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SIX DIVISIONS OF THE SIDES AND
DIAGONALS OF A QUADRILATERAL BY

CIRCLES THAT FORM PASCAL POINTS, AND
THEIR REPRESENTATION BY CIRCLE

CENTERS

David Fraivert

Abstract. Each circle that forms Pascal points intersects one pair of
opposite sides of a quadrilateral at two points and forms Pascal points on the
other pair of sides. In addition, it intersects the extensions of the diagonals
at two points. These six points divide the four sides of the quadrilateral
(internally) and its diagonals (externally). In this paper, we show that
these six divisions are equivalent to the divisions of the six fixed segments
(which depend only on the quadrilateral) using the center of the circle that
forms the Pascal points. To this end, we extend the notion of a “circle that
forms Pascal points on the sides of a quadrilateral” to include also circles
that do not intersect a pair of opposite sides at interior points. We then
establish an equality among the seven ratios defined using three circles that
form Pascal points.

1. Introduction

The theory of a convex quadrilateral and a circle that forms Pascal points
on its sides is a relatively new topic in Euclidean geometry (see [1], [2], [3],
[4], [5], [6] , [7]). Therefore, we begin by recalling the definitions of Pascal
points and a circle that forms Pascal points on the sides of a quadrilateral.
All definitions and properties are illustrated using dynamic GeoGebra ap-
plets.

A circle that forms Pascal points (see [1]).
For a convex quadrilateral ABCD in which E is the point of intersection of
the diagonals and F is the point of intersection of the extensions of sides BC
and AD. A circle that forms Pascal points is defined as any circle passing
through points E and F , as well as through interior points of sides BC and
AD (see Figure 1)

Pascal points on the sides of the quadrilateral (see [1]).
Let ωi be a circle that forms Pascal points, and let Mi = ωi ∩ [BC],
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Figure 1: The circle ωi passes through
points E and F and intersects sides
BC and AD at interior pointsMi and
Ni, respectively.

Figure 2: Pi and Qi are Pascal points
formed by the circle ωi on the sides
AB and CD.

Ni = ωi ∩ [AD]. Let Ki and Li be the points where ωi intersects the exten-
sions of diagonals BD and AC, respectively. We denote Pi = KiNi ∩ LiMi

and Qi = KiMi ∩ LiNi (see Figure 2).
In this case, the following property holds:

Property 1. Pi ∈ [AB], Qi ∈ [CD].

The proof of this property is based on the application of the general Pascal
theorem (see [1, Theorem 1]). Therefore, the points Pi and Qi are called
Pascal points formed by the circle ωi on the sides AB and CD.

The following applet allows you to move the circle ωi (by dragging its center
Oi or by clicking the Move Circle ωi button) and to observe that Property
1 holds for every valid position of ωi.
https://www.geogebra.org/m/xwvrs9wp

2. Extension of the Notion of a “Circle that Forms Pascal
Points”

Until now, we have considered circles that pass through interior points of
the sides BC and AD of the quadrilateral. As a result, the corresponding
Pascal points formed by these circles lie on the sides AB and CD.
If we extend the definition of Pascal points to include points lying on the
lines AB and CD (and not necessarily on the sides themselves), the notion
of a circle that forms Pascal points can be extended as follows:

https://www.geogebra.org/m/xwvrs9wp
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Definition 2.1. Let ABCD be a quadrilateral in which E is the point of
intersection of the diagonals and F is the point of intersection of the exten-
sions of sides BC and AD. A circle that forms Pascal points is any circle
passing through points E and F .

In this case, the Pascal points are defined as follows:

Definition 2.2. Let ωi be a circle that forms Pascal points, and let Mi and
Ni be the points of intersection of ωi with the lines BC and AD, respectively
(distinct from the point F ). Let Ki and Li be the intersection points of ωi

with the lines BD and AC, respectively (distinct from the point E). We
denote Pi = KiNi ∩ LiMi and Qi = KiMi ∩ LiNi (see Figure 3).
The points Pi and Qi are called the Pascal points formed by the circle ωi.

Figure 3: The points Mi, Ni, Ki and Li lie on the lines BC,
AD, BD and AC, respectively.

For these extended definitions, a property similar to Property 1 holds.

Property 2. Let Pi and Qi be Pascal points formed by the circle ωi. Then
Pi ∈ AB, Qi ∈ CD (see Figure 3).

This theorem states that the points Pi and Qi lie on the lines AB and
CD (not necessarily on the sides themselves). Its proof is simpler than that
of Property 1 and follows directly from Pascal’s theorem.

Proof. The points E, F , Mi, Ni, Ki, and Li lie on the same circle. We will
consider them as the vertices of the hexagon EKiNiFMiLi. Each of the
three pairs of lines: ELi and FNi, LiMi and KiNi, FMi and EKi, passes
through a pair of opposite sides of the hexagon (see Figure 4(a)).
Therefore, according to Pascal’s theorem, the three points of intersection
of these pairs (the points A, P , and B respectively) lie on a straight line.
Hence, point P lies on the line AB.
Similarly, if we consider the same six points as the vertices of the hexagon
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(a) The points A = ELi ∩ FNi, B = FMi ∩
EKi, and Pi = LiMi ∩KiNi lie on the same
straight line.

(b) The points C = ELi ∩ FMi,
D = EKi ∩ FNi, and Qi =
KiMi ∩ NiLi lie on the same
straight line.

Figure 4

EKiMiFNiLi, then by Pascal’s theorem, the three points of intersection
of the lines ELi and FMi, LiNi and KiMi, FNi and EKi lie on a single
straight line.
The three points of intersection of these pairs of lines are C, Q, and D, re-
spectively. Therefore, the point Q lies on the line CD (see Figure 4(b)) □.

For any given convex quadrilateral (that is not a parallelogram) and three
circles forming Pascal points, the following theorem holds:

Theorem 2.1. Let ABCD be a convex quadrilateral in which E is the
intersection point of the diagonals, and F is the intersection point of the
extensions of sides AD and BC. Let ω1, ω2, and ω3 be three circles with
centers O1, O2, and O3, respectively, passing through the points E and F .
Let M1, M2, M3 and N1, N2, N3 be the points where these circles intersect
the lines BC and AD, respectively, and let P1, P2, P3 and Q1, Q2, Q3 be the
Pascal points formed by these circles on the lines AB and CD, respectively
(see Figure 5). Then the following equality of segment ratios holds:

(1)
O1O2

O2O3
=

P1P2

P2P3
=

Q1Q2

Q2Q3
=

M1M2

M2M3
=

N1N2

N2N3
=

K1K2

K2K3
=

L1L2

L2L3

The following applet allows you to move the circles ω1, ω2, and ω3 (either
by dragging their centers O1, O2, and O3, or by clicking the appropriate
buttons), and to observe that Theorem 2.1 holds for every valid position of
the circles. https://www.geogebra.org/m/qkgdpw4p

Proof. We make use of the following lemma.

Lemma 2.1. Let Ω1 and Ω2 be two circles that intersect at points X and
Y . Let line x pass through point X and intersect Ω1 at point R and Ω2 at
point S. Similarly, let line y pass through point Y and intersect Ω1 at point
T and Ω2 at point U . Then the lines RT and SU are parallel.

https://www.geogebra.org/m/qkgdpw4p
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Figure 5: Three circles that form Pascal points, their centers,
and six points (M , N , K, L, P , Q) determined using each of
the circles.

Proof of Lemma. We consider three possible configurations of the points
R, S, T , and U with respect to the line XY :

(i) Points R and T lie on one side of the line XY , and points S and U lie
on the other side (see Figure 6(a)).

(ii) All four points lie on the same side of the line XY (see Figure 6(b)).
(iii) Points R and S lie on one side of the line XY , and points T and U lie

on the other side (see Figure 6(c)).

(a) (b) (c)

Figure 6: In all three cases, RT ∥ US holds

In all three cases, the angles ∠XRT = α and ∠XSU = β are equal to the
angle ∠XTU = γ, hence α = β. Therefore, RT ∥ SU . □

We proceed to the proof of Theorem 2.1, making use of Lemma 2.1.
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We begin by considering the circles ω1 and ω2, which intersect at points
E and F . The lines EA and FA pass through these points (see Figure 7).
The line EA intersects ω1 at L1 and ω2 at L2, while the line FA intersects
ω1 at N1 and ω2 at N2. Therefore, by Lemma 2.1 (specifically, case (ii) in
its proof, where the four points L1, L2, N1, and N2 lie on the same side of
the line EF ), we have:

(2) L1N1 ∥ L2N2

Figure 7: L1N1 ∥ L2N2, K1M1 ∥ K2M2, K1N1 ∥ K2N2, and
L1M1 ∥ L2M2.

Similarly, the lines EB and FB also pass through the points E and F .
The line EB intersects ω1 at point K1 and ω2 at point K2. The line FB
intersects ω1 at point M1 and ω2 at point M2. In addition, all four points
K1, K2, M1, and M2 lie on the same side of the line EF . Therefore, we
have:

(3) K1M1 ∥ K2M2

For the lines EB and FA, the following holds: the line EB intersects ω1

at point K1 and ω2 at point K2, and the line FA intersects ω1 at point N1

and ω2 at point N2. The points K1 and K2 lie on one side of the line EF ,
and the points N1 and N2 lie on the other side. Therefore, according to
case (iii) of Lemma 2.1, we have:

(4) K1N1 ∥ K2N2

Finally, for the lines FB and EA, the following holds: the line FB inter-
sects ω1 at point M1 and ω2 at point M2, and the line EA intersects ω1 at
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point L1 and ω2 at point L2. The points M1 and M2 lie on one side of the
line EF , and the points L1 and L2 lie on the other side. Therefore, by case
(iii) in the proof of Lemma 2.1, we have:

(5) L1M1 ∥ L2M2

Figure 8: L2N2 ∥ L3N3, K2M2 ∥ K3M3, K2N2 ∥ K3N3,
and L2M2 ∥ L3M3.

We now turn to the circles ω2 and ω3. These circles also intersect at
points E and F . The line EA intersects ω2 at L2 and ω3 at L3, while the
line FA intersects ω2 at N2 and ω3 at N3 (see Figure 8). All four of these
points lie on the same side of the line EF . Therefore,

(6) L2N2 ∥ L3N3

Similarly, for the lines EB and FB intersecting the circles ω2 and ω3 at
points K2 and K3, M2 and M3, respectively, we have:

(7) K2M2 ∥ K3M3

For the lines EB and FA intersecting the circles ω2 and ω3 at points K2

and K3, and N2 and N3, respectively, we have (see Figure 8):

(8) K2N2 ∥ K3N3

Finally, for the lines FB and EA intersecting the circles ω2 and ω3 at
points M2 and M3, L2 and L3, respectively, we have:

(9) L2M2 ∥ L3M3

From statements (2) and (6), it follows that the three lines L1N1, L2N2,
and L3N3 are parallel to each other. In addition, they intersect the sides
DF and DC of the angle FDC at the points N1, N2, N3 and Q1, Q2, Q3,
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respectively. Therefore, according to an extension of Thales’s theorem, we
have:

(10)
N1N2

N2N3
=

Q1Q2

Q2Q3

From statements (3) and (7), it follows that the three lines K1M1, K2M2,
and K3M3 are parallel to each other. These lines intersect the sides CD
and CA of the angle DCA at the points Q1, Q2, Q3 and M1, M2, M3,
respectively. Therefore, we have:

(11)
Q1Q2

Q2Q3
=

M1M2

M2M3

From statements (4) and (8), it follows that the three lines K1N1, K2N2,
and K3N3 are parallel to each other. These lines intersect the lines AB and
AD at the points P1, P2, P3 and N1, N2, N3, respectively (see Figure 5).
Therefore, according to an extension of Thales’s theorem, we have:

(12)
N1N2

N2N3
=

P1P2

P2P3

In addition, these three parallel lines intersect the sides of the angle ADB
at the points N1, N2, N3 (on side DA) and K1, K2, K3 (on side DB).
Therefore, we have:

(13)
N1N2

N2N3
=

K1K2

K2K3

From statements (5) and (9), it follows that the three lines L1M1, L2M2,
and L3M3 are parallel to each other. These lines intersect the sides CA and
CF of the angle ACF at the points L1, L2, L3 andM1, M2, M3, respectively.
Therefore, we have:

(14)
L1L2

L2L3
=

M1M2

M2M3

From the equalities (10)–(14), it follows that:

(15)
P1P2

P2P3
=

Q1Q2

Q2Q3
=

M1M2

M2M3
=

N1N2

N2N3
=

K1K2

K2K3
=

L1L2

L2L3

It remains to prove that the ratio
O1O2

O2O3
is also equal to the ratios from

(15). For this, it is sufficient to prove that this ratio is equal to one of the

ratios from (15). We will show that:
O1O2

O2O3
=

Q1Q2

Q2Q3
Let us first prove the following lemma:

Lemma 2.2. Let ωi be an arbitrary circle forming the Pascal points Pi

and Qi on the lines AB and CD, respectively, and let OωC and OωD be
the centers of the circles passing through the points C, E, F and D, E,
F , respectively (see Figure 9). Then the center Oi of the circle ωi divides
the segment OωCOωD in the same ratio as the Pascal point Qi divides the

segment CD; that is, the proportion
OωCOi

OiOωD

=
CQi

QiD
holds.
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Figure 9: The six points E, Mi, Ki, F , Li, and Ni lie on
the unit circle ωi. The circle ωC (with center OωC ) passes
through the points E, F , and C. The circle ωD (with center
OωD) passes through the points E, F , and D.

Proof of Lemma. We will use the method of complex numbers in plane
geometry.
We choose a system of coordinates so that circle ωi is the unit circle (the
center Oi of circle ωi is located at the origin, and the radius is OiE = 1).
In this system, the equation of the unit circle is z · z = 1, where z is the
complex coordinate of an arbitrary point Z located on circle ωi, and z is the
complex conjugate of z.
We denote the complex coordinates of points E, F , Ki, Li, Mi, and Ni as
e, f , k, l, m, and n, respectively. These points are located on the unit circle

ωi (see Figure 9), and therefore there holds: e =
1

e
, f =

1

f
, k =

1

k
, l =

1

l
,

m =
1

m
, n =

1

n
.

We use the following property (see [8, pp. 157–158]): Let T (t), R(r), V (v),
and W (w) be four points on the unit circle, and let U(u) be the point of
intersection of straight lines TR and VW (see Figure 10). Then for the
coordinate u and its conjugate u, there holds:

(16) u =
t+ r − v − w

tr − vw
and

(17) u =
rvw + tvw − trw − trv

vw − tr

The points C, D, and Q are the points of intersection of the lines FMi and
ELi, FNi and EKi, and KiMi and LiNi, respectively. Therefore, according
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Figure 10: The points T , R, V , and W lie on the unit circle.
The lines TR and VW intersect at point U .

to formulas (16) and (17), these points have the following complex coordi-
nates (and their complex conjugate numbers):

c =
f +m− e− l

fm− el
and c =

eml + efl − fml − efm

el − fm
,

d =
f + n− e− k

fn− ek
and d =

enk + efk − fnk − efn

ek − fn
,

q =
m+ k − n− l

mk − nl
and q =

kln+ lmn− klm− kmn

nl −mk
.

Let UZ be the perpendicular bisector of the segment VW , where U is the
midpoint of the segment and Z is an arbitrary point on the perpendicular
bisector. Then the equation of the perpendicular bisector is:

z =
v − w

v − w
· z + 1

2

(
(w + v) + (w + v) · w − v

w − v

)
.

For the perpendicular bisector of the segment EF , we obtain the following

equation: z =
e− f

f − e
· z + 1

2

(
(f + e) + (f + e) · f − e

f − e

)
.

From this, z =

1

e
− 1

f

f − e
· z + 1

2

(
1

f
+

1

e
) + (f + e) ·

1

f
− 1

e

f − e︸ ︷︷ ︸
=0

.

And finally,

(18) z =
1

ef
· z

For the perpendicular bisector of the segment EC, we obtain the following
equation:

(19) z = −c− e

c− e
· z + 1

2

(
(c+ e) + (c+ e) · c− e

c− e

)
We substitute into this equation (step by step) the expressions for the vari-
ables e, c, and c, and obtain:

c+ e =
f +m− e− l

fm− el
+

1

e
=

ef + em− e2 − 2el + fm

e(fm− el)
,

c+ e =
eml + efl − fml − efm

el − fm
+ e =

eml + efl − fml − 2efm+ e2l

el − fm
,

c− e

c− e
=

f +m− e− l

fm− el
− 1

e
eml + efl − fml − efm

el − fm
− e

=

ef + em− e2 − fm

e(fm− el)

eml + efl − fml − e2l

el − fm
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=
−(ef + em− e2 − fm)

el(em+ ef − fm− e2)
= − 1

el
.

Therefore, the equation of the perpendicular bisector of the segment EC
takes the following form:

z =
1

el
·z+1

2

(
ef + en− e2 − 2el + fn

e(fn− el)
− enl + efl − fnl − 2efn+ e2l

el − fn
· 1

el

)
.

Or, after simplifications

(20) z =
1

el
· z + (l −m)(f − l)

l(fm− el)
The solution of the system of (18) and (20) gives us the complex coordinate

of the point OωC :
1

ef
·z =

1

el
·z+ (l −m)(f − l)

l(fm− el)
. Therefore, for the complex

coordinate oωC we obtain z = oωC =

(l −m)(f − l)

l(fm− el)
1

ef
− 1

el

=
(m− l)ef

fm− el
.

Hence, the number oωC , which is the conjugate of the coordinate oωC , is:

oωC =
m− l

fm− el
.

Similarly, for the point OωD (the intersection point of the perpendicular

bisectors of the segments EF and ED), we obtain oωD =
(n− k)ef

fn− ek
.

Hence, for the conjugate number oωD , we get: oωD =
n− k

fn− ek
.

Let λOi denote the ratio
OωCOi

OiOωD

between the lengths of the segments

connecting the centers of the circles ωi and ωC , and ωi and ωD. Using
complex coordinates, this ratio is expressed as:

λOi =
0− oωC

oωD − 0
= −oωC

oωD

= −

(m− l)ef

fm− el
(n− k)ef

fn− ek

=
(m− l)(fn− ek)

(k − n)(fm− el)
,

where λOi = λOi .

That is, λOi =
OωCOi

OiOωD

=
(m− l)(fn− ek)

(k − n)(fm− el)
.

Let λQi denote the ratio of the lengths of the segments
CQi

QiD
. Using

complex coordinates, this ratio can be expressed as: λQi =
q − c

p− q
, where

λQi = λQi is a real number. Hence:

λQi = λQi =
q − c

d− q
=

m+ k − n− l

mk − nl
− f +m− e− l

fm− el
f + n− e− k

fn− ek
− m+ k − n− l

mk − nl

=
((m+ k − n− l)(fm− el)− (f +m− e− l)(mk − nl)) (fn− ek)

((f + n− e− k)(mk − nl)− (m+ k − n− l)(fn− ek)) (fm− el)

=
(fn− fm+mk − ek − nl + el)(m− l)(fn− ek)

(fn− fm+mk − ek − nl + el)(k − n)(fm− el)
=

(m− l)(fn− ek)

(k − n)(fm− el)
.
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We obtain λQi =
CQi

QiD
=

(m− l)(fn− ek)

(k − n)(fm− el)
.

By comparing λOi and λQi , we get: λOi = λQi , and therefore:
CQi

QiD
=

OωCOi

OiOωD

. Thus, we have proved Lemma 2.2.

According to Lemma 2.2, for the three circles ω1, ω2, and ω3 (see Figure
11), the following three proportions hold:
CQ1

Q1D
=

OωCO1

O1OωD

,
CQ2

Q2D
=

OωCO2

O2OωD

and
CQ3

Q3D
=

OωCO3

O3OωD

.

We add the following auxiliary constructions (see Figure 11):

Figure 11: CX1 = OωCO1, CX2 = OωCO2, CX3 = OωCO3,

CX4 = OωCOωD and
Q1Q2

Q2Q3
=

O1O2

O2O3
.

We draw an arbitrary ray CZ and mark four points on it, X1, X2, X3,
and X4, such that:
CX1 = OωCO1, CX2 = OωCO2, CX3 = OωCO3, and CX4 = OωCOωD .
Therefore, the following proportions also hold:
CQ1

Q1D
=

CX1

X1X4
,
CQ2

Q2D
=

CX2

X2X4
and

CQ3

Q3D
=

CX3

X3X4
.

Through the points Q1 and X1, Q2 and X2, Q3 and X3, and D and X4,
we draw four lines. According to the converse of Thales’ theorem, from the
previous proportions it follows that each of the lines Q1X1, Q2X2, and Q3X3

is parallel to the line DX4.
Therefore, we have: Q1X1 ∥ Q2X2 ∥ Q3X3.

Hence, by Thales’ theorem, it follows that:
Q1Q2

Q2Q3
=

X1X2

X2X3
. From the last

proportion and from the fact that X1X2 = O1O2 and X2X3 = O2O3, we

get:
Q1Q2

Q2Q3
=

O1O2

O2O3
. □
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3. Divisions of the sides and diagonals of the quadrilateral
and the representation of these divisions using the centers

of the circles

In the following theorem, we consider again the circle ωi, which forms
the Pascal points on the sides of the quadrilateral, and establish an equality
between the partition of six fixed segments by the center Oi of the circle
ωi and the partition of the sides and diagonals of the quadrilateral by six
points determined via ωi.

Theorem 3.1. Let ABCD be a convex quadrilateral in which E is the
intersection point of the diagonals, and F is the intersection point of the
extensions of sides AD and BC. Let ωi be an arbitrary circle with center
Oi that forms the Pascal points Pi and Qi on the sides AB and CD (rather
than on their extensions). Let Mi, Ni, Ki, and Li be the points where ωi

intersects the sides BC and AD, and the extensions of the diagonals BD
and AC, respectively. Let us denote:
OωA – the center of the circle ωA passing through the points E, F , and A;
OωB – the center of the circle ωB passing through the points E, F , and B;
OωC – the center of the circle ωC passing through the points E, F , and C;
OωD – the center of the circle ωD passing through the points E, F , and D.
Then the following equalities hold:

3.1.1.
APi

PiB
=

OωAOi

OiOωB

3.1.2.
BMi

MiC
=

OωBOi

OiOωC

3.1.3.
CQi

QiD
=

OωCOi

OiOωD

3.1.4.
DNi

NiA
=

OωDOi

OiOωA

3.1.5.
BKi

KiD
=

OωBOi

OiOωD

3.1.6.
ALi

LiC
=

OωAOi

OiOωC

The following applet allows you to move the circle ωi and to observe that
Theorem 3.1 holds for every valid position of ωi.
https://www.geogebra.org/m/qprb7gsr

Note: We formulated Theorem 3.1 for a circle that forms Pascal points
on the sides of the quadrilateral, since for such circles, equalities (1)–(4) of
Theorem 3.1 describe the internal divisions of the sides of the quadrilateral.
However, an analogous theorem can also be formulated for a circle that
forms Pascal points according to the more general Definition 2.1. In this
case, each of the six divisions can be either internal or external. The proof
of the more general theorem is identical to the proof presented below.

Proof. According to the statement of the theorem, all four circles ωA, ωB,
ωC , and ωD pass through the points E and F , and therefore, by Definition

https://www.geogebra.org/m/qprb7gsr
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2.1, they are circles that form Pascal points (not necessarily on the sides of
the quadrilateral).

(a) The circle ωA

passes through
the points E, F ,
and A. Therefore,
NωA

= LωA
= A.

(b) The circle
ωB passes
through the
points E, F ,
and B. There-
fore, MωB

=
KωB

= B.

(c) The circle ωC

passes through
the points E, F ,
and C. Therefore,
MωC

= LωC
= C.

(d) The circle ωD

passes through
the points E, F ,
and D. Therefore,
NωD

= KωD
= D.

Figure 12

Let MωA and NωA be the intersection points of the circle ωA with the lines
BC and AD, respectively (distinct from point F ). Let KωA and LωA be the
intersection points of the circle ωA with the lines BD and AC, respectively
(distinct from point E). Let PωA and QωA be the Pascal points formed by
ωA on the lines AB and CD.
The circle ωA intersects the line AD at the points NωA , A, and F . The point
F lies on the extension of the side AD, and therefore F ̸= A. Additionally,
by the definition of NωA , we have F ̸= NωA . Therefore, it necessarily follows
that (see Figure 12(a))

(21) NωA = A

The circle ωA intersects the line AC at the points LωA , A, and E. The
point E is the intersection point of the diagonals of the quadrilateral, and
therefore E ̸= A. Additionally, by the definition of LωA , we have E ̸= LωA .
It necessarily follows that

(22) LωA = A

According to Definition 2.2, for the Pascal point PωA , the following holds:
PωA = KωANωA ∩ LωAMωA = KωAA ∩AMωA = A. That is,

(23) PωA = A

Let MωB and NωB be the intersection points of the circle ωB with the lines
BC and AD, respectively (distinct from point F ). Let KωB and LωB be the
intersection points of the circle ωB with the lines BD and AC, respectively
(distinct from point E). Let PωB and QωB be the Pascal points formed by
ωB on the lines AB and CD.
The circle ωB intersects the lineBC at the pointsMωB , B, and F . Therefore,
it necessarily follows that (see Figure 12(b))

(24) MωB = B
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The circle ωB intersects the line BD at the pointsKωB , B, and E. Therefore,
it necessarily follows that

(25) KωB = B

For the Pascal point PωB , the following holds:
PωB = KωBNωB ∩ LωBMωB = BNωB ∩ LωBB = B. That is,

(26) PωB = B

Let MωC and NωC be the intersection points of the circle ωC with the lines
BC and AD, respectively (distinct from point F ). Let KωC and LωC be the
intersection points of the circle ωC with the lines BD and AC, respectively
(distinct from point E).
The circle ωC intersects the line BC at the pointsMωC , C, and F . Therefore,
it necessarily follows that (see Figure 12(c))

(27) MωC = C

The circle ωC intersects the line AC at the points LωC , C, and E. Therefore,
it necessarily follows that

(28) LωC = C

Finally, let MωD and NωD be the intersection points of the circle ωD with
the lines BC and AD, respectively (distinct from point F ). Let KωD and
LωD be the intersection points of the circle ωD with the lines BD and AC,
respectively (distinct from point E).
The circle ωD intersects the line AD at the pointsNωD , D, and F . Therefore,
it necessarily follows that (see Figure 12(d))

(29) NωD = D

The circle ωD intersects the line BD at the points KωD , D, and E. There-
fore, it necessarily follows that

(30) KωD = D

We now proceed to the proof of the six equalities stated in the theorem.
According to equality (1) in Theorem 2.1, the following holds:
P1P2

P2P3
=

O1O2

O2O3
. We choose the three circles as follows: ω1 = ωA, ω2 = ωi,

ω3 = ωB, and we obtain:
PωAPi

PiPωB

=
OωAOi

OiOωB

.

It follows from equalities (23) and (26) that:
APi

PiB
=

OωAOi

OiOωB

.

We have proved part 3.1.1 of Theorem 3.1.

To prove part 3.1.2, we use the equality
M1M2

M2M3
=

O1O2

O2O3
(see equality (1)).

We choose ω1 = ωB, ω2 = ωi, and ω3 = ωC , and obtain:
MωBMi

MiMωC

=
OωBOi

OiOωC

.

It then follows from equalities (24) and (27) that:
BMi

MiC
=

OωBOi

OiOωC

.

Part 3.1.3 holds by Lemma 2.2.
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To prove part 3.1.4, we use the equality
N1N2

N2N3
=

O1O2

O2O3
(see equality (1)).

We choose ω1 = ωD, ω2 = ωi, and ω3 = ωA, and obtain:
NωDNi

NiNωA

=
OωDOi

OiOωA

.

It then follows from equalities (29) and (21) that:
DNi

NiA
=

OωDOi

OiOωA

.

To prove part 3.1.5, we use the equality
K1K2

K2K3
=

O1O2

O2O3
(see equality (1)).

We choose ω1 = ωB, ω2 = ωi, and ω3 = ωD, and obtain:
KωBKi

KiKωD

=
OωBOi

OiOωD

.

It then follows from equalities (25) and (30) that:
BKi

KiD
=

OωBOi

OiOωD

.

To prove part 3.1.6, we use the equality
L1L2

L2L3
=

O1O2

O2O3
(see equality (1)).

We choose ω1 = ωA, ω2 = ωi, and ω3 = ωC , and obtain:
LωALi

LiLωC

=
OωAOi

OiOωC

.

It then follows from equalities (22) and (28) that:
ALi

LiC
=

OωAOi

OiOωC

.

4. Conclusion

In this paper, we presented new properties of the centers of circles that
form Pascal points on the sides of a quadrilateral.
For any quadrilateral (that is not a parallelogram), there exist four fixed
points—namely, the centers of four circles passing through the points E and
F , and one of the vertices of the quadrilateral.
The center of each circle that forms Pascal points divides the six segments,
determined by the four centers of the fixed circles, in the same ratio as the
six points determined by the circle that forms Pascal points divide the four
sides and the two diagonals of the quadrilateral.
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