INTERNATIONAL JOURNAL OF GEOMETRY
Vol. 14 (2025), No. 4, 68 - 83

A REFLECTION ON GEOMETRIC
CONSTRUCTIONS AND SYMMETRY.
THE CASE OF VARIGNON’S THEOREM

HASSAN BOUALEM and ROBERT BROUZET

We dedicate this work to our late colleague and friend Michel Alessandri (1962-2023).
He loved mathematics and especially groups in geometry[l]. We hope he would have
enjoyed this work. One of his favourite jokes was the following: “A mathematics teacher
asks his students: are the groups Ss and Z/67Z isomorphic? One of the students replies:
I think the first is, but not the second”. But the funniest thing for Michel was to add:
“This is a typical joke that only mathematicians laugh at!”

Abstract. Throughout this work, Varignon’s theorem is used as a guide-
line to better understand what a geometric construction is, and why sym-
metry can emerge from a general figure after a prescribed construction. We
highlight the role played by barycentric maps in such geometric construc-
tions, and attempt to demystify the emergence of symmetry in a result like
Varignon’s.

1. INTRODUCTION

In geometry, it is not uncommon that, starting from an ordinary element
of a certain family (triangle, quadrilateral, etc.) and following a prescribed
construction, one obtains a highly symmetrical element from the same fam-
ily. In other words, an input configuration with no particular characteristics
can give birth, after some construction, to a very particular output configura-
tion. This emergence of symmetry [18] from nothing is amazing. Varignon’s,
Wittenbauer’s and Napoleon’s theorems [2, 3, 4, 7, 14, 17, 19] are striking
examples of this type of phenomenon. In this work on affine geometry, we
will focus on Varignon’s result (and say a few words about Wittenbauer’s).
Varignon’s theorem [17], a very elementary result at secondary school level,
may not be particularly interesting, but if we try to understand what it
hides, it contains something very profound. In any case, it is a very classical
theorem that is widely quoted [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16].
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Our aim in this work is to highlight what is hidden deep down in Varignon’s
result and to better understand the emergence of symmetry in it. It seems
that, blinded by symmetry - beauty -, we fail to see that any quadrilateral
prescribed in advance could emerge from a Varignon’s kind construction -
even the ugliest, assuming that this aesthetic judgement has any meaning.
Metaphorically speaking, parallelograms play the same role among quadri-
laterals as particularly remarkable people in a crowd. We would only see
these particular people, without seeing the others, even though they are
probably more numerous in this crowd. Moreover, this phenomenon is true
not only for quadrilaterals, but for any polygon.

This article is divided into four sections, the first of which being this
introduction. The second introduces notions of equivariant geometric con-
struction and barycentric map and study their link. It is illustrated by two
classical theorems in affine geometry Varignon’s [17] and Wittenbauer’s [2]
theorems. In the third section, after some elements concerning affine equiv-
alence, we present two of our main results. The first and most general result
consists in proving that, given a polygon prescribed in advance, there exists
a barycentric map that transforms any polygon into another that is affinely
equivalent to the prescribed polygon; this is a sort of ultimate extension
of Varignon’s theorem, in which symmetry has been completely banished.
Nevertheless, since symmetrical figures are more attractive, we examine the
special case where the output figure is symmetrical and give an exhaustive
list of all the barycentric maps that allow us to obtain a Varignon-type re-
sult in the generalized context of p-grams instead of just parallelograms. Of
course, as a corollary, we obtain all possible Varignon constructions that
allow us to obtain a parallelogram as an output figure. The fourth and fi-
nal section introduces the notion of regular affine polygon and proposes to
extend some of the previous results to the case of star polygons.

All these results will be illustrated by numerous figures.

2. EQUIVARIANT GEOMETRIC CONSTRUCTIONS AND BARYCENTRIC MAPS

2.1. A natural condition imposed on a geometric construction.

In geometry we meet a lot of different constructions and, actually, geom-
etry is founded on its constructions. Among them, the most amazing are
those which create symmetry from nothing. We can cite as examples of such
constructions Varignon’s, Wittenbauer’s, Napoléon’s ones. Before to look at
symmetry we would like to introduce a condition which seems to be satisfied
in many geometric constructions. This condition is that a construction must
respect the changes of frame in the sense that two observers which apply
the same construction in two different frames must observe the same result.
The formalization of that idea is that the construction must be equivariant
under the natural diagonal actions of the group which is relevant in the ge-
ometry we consider. Because we are only interested in this work by affine
geometry this group will be the affine group.

So if £ is an affine space and GA(E) is the affine group consisting in affine
transformations of £ we define a construction as

Definition 2.1. A (geometric) construction in the affine plane £ is a map
f: EF = &Y which is equivariant relatively to the natural diagonal actions of
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the affine group respectively on E* and E':
Vg € GA(E), VA€ &, f(g.A) = g.f(A),
soif f: A= (A17"' 7Ak) = (fl(A)v 7fl(A))7

79040, g(a0) = (9(f1(A)), -, g(h(A)) )

which must be satisfied for any k-tuple A = (Ay,---,Ag) of points of &
and for any affine transformation g of £. We saw above that Varignon’s
constructions verify this property.

We can characterize such constructions in the case where they are assumed
to be affine maps. Before that, let us introduce the following definition:

Definition 2.2. A map f : ¥ — & will be called a barycentric map if there
is a k-tuple (a1, -+ -, ay) of real numbers, with the condition aq+- - -+ay = 1,
such that for all

A= (A, ,A;) € Ek, f(A) = a1Ar + -+ + apAg. Such a k-tuple
(a1, ,ap) will be called a weight associated to the barycentric map f.

Proposition 2.1. Let us assume that k > n+1, where n = dim £. Then an
affine map f : EF — E' is a construction if and only if each of its components
s a barycentric map for some weight.

Proof.

Let us denote E the vector space which is the direction of the affine space
€ and GA(E) the affine group of £.

Let A= (Ay,---,A;) and B = (By,---, Bg) be points in £¥. Because f
is assumed to be affine from the product affine space ¥ to the affine space
&, we can write

f(A)f(BS = F(AB) = F(AB., - , AuBy).

Now the assumption that f is a construction implies that for any g € GA(E)
and any (vi,--- ,v;) € EF,

Fof o) = F (T, T w).

So, denoting for each ¢ € [1, k] E) the linear map defined by
_>
fl(v) = 7(0E’ s Uy o 7OE)

where vector v is at the ¢th argument, we get that each of these maps
belongs to the center of the linear group GL(F) and so is an homothety. It
results the existence of k real numbers aj, - - - , ay such that for all k-tuples

A= (Ay,-,Ay) €& and B= (By,--,By) € &F,

k k
—
FA)f( ) = Z a;A;B;, or equivalently, f(B)= f(A)+ Z a; A; B;.

i=1 i=1
Now, using the property of constructions in the specific case of a translation
by vector U = (u,--- ,u), u € E, u # O and applying the above formula
to B=A+U, we get that f(A+U) = f(A) + u. So we get the equality

k

flA4+u=f(A)+ Zle o;u, and so Z a; = 1. Now, applying the previous
i=1
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formula to any A and B = g(A), g being an arbitrary element of GA(E), we
get that

k
g(f(A) = f(g(A) = F(A) + ) cidig(A;
i=1
Let us denote G4 the barycentre of weighted points (A1, 1), -+, (Ag, k)
k
so Gy = Z%‘Ai- We assert that f(A) = G4 which will complete our

=1
proof. Indeed, for all A € £¥ and g € GA(E),

. k
G (Gaf(A) = g(Ga)g(f(A)) = g(Ga) F(A) + D ciAig(Ai),
=1

according to the previous formula. So, since g(G4) Zalg i) we can

continue and obtain

F(Gaf(A Zazg A3+ZazAzg 3= Z%Af = Gaf(A).

Therefore vector G 4 f(A) is fixed by any element of the linear group GL(E)
k

so it is zero and therefore f(A) = G4 = Z o; A; as announced.
i=1

Warning: In this work we will consider quadrilaterals and more generally
polygons. We highlight the fact that there is a deep difference between the
k-tuple consisting in the vertices of a k-gon and the k-gon itself. Indeed, let
us recall the definition given by Coxeter in [3]:

“A polygon may be defined as consisting of a number of points (called
vertices) and an equal number of line segments (called sides), namely a
cyclically ordered set of points in a plane, with no three successive points
collinear, together with the line segments joining consecutive pairs of the
points. In other words, a polygon is a closed broken line lying in a plane.”

From this definition, a k-gon with vertices Ay, - - - , Ay, that we will denote
Aj -+ Ay, corresponds to the k-tuple (Aj,-- -, Ag) read in this cyclic order.

In what follows, we will insist on the “no three successive collinear points”
condition, which is fundamental to our work, by calling such polygons “non-
degenerate polygons”.

2.2. The examples of Varignon’s and Wittenbauer’s constructions.

Varignon’s theorem claims that if ABCD is a quadrilateral then the
quadrilateral IJK L, where I, J, K, L are the midpoints of sides [AB], [BC],
[CD], [DA], is a parallelogram. Varignon’s construction can be written as
the barycentric map

= K= , L

(A,B,C,D)H(I:AJ;B B;C CJ;D :D;FA)
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We can give two other barycentric maps associating to any quadrilateral a
parallelogram, for instance:
(A,B,C,D)— (I=A,J=B,K=C,L=A—-B+(C),or

A+2B 2B 2D A+2D
+ _2B+C . _C+2D A+ >

3’J3’ 3 7 3

These three barycentric constructions are represented on the figure below.

D D
K
L
L C C=K
J
A 7 B A=1 B=J A

FiGureE 1. The original Varignon’s construction and two
other barycentric constructions

(A,B,C,D) (1:

Remark 2.1. The original Varignon’s map has the following property: a
cyclic permutation of points A, B, C, D induces the same cyclic permutation
of points I, J, K, L. This property is not verified by the other two maps.

It is easy to prove that, actually, there is a infinity of ways to provide
barycentric maps including Varignon’s one which allow to get a parallelo-
gram from any quadrilateral. Indeed, for any real numbers s and ¢, the
barycentric map f : (4, B,C,D) — (A',B',C’, D'), where

A = sA+tB+(1/2—s)C+(1/2—t)D, B' = tA+(1/2—s)B+(1/2—t)C+sD,
C' = (1/2—8)A+(1/2—t)B+sC+tD, D' = (1/2—t)A+sB+tC+(1/2—s)D),

maps any quadrilateral onto a parallelogram.

Another theorem that closely resembles to Varignon’s one is due to Wit-
tenbauer [2, 19]. It states that if you divide the sides of a quadrilateral
ABCD into three equal parts and draw lines joining the two closest points
to A, the two closest points to B, etc., then the four points I, J, K, L, in-
tersection points of these lines, form a parallelogram. The proof is simple
(using Thales’s intercept theorem).

Nevertheless, to better understand the difference between Wittenbauer’s
and Varignon’s theorems, it may be useful to give the points I, J, K, L as
functions of A, B, C, D.

Let ABCD be a quadrilateral' and let us denote (b, d) the coordinates of
C in the frame (A4; AB, AD). Easily AC' = bAB+dAD, or C(b, d). With the
notations used in the figure, we clearly get A’(1/3,0), A”(2/3,0), D"(0,1/3)
and B'((2 +0)/3,d/3). It results that the line equations of (A’D”) and
(B'A") are respectively  +y = 1/3 and by = d(z — 2/3). So the point [

1We assume that any three of its vertices are non-collinear; we will come back to this
important hypothesis in next section.
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FIGURE 2. Wittenbauer’s construction.

defined by (A'D") N (B'A") is I (312;:423)’ 3(b_fd)> . From I we easily obtain

the three other points J, K, L. Indeed, an easy calculation gives that
2 2 2 2
J:I+§A_& K:J+§ﬁ, L:K+§(T>4, I:L+§zﬁ.

A number of comments are in order when comparing this result with
Varignon’s. As in the original Varignon’s case, a cyclic permutation of the
points A, B,C, D induces the same permutation of the points I, J, K, L.
On the other hand, there is one major difference with previous cases in-
volving a Varignon-type construction: here point I, and the others J, K, L,
does not depend affinely on the initial points A, B,C, D. However, if g is
an affine transformation, then the Wittenbauer’s construction applied to
points g(A), g(B), g(C), g(D) gives the points g(I),g(J), g(K),g(L), where
I, J, K, L are associated to A, B, C, D, and so the equivariance condition (x)
is satisfied.

Before concluding these examples, let us explain one last thing. Just as
we have seen a few variants of Varignon’s original construction, we can easily
obtain various Wittenbauer-type constructions. Indeed, instead of cutting
each side into three equal parts, we could cut them according to a different
barycentric distribution. Namely, for ¢ € [0, 1], let us define

A= (1-t)A+tB, A" =tA+(1-t)B, B' = (1-t)B+tC, B" =tB+(1-t)C,

C' = (1-t)C+tD, C" = tC+(1—t)D, D' = (1—t)D+tA, D" = tD+(1-t)A.
It is easy to check that the four points I, J, K, L defined respectively by
(D//A/) m (A//B/)7 (A//B/) m (B//C/)’ (B//Cl) m (C’//D/) and (C//D/) n (D//A/)
define a parallelogram; the original Wittenbauer’s theorem is for ¢ = 1/3.
In the frame (A;B,E), if C(b,d), then I (thl*t)d (2t71)d) . It is clear

b+d 7 b+d
that Varignon’s original construction is nothing more than the case t = 1/2
of this Wittenbauer’s family constructions.

Remark 2.2. In the Wittenbauer construction, there are two steps: first,
etght points are selected according to a barycentric map, and then lines join-
ing some of these points are cut. The resulting constructed points do not
depend affinely on the initial points. The construction is equivariant but not
affine, and is therefore not given by a barycentric map.
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3. GENERAL VARIGNON’S CONSTRUCTIONS FOR POLYGONS

We have already seen that the construction used in Varignon’s theorem is
given by a barycentric map, and we have given other barycentric maps pro-
ducing the same result: a parallelogram as the output figure, whatever the
quadrilateral chosen as input. In this section, devoted to our main results,
we will examine two situations in turn. The first demystifies the emergence
of symmetry in Varignon’s theorem, as we will prove that any figure can
appear in the output, at least when viewed with affine equivalence. The
second, on the other hand, determines all the barycentric maps leading to a
symmetrical output figure. All these results will be considered in the gen-
eral case of polygons, not just quadrilaterals. In this generalized framework,
figures playing the role of parallelograms will be special polygons called p-
grams.

From now, we will only work in a affine plane that we will denote P.

3.1. A few words on affine equivalence.

Different figures in the plane can be considered identical if you forget their
non-essential peculiarities in relation to your problem and instead focus on
the essential commonalities they share for your question. For example, all
non-degenerate triangles can be considered identical or, more precisely, as
avatars of one of them, in the sense that two of them can be exchanged
using an affine transformation. Of course this property does not go on with
a k-gon, k > 4.

Let us be more precise. If k is some fixed positive integer, we will say
that two k-tuples A = (Ay,---,A;) and B = (By,---,By) of PF are
affinely equivalent if there exists an affine transformation g such that for
any ¢ € [1,k], g(4;) = B;. Of course, this property does not depend on the
cyclic order of the points and can therefore be extended to non-degenerate
polygons. We can summarize by the following definition:

Definition 3.1. Two non-degenerate k-gons A1 - -+ A and By - -+ By will be
said affinely equivalent if there exists an affine tranformation g such that

The following proposition gives an easy result on affine equivalence.

Proposition 3.1. Let (A, B,C, D) be a non-degenerate 4-tuple. Then it is
affinely equivalent to (B,C, D, A) if and only if A, B,C, D are the vertices
of a parallelogram.

Proof. Let us assume that (B, C, D, A) is affinely equivalent to (A, B, C, D).

We can work with coordinates in the frame (A; AB, AD) where A(0,0),
B(1,0), D(0,1), C(z0,yo). Using that there exists an affine transformation
g (given here analytically by (z,y) — (ax + by + «, cx + dy + [3)) such that
g(A) = B,g(B) = C,g(C) = D,g(D) = A, one easily gets that xo =yp =1
and so C(1,1). It results that the diagonals [AC] and [BD] have the same
midpoint, namely I(1/2,1/2). Conversely, let us assume that (A4, B, C, D) is
a parallelogram and let us denote I the common midpoint of its diagonals.
Again we can work with coordinates and choose a frame (I; 7,7) such
that A(1,1), B(-1,1), C(—1,—1) and D(1,—1). In this case, the affine
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transformation (given in coordinates), (z,y) + (—y,x) realizes an affine
equivalence between (A, B,C, D) and (B,C, D, A).

It results from this statement that, parallelograms have a symmetry group
of order 8 (in the affine group). More precisely, cyclic vertices permutation
is one of the affine transformations that leaves the parallelogram globally
invariant. It, and its inverse, are special in that the six others are identity
and five affine symmetries (four are axial symmetries and one is a point
reflection). As already mentioned in the introduction these eight elements
form a subgroup of the affine group, which is isomorphic to the dihedral
group Ds.

What about the set of non-degenerate quadrilaterals that we are particu-
larly interested in here? It can be divided into three parts: parallelograms,
non-parallelogram trapezoids and others (general quadrilaterals). All paral-
lelograms are affinely equivalent. Of course, it is not the case for trapezoids.
We will precise this in what follows.

[\ \

F1GURE 3. What trapezoids are affinely equivalent?

Definition 3.2. For a trapezoid, we can define a common algebraic measure
along the parallel sides and so the ratio of the algebraic measures of the
parallel sides. The ratio of the smallest by the largest® will be called the
characteristic invariant of the trapezoid.

Proposition 3.2. Two trapezoids are affinely equivalent if and only if they
have the same characteristic invariant.

Proof. We do not look at the special case of a parallelogram because it is
a obvious equivalence.

The equality of their characteristic invariant is clearly a necessary condi-
tion to their affine equivalence.

Conversely, let ABCD and A’B’C'D’ be two trapezoids which are not
parallelograms. Let us suppose that the parallel sides are (AB) || (C'D) and
(A’B") || (C'D'). Without loss of generality, we can assume that A’ = A,
B’ = B and D’ = D, even if it means using an affine transformation sending
(A, B,D) onto (A’,B’,D'). Because now A’B’ = AB the equality of the
two characteristic invariants gives that D’C’ = DC and so C' = C because
D' =D.

2Even if this ratio is an algebraic quantity that can be positive or negative, these
terms of comparison must be understood in the sense of comparing absolute values. For
a parallelogram, this definition is unambiguous, since for any pair of sides, this ratio is
equal to 1.
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3.2. Non-symmetrical Varignon’s theorem.

The presence of a parallelogram as the output figure in Varignon’s original
theorem conceals a multitude of possibilities and that the parallelogram is
just one of many figures.

Theorem 3.1. Let A1Ay--- A be a fixed non-degenerate k-gon. Then
there exists a barycentric map f such that for any non-degenerate k-gon
PPy - Py, the k-gon defined by the vertices of the k-tuple f(Py, P, -+, Px)
is affinely equivalent to A1As--- Ag.

Proof. The non-degeneracy assumption guarantees that (A;, Ag, Az) is an
affine frame of the plane P. So, for any i € [4, k] there are real numbers
a}, a%, oz? such that ozil + a? + ozf’ =1land 4; = al-lAl + OéZ-QAg + Oé?Ag.

Let us recursively define the barycentric map f : P* — P* by the formulae
f(Pr,---,Py) = (P, -, P]) where the P/ are P| = P;,P) = P»,P; = P3
and for i € [4,k], P! = a} P{+a?Pj+a? P. Because all the considered k-gons
are assumed to be non-degenerate, for any k-gon PP --- Py there is some
g € GA(P) such that g.(Py, P2, P3) = (A1, A2, A3). In this case, because g is
an affine transformation, g.f(Py, Py, -+, Py) = (A1, Ag, -+ , A). It remains
to verify that using this map f : P*¥ — PF, we can construct a map from the
set of k-gons to the set of classes of k-gons modulo the affine equivalence.
Indeed, let us consider the k-cycle ¢ = (12- - - k) € Cf, where Cy denotes the
cyclic group of order k generated by c¢. Then f(c.(Py, P2, - -, Py)) is equal
to (P2, Ps, Py, Py + a3 P34+ o3Py, - ,a} Py + a2 Py + a3 Py). This last one
is not equal to c.f(Py, Pa,--- , P;) but, because of the non-degeneracy as-
sumption, (P, Ps, Py) is an affine frame. It results that it exists ¢ € GA(P)
such that (P, P3, Py) = g/.(Pl, Py, P3) and so finally f(c.(P1, P2, ,Py)) =
g/.f(Pl, PQ, tee ,Pk). Thus f(C.(Pl, PQ, cee ,Pk)) and f(Pl, Pz, cee ,Pk) are
affinely equivalent. So, finally, we get that the k-tuple f(Py,--- , Py) defines
the vertices of a k-gon affinely equivalent to Ay --- Ag.

We have thus obtained a general method for constructing from any non-
degenerate k-gon another that is affinely equivalent to an initially prescribed
k-gon with a given level of symmetry. Let us just note that the barycentric
map given here does not satisfy any cyclic condition.

3.3. Symmetrical Varignon’s theorem.

We are now going to look at a geometric object that generalises the par-
allelogram and is called a p-gram. Among polygons with an even number
of vertices, it can be considered highly symmetrical. It was introduced and
studied in [15] with the following definition:

Definition 3.3. A 2k-gon A; - -+ Agy, is called a p-gram (or a k-p-gram if we
want to precise the number of its sides), if its “opposite sides” are equal in
the sense that for all i € [1,k], AjAit1 = Agsit1Akti, with the convention
that A2k+1 = Al.
Remark 3.1.

(1) For instance a parallelogram is a 2-p-gram?.

3The notion of a parallelogram and, more generally, of a p-gram is invariant to cyclic
permutations of vertices and is therefore well defined on polygons.
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(2) In the definition of [15], a k-p-gram is defined with k distinct vertices.
Here, for the convenience of one of our statements, we will also con-
sider the “degenerate” case where several vertices may be identical.
For example, AABB can be considered a degenerate parallelogram.

(3) The conditions of the previous definition are equivalent to say that
for alli e [[1, k’]], %(Az + Az—i—k) = %(Azqu + Ai—l—l-‘,—k)'

In section 2. we have presented a few barycentric maps which give a
Varignon-type result. A natural problem is to find all the barycentric maps
that would associate a parallelogram to a quadrilateral as Varignon did
with his particular construction. In fact, here, we will deal with a more
general problem by replacing parallelograms by p-grams. Varignon’s theo-
rem will therefore be extended in two ways, firstly by considering p-grams
instead of simple parallelograms, and secondly by searching exhaustively
for all possible sets of weights defining a barycentric map which allows any
non-degenerate 2k-gon to be sent onto a k-p-gram.

Before stating the following theorem, let us point out that the weight
w defining a barycentric map f, : P?* — P2 is given as a 2k-tuple
w = (a;)1<i<or where each «; is itself a 2k-tuple of real numbers, which
we can denote a; = (a}, -+ ,a?¥). Thus, such a weight w can be seen as
a matrix of 2k rows and 2k columns with the condition that the sum of
the coefficients of each column is equal to 1. Moreover, such a weight w
will be said cyclic if the associated barycentric map f,, verifies that for all
A€ P?* f,(c.A) = c.fu(A), where ¢ denotes the 2k-cycle (12---2k) and
for all M = (Ml, cee ,Mgk), c.M = (MQ, cee ,Mgk,Ml).

The following remark will be useful and frequently used throughout this
article.

Remark 3.2. An affine relation satisfied by the image points of a barycen-
tric map fy gives the same relation between the components of w.

Theorem 3.2. Let k be a positive integer.

1. A barycentric map f,, associated to a cyclic-weight w = (o;)1<i<2k
transforms the vertices of any 2k-gon into the vertices of a k-p-gram if and
only if for all i in [1,k — 1], a; + @irp = qip1 + Qir14k-

2. A barycentric map f,, associated to the cyclic weight w = (0y)1<i<2k
transforms the vertices of any 2k-gon into the vertices of a k-p-gram if, and
only if, w = (a,c.a, - , 2 L.a), where ¢ is the 2k-cycle (12---(2k)), and
a belongs to the k-parameters family VW defined as

1 1
W {(tla 7tk7 L t17 7k tk) ) (tly 7tk) € }

Proof.
1. Let us first prove that these conditions are necessary. Let f,, be a

barycentric map with weight w = (;)1<i<2k. Let us put o; = (a}, i ,a?k)

with Z?il af =1. If Ay --- Ag; is a non-degenerate 2k-gon, we will denote
Al -+ AL, its image by the map f,,. We want A] --- A%, to be a p-gram for
any choice of the input 2k-gon A; - - - Ao, Thus, we must satisfy, according

the equalities of the third point of remark 3.1, the equalities

. 1 1
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where A} = Z?il alA;, and so

i
L2k L2k '
Vi e [1,k—1], B Z(O‘g +ay )4 = 5 Z(O‘ngl + o)A
j=1 =1

Thanks to the non-degeneracy assumption made on our polygons, these
equalities are in fact valid more generally for any 2k-tuples. This allows
us to identify the coefficients in both members of these equalities using the
following easy-to-check uniqueness lemma:

Lemma 3.1. Leta = (a1, ,ap) and 8 = (B1,- -, Bn) two n-tuples of real
numbers such that > ¢, a; =y iy Bi = 1. If for any n-tuples (Py,--- , Py)
n n

of points of the plane we have the equality Z o P = Z B;P; then o = .
i=1 i=1

Conversely, if these conditions on the weights are satisfied, we can verify
that the image of any 2k-gon by such a barycentric map is a k-p-gram,
possibly degenerate in the sense of the second point of remark 3.1. Note
that these algebraic relations are exactly the same as those satisfied by the
vertices of the target image, as already pointed out in the remark 3.2.

2. The cyclicity condition on f,, means that the matrix (o)1<; j<ok
satisfies the following relations:

o - .
V(’L,]) € [[172k]]27 0[17 = 0154_1,

with the usual convention of circular identification of indices. These relations
imply that if the first row is given, the other ones are obtained by cyclic
permution of it. So, if we denote a; = (a1,--- ,ag;) this first row, the

property of the first claim of this theorem implies the equalities:
a1 + a4k = a2 + a4 = - = a + A2-

Now, because of the normalization conditions of weights, the sum of the
elements of each row (and now column) is equal to 1, so when we sum the
k previous equal terms we must get 1 and so each of them is equal to 1/k.
Thus, we can take the k first entries of a; as free parameters and get the k
last ones as indicated in the statement.

Corollary 3.1. A family of Varignon’s theorems

(1) In the case k = 2, we obtain all the barycentric maps that transform
any quadrilateral into a parallelogram. Precisely, they are the maps
fuw with w = (a1, a2, a3, aq) such that a1 + az = ag + ay.

(2) Moreover, if w is supposed cyclic, its components are the 4-tuples
(s,t,1/2 —s,1/2 —1t), (t,1/2 —s,1/2 —t,s), (1/2—s,1/2 —t,s,1),
(1/2 —t,s,t,1/2 — s), where s and t are arbitrary real numbers.

Remark 3.3. Among this family, we can find the three examples of section
2, in particular the original Varignon’s theorem. Moreover, as in Varignon’s
result, initial quadrilateral and associated parallelogram have the same cen-
troid. More generally, this last property is also true for any construction
given in clatm 2. theorem 3.2.
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As

Aj

FiGURE 4. Illustration of theorem 3.2 and corollary 3.1 re-
spectively for weights (1/2,—1/3,1/4,—1/6,2/3,1/12) and
(—1/2,1/3,1,1/6).

Taking t; = --- =t = 1/k, we obtain a corollary which is nothing else
than Theorem 3 in [15]:

Corollary 3.2. The set of centroids of consecutive k-tuples of vertices of a
2k-gon is a k-p-gram.

Ficure 5. Illustration of corollary 3.2 in the case k = 4,
where the A} are cyclically the centroids of four consecutive
vertices.

4. CYCLIC BARYCENTRIC MAPS FOR AFFINE REGULAR POLYGONS

In this last section, we deal with regular polygons. The standard notion
of regular polygon is a Euclidean one, since it concerns lengths and angles,
and therefore has nothing to do with our subject. Nevertheless, we are now
going to define an affine notion of regularity, which we will be working with
here.

4.1. What is a regular polygon in affine context?

Theorem and definition 4.1. Let A;...A, be a non-degenerate polygon
with n vertices. The two following assertions are equivalent:

(1) It exists an affine transformation g of the plane such that for all
i € [1,n], g(A;) = Ait1, with the convention A,y1 = Ay. In other
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words, the cyclic action on the wvertices is realizable by an affine
transformation.

(2) It exists an affine transformation ¢ of the plane such that the polygon
©(A1) - p(Ay) is a regular euclidean polygon.

A polygon verifying one of these equivalent properties will be called an affine
regular polygon.

Proof.

(1. = 2.) Let g be such an affine transformation. Then the centroid
of the polygon is a fixed point of g. So we can treat our problem as if g
were a plane linear transformation of order n. Let us denote M its ma-
trix in fixed vectorial basis. Then M is similar to one of the three types
(3 2), <E)\ /1\>, <ZZ?§3 _;)pcf)lsn;) , where A, u, 6 are real numbers
and p > 0. The conditions M"™ = I, and n > 3 imply that the only possible
case is that M is similar to a matrix of third type with p =1 and 6 = 2p7/n
with p an integer relatively prime to n. This leads to property 2.

(2. = 1.) Let r be a rotation of angle 2pxr/n, with p relatively prime
with n. If ¢ satisfies property 2, then the affine transformation g defined by

g = ¢ ' oro satisfies property 1.

A
5 A

A6 Ag

Ay As
FIGURE 6. A regular 3-p-gram.

Proposition 4.1. The three following properties are equivalent for any 3-
p-gram A1 A A3AyAsAg:
(1) It is affinely regular.
(2) Each of its diagonals [A1A4], [A245], [A3A¢] is parallel to the two
non-adjacent sides.
(3) A1As = AsAy = L AgAs, AyAsz = AgAs = $A1AL, AsAy = A1 Ag =
17
5A2As.

This result is easy to prove. We can remark that, in its claim 2, as soon
as the condition is met for two of these diagonals, it is also met for the third.

All regular 3-p-grams are affinely equivalent, but without the regularity
condition this is no longer true.

Indeed, let A1 A3 A3A4A5Ag and BBy B3 By BsBg be two 3-p-grams such
that A1AsA3As and B1ByB3B4 are trapezoids. If these two trapezoids
are not affinely equivalent?, then the two 3-p-grams A;AsAzA4AsAg and
B1BsB3B,BsBg cannot be affinely equivalent.

4We leave it to the reader to construct examples of such situations.
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Regular 3-p-grams are to 6-gons what parallelograms are to quadrilaterals:
the most symmetrical of them.

Corollary 4.1. The output 3-p-gram associated to a cyclic barycentric con-
struction of the type described by claim 2 theorem 3.2 is regular if and only
ifty —tyg +t3 = %
Proof.

Let A1 AyA3A4A5Ae be any non-degenerate 6-gon and A A5 AL A) AL Aj
the output 3-p-gram. Following Theorem 3.2 we can write

1 1 1
Al =t Ay +taAs +t3A3 + <3 — t1> Ay + <3 - tz) As + <3 - t3) Ag,

and the other points A}, A, A}, AL, Ay follow the same formulae obtained

cyclically. The necessary and sufficient condition for which A} A5 A3 A} A5 Ay
is regular is given by the equalities A’lA/ = 2AgAg and AgAg = 2A’1Aé.
The non-degeneracy condition allowing to identify coefficient in the two
members, we get easily the announced condition.

Let us consider a regular 3-p-gram as the image by an affine transfor-
mation of a FEuclidean regular hexagon A;--- Ag. In this case, it is easy
to verify that for k = 4,5,6, A = Ap_3 — 24, o+ 2A;_1. Since an affine
transformation preserves the barycentre, these relationships are also true
for our initial 3-p-gram. Using the remark 3.2, we obtain the announced
relationships.

Among all the solutions of the previous corollary, we can find a geometric
construction by choosing t; = 1/6, to = t3 = 1/3 for which the correspond-
ing weight is (1/6,1/3,1/3,1/6,0,0). Geometrically, it means taking the
midpoint of diagonal [A;A4] as I; and the centroid of the triangle I; A3 A3
as A]. This construction is then repeated cyclically to obtain other points

5, A5, Al AL and Af. We emphasize that this construction is the perfect
counterpart to Varignon’s, here for hexagons. The following figure illustrates
this construction.

FiGure 7. Illustration of the geometric construction de-
scribed above.

4.2. Extension to affine regular {n/p}-star polygons.

In this subsection we will give cyclic barycentric maps that send any n-
gon to a regular {n/p}-star polygon, where p is a fixed integer relatively
prime with n.
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A regular {n/p}-star polygon A;As--- A, is defined recursively by

Vk € [4,n], Ax = Ap—3 — wAg_o + wAg_1, where w =1+ 2cos <2Zp> )
This choice of w allows that the polygon closes.

Then if f is a cyclic barycentric map defined by a weight o« = (t1,- - ,t,),
the lemma 3.1 allows us to obtain that the real numbers ¢, satisfy for all
k€ [4,n], tx = tx—3 — wtp_o +wtx_1, which, in accordance with the remark
3.2, are exactly the same as those verified by the vertices.

We now need to solve this linear difference equation of ordre three. By
introducing its characteristic equation 73 —wr? +wr —1 = 0, whose roots are
1,e¥, e " where § = 27p /n, we know that ¢ is a complex linear combination
of the k-th powers of these roots, or, because here the t; are real numbers,
a real linear combination of 1,cos(kf),sin(kf). There are therefore real
numbers a, b, ¢ such that for all k, t;, = a+bcos(kf)+csin(k6). But let us not
forget that the sum of ¢, is equal to 1, which leads to the condition a = 1/n
because the sum of the cosines (and also the sum of the sines) is zero. Thus,
we have a 2-parameters family of solutions given by the previous equality.
Note that by adding ¢; and tx,o and using the trigonometric formulae for
the sum of two cosines and two sines, we obtain:

tk + tgyo = % + 2bcos ((k +1)0) cos @ + 2¢sin ((k + 1)0) cos 6.

and so, ty + tgro = % +2 (tk+1 — %) cosf = %(1 —cos0) + 2ty4q cosb.

So we get the recursion relation tjo—2tj11 cos 0+t = 2(1—cosf) which
contains special cases that we have already found, such as for parallelograms
(t1+t3 = 1/2) or, in the Corollary 4.1, for 3-p-regular grams (t; —ta+t3 = %).

FIGURE 8. A pentagon and an heptagon and their images
(respectively a {5/2}-star regular pentagon and a regular
heptagon) under a cyclic barycentric map.
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