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TANGENTS TO A CUBIC CURVE II

G. T. VICKERS

Abstract. The most celebrated result on the tangents to cubic curves
is due to Maclaurin and is concerned with the four tangents that may be
drawn from a point X on a cubic curve U so as to touch U at Pi (1 ≤ i ≤ 4).
He showed that the lines P1P2 and P3P4 meet at a point on U . This result
has inspired an earlier article in which X is an arbitrary point (although
much of the elegance is lost). There are now six tangents which define not
only six points of contact but they meet U again at six new points (labelled
Di). It is shown here that many of the properties of the P -points can be
applied to these D-points. Also the importance of the polar line of X in U
becomes very apparent.

1. Introduction.

1.1. Background. Conics (that is, plane curves defined by polynomials of
degree two) have been studied since antiquity and remain an essential part
of any first course in mathematics. By contrast, cubic curves (defined by
polynomials of degree three) have never been a recognised part of a math-
ematician’s training. That is not to say that they have been completely
neglected; in the 19th century several prominent mathematicians ([2] gives
an impressive list) investigated cubic and higher order curves. At the present
time, classical geometry has faded from school curricula and shows little sign
of being re-instated. And yet geometry is such a natural way of introducing
students to the notions of mathematics and the results can be demonstrated
in the most accessible way - through pictures. Cubic curves may not assist
in the design of better mouse-traps but they do have a wealth of interest-
ing properties, some being related to those of conics while others are quite
separate.

1.2. Technicalities. All of the points, lines and curves considered here lie
in a plane. Any three non-collinear points in this plane may be used to define
a triangle of reference and hence a system of trilinear coordinates. There
are various kinds of such coordinates (e.g. areal, homogeneous, barycentric)
but the basic idea is the same in each case. For those unfamiliar with such
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coordinates, the Wikipedia article Homogeneous Coordinates is a good place
to start as are [4] (the classic account) and [1] (which was once a standard
school text-book).

Only algebraic curves will be encountered. Any homogeneous polynomial
Θ of degree n in r = (r1, r2, r3) will define a plane curve (an n-curve) also
denoted by Θ, where (r1, r2, r3) are used as the trilinear coordinates. With
X(α) any point, the (first) polar curve of X in Θ is the (n − 1)-curve ΘX

defined by

nΘX ≡ α1
∂Θ

∂r1
+ α2

∂Θ

∂r2
+ α3

∂Θ

∂r3
≡ α · ∇Θ = 0.

The most significant property of the polar curve is that the common points
of Θ and ΘX are the points of contact of the tangents from X to Θ.

Some of the results of [5] will be used here and the remainder of this
introductory section gives a summary of the findings of that paper.

1.3. Geometry. The most celebrated result on planar cubic curves is due
to Maclaurin. Let U be a cubic curve and X a general point on U . Four
tangents may be drawn from X to touch U at Pi (1 ≤ i ≤ 4). The principal
result of Maclaurin is that the lines P1P2 and P3P4 meet at a point on
U . Thus the three diagonal points of the quadrangle P1P2P3P4 lie on U .
Furthermore, the tangents at these diagonal points are concurrent at yet
another point of U . This was the inspiration for [5] and the key results of
that investigation are given next but it has to be admitted that elegance has
been lost at the expense of generality.

Let U be a planar cubic curve and X any point not on U . The points of
contact of the six tangents from X to U are labelled Pi (1 ≤ i ≤ 6). The
line P1P2 will meet U again; label this point Q12. There will be fifteen such
Q-points. The lines

P1Q23, P2Q31, P3Q12

are concurrent and their common point is named R123. Although one might
expect there to be twenty such R-points, in fact there are only ten because
R123 and R456 coincide. Furthermore, there exists a cubic curve V which
passes through these ten points and also through X.

1.4. Algebra. Let U(r) be a homogeneous polynomial of degree three so
that U is a cubic curve. The first polar curve of X(α), UX , is a conic and
the second polar curve, UXX , is a line - the polar line of X in U . Also
UXXX ≡ U(α). The six points of contact of the tangents from X to U are
Pi(pi) (1 ≤ i ≤ 6) and their coordinates satisfy

(1) ∇U = r×α.

Using [..]i to denote the value of the expression in square brackets when
evaluated at Pi, this last equation can be written as

(2) [∇U ]i = pi ×α (1 ≤ i ≤ 6).

The use of vectorial notation (specifically scalar and vector products) is very
convenient but only coordinates are involved and not vectors. It is also to
be emphasised that equation (2) is not homogeneous in pi, it implies some
special scaling of the coordinates pi.
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The coordinates of the point Qij are (pi + pj) and Rijk has coordinates
(pi+pj +pk). The fact that R123 and R456 coincide follows from the result

(3)

6∑
i=1

pi = 0.

The Hessian of U is the cubic curve given by

(4) H ≡
∣∣∣∣ ∂2U

∂ri∂rj

∣∣∣∣ = 0.

Define β by

(5) β(r) ≡ ∇U ×∇H,

the quartic curve W and the cubic curve V by

W ≡ −2
3β · [∇U ]X = 0(6)

and V ≡ WX = 0.(7)

Then V is the curve that passes through the ten R-points. These are the
common points of W and V (other than X) and so are the touching points
of the tangents from X to W .

The following results, also given in [5], will be used later:

W (p1) +W (p1 + p2) +W (p2) = 0,(8)

H(p1)−H(p1 + p2) +H(p2) = 0,(9)

W (pi) = −4H(pi)U(α),(10)

3HX(pi) = α · [∇H]i = −24U(α),(11)

8U(β(r)) = −U(r)

∣∣∣∣∂βi∂rj

∣∣∣∣ and 8H(β(r)) = −H(r)

∣∣∣∣∂βi∂rj

∣∣∣∣ .(12)

Another set of interesting points is Sij with coordinates (pi − pj). These
points obviously lie on the line PiPj and are such that PiQijPjSij form an
harmonic range. Furthermore, the S-points lie on W .

2. A and B points

Let A(a) be any point on the cubic curve U . The tangent to U at A will
meet U again, call this point B. It is assumed here and throughout this
work that all the points considered on U have a unique tangent and that
this tangent meets U again at a different point. There does not seem to
be an appropriate name for the point(s) at which a tangent meets its curve
again. In [3] they are referred to as ‘tangential points’ which is not very
satisfactory. In [6] the terms A and B points were introduced (so that the
tangent at an A point meets the same curve again at a B point) and this
is used here.

It may be verified algebraically that (confining attention to cubic curves)
the tangent at the point A(a) meets U again at the point with coordinates
β(a). That this point lies on U follows from (12). More generally, let A(a)
be any point and let the member of the pencil of cubic curves (U + λH)
that passes through A be U∗. Then β(a) gives the coordinates of the point
at which the tangent to U∗ at A meets U∗ again. Thus A and B are A and
B points for U∗. When A(a) is a point on W , B(β(a)) will lie on the line
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UXX , see (6). Also, if A is one of the twelve common points of U and W ,
then B is one of the three common points of U and UXX .

It follows directly from the definition of β(r) that if A(a) is any point then
β(a) gives the coordinates of the common point of the polar lines of A in
the curves U and H i.e. the meet of the lines UAA and HAA. Alternatively,
with A(a) any point, the polar line of A in each of the cubics in the pencil
(U + λH) passes through B(β(a)).

Since the points P1(p1), P2(p2), Q12(p1 + p2) are collinear and lie on U ,
the points with coordinates β(p1), β(p2), β(p1 + p2) not only lie on U ,
they are also collinear. The most elegant proof of this is by using Cayley
residuals, see [3].

2.1. Notation. Reminder: the points with coordinates

α, p1, p1 + p2, p1 + p2 + p3,
are X, P1, Q12, R123.

Now denote the points

β(α), β(p1), β(p1 + p2), β(p1) + β(p2)
by Y, D1, E12, F12.

and

β(p1) + β(p1 + p2) + β(p2), β(p1) + β(p2) + β(p3)
by G12, K123.

Figure 1 shows schematically the relative positions of some of these points.

3. Theorems

As mentioned in Section 1.3, the lines P1Q23, P2Q31, P3Q12 are concur-
rent and since the action of β is to send Pi to Di and Qij to Eij it is natural
to enquire whether this concurrency result applies to the D and E-points.
It does not. But it is true for the D and F -points, i.e. the lines

D1F23, D2F31, D3F12

are concurrent, their common point being K123. The first theorem shows
that there are only ten K-points (which mirrors the R-points).

Theorem 1.
6∑

i=1

β(pi) = 0.

Proof. From the definition of β(r),

β(pi) = [∇U ]i × [∇H]i,
= (pi ×α)× [∇H]i
= (pi · [∇H]i)α− (α · [∇H]i)pi

= 3H(pi)α− 3HX(pi)pi.

But, from equation (11), HX(pi) = −8U(α) and so

(13) β(pi) = 3H(pi)α+ 24U(α)pi.
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Figure 1. A schematic diagram to show the relationships
between the principal points. Tangents to U are shown as
solid lines with theirA-points shown as squares andB-points
as diamonds. G12 also lies on the line UXX .

From the definition of W (r) it follows that

W (pi) = −2
3β(pi) · [∇U ]X

= −{2H(pi)α+ 16U(α)pi} · [∇U ]X
= −6H(pi)U(α)− 16U(α)pi · [∇U ]X .

Now use equation (10) to obtain

(14) H(pi) = −8pi · [∇U ]X .

Since
∑6

i=1 pi = 0, it follows that

(15)
6∑

i=1

H(pi) = 0,
6∑

i=1

W (pi) = 0 and
6∑

i=1

β(pi) = 0.

This shows that the points K123 and K456 coincide so that there are only
ten distinct K-points. By analogy with the R-points, it may be surmised
that these K-points also lie on a cubic curve. The following theorem shows
that this is indeed the case.

Theorem 2. The ten K-points lie on a cubic curve which touches V at X.

[Only a brief account of the algebraic contortions will be given. The
process of finding the expression for ϕ given below is far too tedious to
include and is of no importance.]
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Proof. Consider the cubic curve

ϕ ≡ 4V U(α)2 − 18VXU(α)UXX + 27VXXU2
XX = 0,

⇒ ϕX = 2U(α){3VXXUXX − VXU(α)},
⇒ ϕXX = U(α)2VXX .

Evidently ϕ touches V at X. There is no loss of generality in taking X
to have coordinates (1, 1, 1) and three of the six points of contact of the
tangents from X to U to be the vertices of the triangle of reference. With
these choices, U becomes

U ≡ ar21(r2 − r3) + br22(r3 − r1) + cr23(r1 − r2) + 2dr1r2r3 = 0.

In order to satisfy equation (1),

p1 = (−1/a, 0, 0), p2 = (0,−1/b, 0), p3 = (0, 0,−1/c).

Writing p4 = (x, y, z) for one of the other three points of contact, it was
shown in [5] that

(16) a =
1

x
− dyz(xz + xy − yz)

x(y − z)(z − x)(x− y)

with corresponding expressions for b and c. It is now a straightforward task
to find the Hessian H of U , β(r) at the four points pi, 1 ≤ i ≤ 4 and thus
expressions for

Ψ = β(p1) + β(p2) + β(p3) and Ω = β(p1) + β(p2) + β(p4).

It is sufficient to consider just these two points because of Theorem 1. When
each of Ψ and Ω is substituted into ϕ, the result, after using equation (16)
(and its b and c friends), is zero. Hence the ten K points lie on ϕ.

4. Concurrent Lines and Collinear Points

The equation (8) implies that

{β(p1) + β(p1 + p2) + β(p2)} · [∇U ]X = 0

and so G12 lies on the line UXX as well as the line D1D2.
For convenience, let s be the coordinates of G12 so that

s = β(p1) + β(p1 + p2) + β(p2).

Since G12 lies on D1D2 we may set

s = µβ(p1) + νβ(p2)

(for some numbers µ and ν) and, since G12 also lies on UXX ,

s · [∇U ]X = 0.

Now from equations (13) and (14)

β(pi) · [∇U ]X = 3H(pi)α · [∇U ]X + 24U(α)pi · [∇U ]i,
= 9H(pi)U)α)− 3U(α)H(pi),
= 6U(α)H(pi).

Thus

µH(p1) + νH(p2) = 0 ⇒ µ = λH(p2) and ν = −λH(p1)
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for some number λ and so

s = λH(p2)β(p1)− λH(p1)β(p2),
= λH(p2){3H(p1)α+ 24U(α)p1}

−λH(p1){3H(p2)α+ 24U(α)p2},
= 24λU(α){H(p2)p1 −H(p1)p2}

and so G12 lies on the line P1P2. The three lines P1P2, D1D2 and UXX are
therefore concurrent at the point G12.

This proves the following result.

Theorem 3. The points A1 and A2 lie on the cubic curve U . The tangents
to U at A1 and A2 meet at X (not on U). These tangents also meet U again
at B1 and B2. The lines A1A2, B1B2 and UXX are concurrent.

This may be expressed somewhat differently as follows.

Theorem 4. The line L meets the cubic curve U at A,B,C. The tangents
to U at these points, taken in pairs, meet at X,Y, Z. The polar lines of
X,Y, Z are concurrent at a point on L.

4.1. Points on UXX . It has been remarked earlier that for any point A(a)
on W , the point B(β(a)) lies on UXX . In particular, the points

β(α), β(p1 + p2 + p3) and β(p1 − p2)

are on UXX (because X, R123 and S12 lie on W ). But there are also other
points as given in the following table (which also indicates the other line(s)
on which they lie):

XP1 : H(p1)α+ 24U(α)p1

Q12E12 : β(p1 + p2)− 48U(α)(p1 + p2)
XE12 : β(p1 + p2) + 2H(p1 + p2)α
XQ12 : H(p1 + p2)α+ 24U(α)(p1 + p2)

P1P2 and D1D2 :

{
β(p1) + β(p1 + p2) + β(p2)

H(p1)p2 −H(p2)p1

This by no means exhausts the list of curious points. For example, because∑6
i=1 pi = 0 and G12 lies on UXX it follows that

β(p1 + p2) + β(p3 + p4) + β(p5 + p6)

also lies on UXX (fifteen points in total). Similarly

p1 + p2, p3 + p4, p5 + p6

all lie on U and are collinear. This implies that

β(p1 + p2), β(p3 + p4), β(p5 + p6)

are also collinear (and lie on U). But the geometrical significance of these
last results does not seem to be of great interest.

5. Final Observations

In the course of these investigations, two unexpected results were encoun-
tered which involve the Hessian:
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• With η and ζ any cubics, the cubic ω defined by

ω ≡ ηXXXζ − 3ηXXζX + 3ηXζXX − ηζXXX = 0

will give three straight lines with common point X. For example,
when η and ζ are V and ϕ, the three lines forming ω are the tangent
to V at X and the pair of lines joining X to the common points of
the conic VX and the line UXX .

However, if ζ is the Hessian of η, then ω is identically zero for all r
and all points X. Furthermore, if η is a given cubic and ω is known
to be zero for all r and X then ζ is a linear combination of η and its
Hessian.

• For a given cubic U , let W be the quartic defined by equation (6).
It may be verified algebraically that

UXXXW − 4UXXWX + 6UXWXX − 4UWXXX ≡ 0 ∀ r.

The geometrical interpretations of these results eludes the writer.
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