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CONICS ASSOCIATED WITH APOLLONIUS’ PROBLEM

ARNE ERIKSON

Abstract. In this article we consider a theorem that has recently been
published and given an analytical proof [1]. The theorem states that the
centers of the three given circles of Apollonius’ problem lie on a conic, either
an ellipse or a hyperbola, and that the centers of the solution circles (in pairs)
are the foci of the conic. Here we present a synthetic proof. To aid us with
the proof, we will use a construction method by Casey solving Apollonius’
problem [2, pp. 121–123, prop. 10].

1. Introduction

Figure 1. Apollonius’ problem. 8 solution circles each tan-
gent to the three given green circles. The solution circles are
paired (2 dark blue, 2 light blue, 2 yellow, 2 red), giving four
conjugate pairs.
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Figure 2. Four ellipses whose foci are the centers of the
four conjugate solutions shown in figure 1. The centers of
the given circles (shown in green dashed lines) are on the
conics.

Apollonius’ problem is well known and more than two thousand years old:
”To construct the circle or circles tangent to three given circles”. [7, p. 118].
One or more of the given circles may be replaced by a line or a point and
the number of solutions in each case may depend on the relative positions of
the given objects. The maximum number of solutions for the case of three
given circles, CCC, is eight (see Figure 1), which in turn gives 4 conics (see
Figure 2). The solution circles generally occur in pairs [4, p. 450], [5, p.
159] and are often named conjugate pairs. Using straight edge and compass
only, the construction method most cited is that by Gergonne {[3, p. 171],
[5, p. 160, fig. 18], [6], [7, p.120, fig. 38], [8, p. 189, figs. 4.21 & 4.22], [10,
pp. 22–23, fig. 28]}. We however, will use a construction method due to
Casey [2, pp. 121–123, prop. 10], and note that Poncelet’s method [8, pp.
190–194, figs. 4.23 & 4.24], could equally have served our purpose in proof
(I) of theorem 3.1.

2. Construction method.

We recreate the CCC construction by Casey in figure 3. The crucial fea-
tures are the radical circle, its radical axes connected with the three given
circles and the intersection points of these axes with the four axes of simil-
itude (see Figures 3c and 3d). A detailed proof can be found in [2, pp.
121–123, prop. 10]. The construction shown in figure 3 is executed thus [2]:
“Describe the orthogonal (radical) circle of X,Y, Z, (the three given circles)
and draw the three chords of intersection (radical axes) of this circle with
X,Y, Z respectively; and from the points where these chords meet the axis of
similitude of X,Y, Z draw pairs of tangents to X,Y, Z ; then the two circles
described through these six points of contact will be tangential to X,Y, Z.”
(Words in italics are our additions.)
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(a) The given three circles (b) Four axes of similitude

(c) Radical circle

(d) Three radical axes and their
intersection points with one axis
of similitude

(e) Tangents to given circles from
intersection points in (d) (f) Solution circles in red

Figure 3. Construction of Apollonius’ problem. Method by
Casey [2, pp. 121–123, prop. 10].

As noted above, the solution circles generally occur in pairs. We expand
upon this in the following and first quote from [12, p. 584].
(Muirhead):“It is well known that the contact circles occur in pairs such
that each pair has for its radical axis one of the four axes of similitude of
the given circles.”
(Plücker):“The centers of the eight circles which simultaneously touch the
same three given circles are distributed pairwise on the perpendiculars dropped
from the radical center of the three given circles onto their four axes of simil-
itude.” Thus, if we drop a perpendicular from the radical center to a chosen
axis of similitude, we need only one of the intersection points in 3d to find
the centers of the solution circles, thereby suggesting a simpler construction.
Figure 4 shows the perpendicular τ from the radical center R to the axis of
similitude ϵ.



8 Arne Erikson

Figure 4. Figure for proof I of theorem 3.1.

3. Conics associated with Apollonius’ problem

Theorem 3.1. 1 The centers of the conjugate solutions to Apollonius’ prob-
lem are foci of conics. The centers of the given circles are on the conics.

We present two alternative proofs (I) and (II).

Proof. (I) We will first use the construction discussed in section 2 and
focus on the intersection point, G, between the radical axis {GG1G2} of the
circles {β, λ}, and one of the axes of similarity, ϵ (see Figure 4).

We may use either of two well known propositions to aid our proof and
quote them from [11, p. 83 & p. 92]:
“Proposition V. The tangent at any point of a central conic makes equal
angles with the two focal distances of that point.”
“Proposition X. The normal at any point of a central conic bisects the angle
between the two focal distances of that point.”

Make a line from G through the center O2 of one of the given circles
β, and extend it to intersect the line F1F2 at A, where {F1, F2} are the
centers of the solution circles. Make a perpendicular to the line GO2A, at
the point O2 and extend it to meet the line F1F2 at B. By the construction
in section 2, we have the tangents {GC1, GC2} to the circle β(O2), giving
two congruent right-angled triangles {GC2O2, GC1O2}. In figure 4 we see

that the angles {ÂO2F1, ĜO2C2} are opposite. But these angles are equal to

ĜO2C1, and thus the line GO2A makes equal angles with the focal distances
{O2F1, O2F2} at the point O2, and by the proposition V quoted above, is
therefore a tangent at the point O2 to the ellipse ζ (see Figure 4) which is
one of the conics of theorem 3.1. Alternatively, we may use proposition X

quoted above. We see that the angles {B̂O2F1,B̂O2F2} are equal. Therefore

1To the best of our knowledge, this theorem is presented for the first time by [1].
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the perpendicular O2B to the line GO2A at the point O2, bisects the angle

F̂1O2F2 between the two focal distances. Thus the line O2B is a normal at
the point O2 of the ellipse ζ. In exactly the same way we may prove that
the other two given circle centers are on the ellipse ζ, by using the points of
intersection H and I between the radical axes (yellow and turquoise dotted
lines respectively) and the axis of similitude, ϵ. A similar proof may easily
be made if the conic is a hyperbola.

We identify the three points {G,H, I} as radical centers respectively of the
circle triads {(β, λ, δ), (γ, λ, δ), (α, λ, δ)}. Where (α, β, γ) are the three given
circles, λ is the radical circle and δ is one of the solution circles (θ being the
other, could equally well have been used or included). See figures 4 and 5.
The novel and interesting feature we have found in the Casey construction,
is that the line joining a radical center, e.g. G, to the center O2 of its
associated given circle β, is tangent to the conic at that center, O2. (see
corollary 3.1). These radical centers also appear in Poncelet’s construction
[8, pp. 190–194, figs. 4.23 & 4.24], where he identifies them as poles. He
uses, not the radical circle λ of the three given circles, but a constructed
member of a pencil of circles of which also λ belongs, as do the two solution
circles {δ, θ}. The axis of similitude ϵ is their shared radical axis. See also
[4, p. 449] regarding this pencil of circles.
Proof. (II) Alternatively, we may use the following definitions:
1. An ellipse is the locus of points for which the sum of their focal distances
is constant.
2. A hyperbola is the locus of points for which the difference of their focal
distances is constant.
We assume the centers of the conjugate solutions are foci of a conic. In
figure 5, we deduce the following sums of focal distances for the three given
circles’ {α(a), β(b), γ(c)} centers, where {R, r} are the radi of the conjugate
solutions (red):

(R−a)+(r+a) = R+r, (R−b)+(r+b) = R+r, (R−c)+(r+c) = R+r.

Thus definition 1 is verified. Similarily for figure 6 we deduce the following
differences of focal distances for the three given circles’ centers:

(a+R)−(a+r) = R−r, (b−r)−(b−R) = R−r, (c+R)−(c+r) = R−r.

And we have verified definition 2.

Corollary 3.1. Let the three given circles {α, β, γ} with respective centers
{O1, O2, O3} of Apollonius’ problem intersect their radical circle λ. Through
the six intersection points, draw the three radical axes of the circle pairs
{(α, λ), (β, λ), (γ, λ)} to intersect any one of the four axes of similitude of
the given circles. Call these intersection points I,G,H respectively. The
lines {IO1, GO2, HO3}, will then be tangent to the conic associated with
Apollonius’ problem at the given circle’s centers {O1, O2, O3} respectively.

This is shown in proof (I) of theorem 3.1.
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Figure 5. Figure for proof (II). Case: ellipse.

Figure 6. Figure for proof (II). Case: hyperbola.

4. Circles tangent to two given circles. Their centers’ loci.

We next consider circles tangent to two given circles and their centers’
loci. We will use a conjugate pair from the solution to Apollonius’ problem
as the given two circles. There are five possible configurations of two circles
which we show in table 1. Our aim is to categorize which associated conics
arise for the different configurations and the result is shown in table 1, which
we now proceed to explain. First we quote some well known theorems.
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Table 1. Conics associated with the three given circles of
Apollonius’ problem for all five possible configurations of the
conjugate solutions and their centers of similitude.

Conjugate solution Internal center of similitude External center of similitude

Conic

Hyperbola Hyperbola

Ellipse Ellipse

Ellipse Hyperbola

Ellipse Degenerate

Degenerate Hyperbola

Theorem 4.1. [7, p. 111] ”If a circle has like contact with two circles, the
points of tangency are collinear with the external homothetic center of the
two circles; if unlike contact, with the internal center...”. See figure 7.

Regarding the five possible configurations:

Theorem 4.2. [7, p. 112] “In every case, the circles tangent to two given
circles fall into two series, according as they have like or unlike contact with
the given circles...”. See figure 8.

Theorem 4.3. [7, p. 113] “If two circles touch two others, and belong to the
same series, the radical axis of either pair passes through the corresponding
center of similitude of the other pair”. [7, p. 113].

Theorem 4.4. [9, p. 59] “The centers of all circles tangent to two fixed
circles lie on a conic”.

We note that theorem 4.4 has allusions to theorem 3.1. In figures 7
and 8, we have shown the case when the two fixed circles are intersecting
each other. The two different series {ui, vi} clearly lie on different conics
Φ,Ψ, a hyperbola and an ellipse respectively. In table 1 we see cases where
both series lie on the same type of conic, but these will be different conics
nonetheless. It may easily be shown that the constant sums or differences
of the focal distances from the circle centers will be different for each series.
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Figure 7. Tangent circles {ω, κ} and {σ, µ} have like and
unlike tangencies respectively to the given two circles {δ, θ}.
Their tangency points (P,Q,R, S) and (J,K,L,M) are
collinear respectively with the external and internal homo-
thetic centers E and I.

Figure 8. Two different series {ui, vi} of tangent circles to
two given intersecting circles. {ui, vi} = {unlike, like} con-
tact.

Proposition 4.1. 2 The radical center of the three given circles of Apollo-
nius’ problem is a center of similitude for conjugate pairs of solution circles.

Proof. We have proven that the circle centers of the three given circles lie
on the same conic (Theorem 3.1). As a consequence, the circles must then
all belong to the same series. Consider pairing two of the three given circles
α, β, γ with the solution circles δ, θ, in succession. The radical axis of each
pair {(α, β), (β, γ), (γ, α)} will pass through a center of similitude of the pair

2We note that [7, p. 121] mentions this, but not as a theorem or proposition.



Conics associated with Apollonius’ problem 13

(δ, θ) of which there exist only two, one external and one internal. Being
of the same series, all three radical axes must necessarily pass through the
same center of similitude, and this must also be the radical center of the
three given circles. In this proof we have used the the theorems 4.1, 4.2, 4.3,
4.4 above and the subsequent remarks.

Theorem 3.1 and proposition 4.1 establish the relations shown in table 1.
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