assume w1thout loss of generahty that /CDP < ZA'B'P (see
Figure 25), which implies tan <=-— ACD P < tan £AB'P B £ We have reached a con-
tradiction: p. = p, and p. > pa Hence we cannot have that p, = p. and
pp = pg hold in a convex quadrilateral that is not a parallelogram, so we
conclude that ABCD must be a parallelogram. O

8. RHOMBI

Next we have three necessary and sufficient conditions for when a con-
vex quadrilateral is a parallelogram expressed in terms of the formation of
different rhombi. Characterization (a) was proved in the paper [38, pp. 17—
20]. The sufficient condition in () is due to the author, but to prove the
necessary part was given as a problem in [26, pp. 61-62], and the similar (¢)
is also due to the author.

Theorem 8.1. A convex quadrilateral ABCD with diagonal intersection P
satisfies any one of:

(a) 51525354 is a rhombus, where S1, Sa, S, S4 form exterior isosce-
les triangles with the sides of ABCD as bases such that AS1BP,
BSsCP, CS3DP, and DS4AP are cyclic quadrilaterals

(b) I.IpI 1 is a rhombus, where I, Iy, I., I are the incenters of quarter-
triangles ABP, BCP, CDP, DAP respectively

(¢) EoEyE.Eq is a thombus, where E,, Ey, E., E; are the excenters
of quarter-triangles ABP, BCP, CDP, DAP respectively that are
tangent to the sides AB, BC, CD, DA

if and only if it’s a parallelogram.

Proof. (a) A convex quadrilateral is a rhombus if and only if its diagonals
bisect each other at right angles. We know from Theorem 7.1 (f) that ABC' D
is a parallelogram if and only if S; P = S3P and SoP = S4P. What remains
to prove is that the diagonals of 51555354 always intersect each other at
right angles at P.

In cyclic quadrilateral AS;BP, we get ZAPS| = ZABS| and /BAS, =
/BPS; (see Figure 24). Triangle ABS] is isosceles, so ZABS, = /BAS,
and we conclude that ZAPS; = ZBPS; always holds. This means that
PSSy is an angle bisector to angle APB. In the same way we conclude that
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PS3 is an angle bisector to the same angle, so S, P, Ss are collinear. By
symmetry, So, P, Sy are also collinear. Hence the diagonals of 51555554 and
ABCD are concurrent at P. We also conclude that PSs is an exterior angle
bisector to triangle AP B, and since an exterior and an interior angle bisector
are always perpendicular, this proves that the diagonals of 51555554 always
intersect each other at right angles at P.

(b) Since I,I. and I,I; are angle bisectors to the angles between the
diagonals, it is always true that I,I.1I;I;. Hence I, Iy1.1; is a rhombus if
and only if I, P = I.P and I; P = I;P. These are satisfied in a parallelogram
ABCD since NAABP = ANCDP and ABCP = ADAP (see Figure 27).

FIGURE 27. Incircles in the four quarter-triangles

Conversely, if I,IyI.1; is a rhombus, then I,P = I.P and I,P = I;P.
By congruent triangles (AAS), this implies r, = r. and r, = 74, where rg,
Te, Ty, Tq are the inradii of triangles ABP, CDP, BCP, DAP respectively.
The two inradii equalities imply that ABCD is a parallelogram according
to Theorem 7.1 (g).

(c) Since E,E. and EpE, are angle bisectors to the angles between the
diagonals, it is always true that F,E.1 EyEy. Hence E,EpyE F, is a thom-
bus if and only if E,P = E.P and E,P = E4P. These are satisfied in a
parallelogram ABCD since AABP = ACDP and ABCP = ADAP.

Conversely, if B, FyE.FE,4 is a thombus, then £,P = E.P and E,P = E4P
(see Figure 26). By congruent triangles (AAS), this implies p, = p. and
Pb = pd, where pq, pe, pp, pa are the exradii to triangles ABP, CDP, BCP,
D AP respectively that are tangent to the sides AB, BC', CD, DA. Hence
ABCD is a parallelogram according to Theorem 7.1 (h). O

9. DIAGONALS

The last theorem deals with five characteristic properties of parallelograms
that are related to the diagonals. The first four are due to the author, but
the necessary condition in (a) is from [36, p. 66], and the necessary condition
in (¢) and (d) were stated in [12]. The sufficient condition in (e) is from the
third Croatia Girls Mathematical Olympiad in 2022 [33].

It’s noteworthy that (¢) and (d) in the following theorem together with
Theorem 3.1 (a) in Part 1 can be merged into the following characterization:
A convex quadrilateral is a parallelogram if and only if the midpoints of any
two of AC, BD, A'C’', B'D’ coincide.

We denote by T'xy 7 the area of triangle XY Z.
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Theorem 9.1. A convex quadrilateral ABCD with area K, diagonal in-
tersection P, and where A’, B', C', D' are the centers of external squares
BAFEF, CBGH, DCIJ, ADLM erected on the sides, satisfies any one of:

(a) ACLEM and BD1FG

(b) G1V Gs € AC and Gy V G4 € BD, where G1, G2, G3, G4 are the
centroids of triangles BCD, CDA, DAB, ABC respectively

(c) the midpoint of AC' (or BD) coincides with the midpoint of A'C’ (or
B'D’ respectively)

(d) the midpoint of A'C’" coincides with the midpoint of B'D’

(e) Tapn = Tcpo = %K and diagonal AC' is trisected by DN and DO,
where N € AB and O € BC

if and only if it’s a parallelogram.

Proof. (a) In a parallelogram ABCD, Z/CDA = ZEAM since they are
both supplementary angles to angle DAB. Thus triangles CDA and EAM
are congruent (SAS) due to equal opposite sides in a parallelogram and the
constructed squares (see Figure 28). Now let the extension of diagonal AC
intersect EM at N. Then /DAC = ZAMN due to this congruence, and
since angles DAC and M AN are complementary, so are angles AMN and
MAN. This proves that the third angle M N A in triangle M N A is a right
angle, confirming that AC L EM. In the same way we prove that BD 1 F'G.

FIGURE 28. External squares on the sides

For the converse, in a convex quadrilateral where ACLEM and BD 1 FG,
let 0 :== ZDAP and ¢ := ZPAB (see Figure 28). Then we have ZAMN = 6
and ZAEN = ¢, where N is the intersection between the extensions of AC
and EM, since angles DAP and AMN are both complementary angles to
angle M AN, and angles PAB and AEN are both complementary angles to
angle FAN. Applying the Law of Sines in triangles DAP and BPA, we get

DP _ d . BP ___ a
sing  sin(m — P)

sinf@ sinP
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and from the definition of sines in triangles AM N and AEN, it holds

sinf = A—N and sin¢g = A—N
d a

Hence we get

DP _ %%QZZANzl

BP asin ¢ AN

sin (71— P)
proving that AC' | EM implies DP = BP. In the same way it’s proved that
BD1FG implies AP = CP, so we have that the diagonals bisect each other.
Then ABCD is a parallelogram according to Theorem 3.1 (@) in Part 1.
(b) We assume the quadrilateral is placed in a coordinate system such

that A = (0,0), B = (a,0), C = (b,¢), and D = (d, e), see Figure 7. Then
Ga — Ot+a+d 0+0+e) (fa+d e
o 373 ~ U3 3)

The line AC has the equation y = §z and we get that G5 lies on this line if
and only if

e c a+d

353 3 be = c(a +d).
The diagonal BD has the equation
G ae
Y=a—d" d=a
and G4 lies on this line if and only if
c e a+b ae

3 d—a 3 d—a
which is equivalent to ¢d — ac = be — 2ae. Thus we have the system of
equations

cd — ac = be — 2ae

{be =c(a+d)

and substituting the first equation into the second yields 2a(e — ¢) = 0.
Then ¢ = e since a # 0, and we get b = a + d from the first equation. These
two equalities are equivalent to that ABC'D is a parallelogram according to
Theorem 1.1.

The other possibilities are proved in the same way (for instance G; € AC
and Gy € BD imply that ABCD is a parallelogram).

(c¢) Let quadrilateral ABC'D be placed in an Argand plane with vertices
given by the complex numbers A, B, C, D (see Figure 29). Then the vector
BA = A— B so BF = (A — B)i, and we get F' = B+ (A — B)i. Hence the
center A’ is represented by the complex number

A'=1(A+F)=3%(A+B)+i(A- D).
In the same way
C'=(C+ D)+ 3(C—D)i
and the midpoint of A’C” is
HA' +C)=1(A+B+C+D)+(A-B+C - D)i.
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o C

De ’ B

oA

FIGURE 29. External squares in the Argand plane

The midpoint of AC is %(/H— (), so the midpoints of A’C" and AC' coincide
if and only if

HA+B+C+D)+(A—B+C—D)i]=A+0)
which is equivalent to
(A—B4+C—-D)(-1+1i)=0

and since —1 + i # 0, the only possible solution is A + C = B + D, which
according to Theorem 3.1 (e) in Part 2 characterize parallelograms.

There are three other possible coincidences stated, but the proof of all of
them are the same (only a few changes of letters or signs are required).

(d) With the same notations as in (¢), the midpoint of B'D’ is

1(A+B+C+ D)+ (—A+ B—C + D)i
so the midpoint of A’C’ coincides with the midpoint of B’D’ if and only if
L(A+ B+ C+ D)+ (A— B+ C — D)i
(A+B+C+ D)+ (-A+ B —C+ D)i

which is equivalent to 2i(A — B+ C — D) =0. Hence A+ C = B+ D since
2i # 0, and this is equivalent to ABC D being a parallelogram according to
Theorem 3.1 (e) in Part 2.

(e) In a parallelogram ABCD, one median in triangle ABD lies along
diagonal AC, and since AC is trisected by DN, AQ = %AP where P is
the midpoint of AC. This is the ratio in which the medians in a triangle
divide each other, implying that DN is a median in triangle ABD, so N is
the midpoint of AB. In the same way, O is the midpoint of BC'. Then the
areas of the pairs of triangles AND, BND and COD, BOD are equal, and
each pair is equal to half the area K of parallelogram ABCD), so Tapy =
Tepo = %K .

=
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FIGURE 30. A trisected diagonal

Conversely, the trisection of AC at ) and R implies that triangles ADQ),
QDR, CDR have equal area, so by Tapy = Topo = %K, we get that
triangles AQN and C' RO have equal area (see Figure 30). This implies that
N and O have equal distance from AC, so NO || AC. Hence N and O
divide BA and BC' in the same ratio.

Next we shall show that N and O are the midpoints of AB and BC
respectively. By way of contradiction, assume the opposite, which without
loss of generality can be taken as AN < %AB and CO < %CB . Then there
are points N’ € AB and O’ € BC such that AN = NN’ and CO = O0O'.
Thus Tanp = Tnn'p and Toop = Toop. But then we get

K =Tsnp +Tnn'D +Tcop +Toop + Kpn'Bor
=K+ Kpnpor > K

which is a contradiction, so the assumption that N and O are not the mid-
points of AB and BC' is wrong (the other case is similar). Hence we conclude
that N and O are the midpoints of AB and BC respectively. The proof is
now completed in the same way as for Theorem 3.1 (i) in Part 1. O

10. TWOFOLD CHARACTERIZATIONS

We note that convex quadrilaterals satisfying at least one of the two

equalities

A+ =2+d> or d+d®=b+7,
which appeared in Theorem 5.1 (a), were called Pythagorean quadrilaterals
in [17]. Hence parallelograms are the only twofold Pythagorean quadrilat-
erals according to that theorem.

There are several other examples of twofold characterizations of parallelo-
grams. We summarize these results in Table 1, where Theorem and Part
refer to our three papers on characterizations of parallelograms, but Ref. is
a reference where we studied characterizations of all but one of the quadri-
laterals in the table. Here we consider convex quadrilaterals ABC'D with
sides a = AB, b = BC, ¢ = CD, d = DA, diagonal intersection P, and
semidiagonals ' = AP, Y/ = BP, ¢ = CP,d = DP.
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Original Twofold parallelogram  Theorem Part Ref.
quadrilateral characterization

Quasi-isosceles a=c
quadrilateral b=d 2.1 (a) 1 [20]
LA=/C
Tilted kite 4.1 (a) 1 [19]
LB =4D
Bisect-diagonal | a’' = ¢’
quadrilateral {b' =d 3.1 (a) 1 [18]
Extangential a+b=c+d
quadrilateral {d Lta=b4+c 3.1 (d) 1 [14]
LA+ /B=/C+ /D
Trapezoid + + 4.1 (b) 1 [16]
D+ /A=/B+ /C
s 1: / b/ — U d/
Semld.lagonal a + c + 31 (f) 1
quadrilateral d+ad=b+¢
2 b2 — 2 d2
Pytha.gorean a” + "+ 5.1 (a) 3 7]
quadrilateral d+a?=0p>+c2

TABLE 1. Twofold characterizations of parallelograms

Quasi-isosceles quadrilaterals are defined to have at least one pair of op-
posite equal sides, tilted kites are defined to have at least one pair of opposite
equal angles, and bisect-diagonal quadrilaterals are defined as quadrilaterals
where at least one diagonal bisects the other diagonal.

Semidiagonal quadrilaterals is a new type of quadrilateral that was used
in [23] to state a few characterizations of rectangles. The concept was coined
by my friend Mario Dalcin from Uruguay as quadrilaterals satisfying at least
oneof o/ +b0 = +d ord +a =b+ ¢ and used in [6] to study a new
classification of convex quadrilaterals based on three types of symmetry.

Theorem 4.1 (b) in Part 1 was stated somewhat differently than in this
table: a convex quadrilateral ABCD is a parallelogram if and only if any
pair of adjacent angles are supplementary, for example

LA+ /B=m1=/B+ ZC.

The two formulations are equivalent via the angle sum of a quadrilateral and
are direct consequences of Propositions 1.28 and 1.29 in Euclid’s Elements.

To clarify what Table 1 shows, we comment on the extangential quad-
rilaterals. They are characterized as convex quadrilaterals satisfying at least
oneof a+b=c+dord+a=>b+c (see [14, p. 64]). If both of these equal-
ities are satisfied in a quadrilateral, then it is a parallelogram (according to
Theorem 3.1 (d) in Part 1), so parallelograms are the only twofold extan-
gential quadrilaterals. In the same way parallelograms are the only twofold
type of each of the quadrilaterals that are present in this table, and these
quadrilaterals are each characterized (or defined) to satisfy at least one of
the pair of equalities next to their names.
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