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ANOTHER REFINEMENT OF THE

GARFUNKEL–BANKOFF INEQUALITY

TRAN QUANG HUNG

Abstract. In this article, we present a new refinement of the classical
Garfunkel–Bankoff inequality, which also yields strengthened versions of
the Finsler–Hadwiger and Kooi inequalities. We compare our result with
previous refinements by Wei-Dong Jiang and the author, emphasizing
the independence and originality of our approach. A conjecture on the
sharpness of the correction term’s constant is also proposed.

1. Introduction

In triangle ABC, we adopt the standard notations: A, B, and C de-
note the interior angles, while a, b, and c represent the lengths of the sides
opposite these angles, respectively. Furthermore, R, r, and s denote the
circumradius, inradius, and semiperimeter of triangle ABC.

In [3], J. Garfunkel established the following inequality:
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The first proof of inequality (1) was given by L. Bankoff in [1], and thus
inequality (1) is also referred to as the Garfunkel–Bankoff inequality [1, 2,
3, 5, 10, 14]. Notably, inequality (1) serves as an enhancement of both the
Finsler–Hadwiger and Weitzenböck inequalities (see [10, 11, 12]):
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√
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and is equivalent to Kooi’s inequality (see [8]):
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In [4], Wei-Dong Jiang proposed a refinement of the Garfunkel–Bankoff
inequality:
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In the same vein, the author in [13] presented an even stronger result:
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Clearly, inequality (5) constitutes a strengthened version of inequality
(1). Consequently, inequality (1) may be viewed as a refinement of both the
Finsler–Hadwiger and Kooi inequalities. Additionally, M. Lukarevski and
D. S. Marinescu introduced a related refinement of Kooi’s inequality (see
[8]):
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However, inequality (5) remains stronger than (6) (see [13]).
In this paper, we propose a new refinement of the Garfunkel–Bankoff

inequality in the following form:
(7)

tan2
A

2
+tan2

B

2
+tan2

C

2
≥ 2−8 sin

A

2
sin

B

2
sin

C

2
+
4(a− b)2(b− c)2(c− a)2

a2b2c2
.

By applying the Law of Sines and some basic trigonometric transforma-
tions, we also obtain the trigonometric form of inequality (7) as follows:
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It is worth noting that a notable trigonometric refinement of the Gar-
funkel–Bankoff inequality also appeared in [9], stated as follows:
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However, we also note that the remainders of inequalities (8) and (9) cannot
be compared.

Evidently, inequality (7) constitutes a direct extension of the Garfunkel–
Bankoff inequality (1). From inequality (7), we derive the following new
refinements of the Finsler–Hadwiger and Lukarevski–Marinescu inequalities:

• A new refinement of the Finsler–Hadwiger inequality:
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• A new refinement of the Lukarevski–Marinescu inequality (which
includes Kooi’s inequality as a special case):
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2. Proof of the inequality (7)

In this proof, we employ the following sharppened of Gerretsen’s inequal-
ity [7]
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Proof. Using the well-known identities
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The inequality (7) is equivalent to
(13)
s4 − 2(4R2 + 9Rr − r2)s2 + 16R4 + r4 + 12Rr3 + 49R2r2 + 72R3r

R2s2
≥ 0.

Now we write

s4 − 2(4R2 + 9Rr − r2)s2 + 16R4 + r4 + 12Rr3 + 49R2r2 + 72R3r

= (4R2 + 4Rr + 3r2 − s2)2 + (10R− 8r)

(
4R2 + 4Rr + 3r2 +

r2(R− 2r)

R− r
− s2

)
+

Rr(R+ r)(R− 2r)

R− r
≥ 0

(14)

by the sharppened of Gerretsen’s inequality (12). This completes our proof.
□

3. Conclusion

First, we observe that the refinement given in inequality (7) is fundamen-
tally different from that in inequality (5), since the two remainder terms
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and
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cannot be directly compared—that is, there exists no known inequality re-
lating them in general. As a result, the two refinements are independent
and neither is a consequence of the other.
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Another observation, which we currently state only as a conjecture, is
that in the generalized inequality
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the constant k = 4 appears to be the best possible. We welcome any insights
or formal proof from interested readers.

In conclusion, inequality (7) represents a novel and independent refine-
ment of the classical Garfunkel–Bankoff inequality. Furthermore, it natu-
rally leads to new strengthened versions of both the Finsler–Hadwiger in-
equality and the Lukarevski–Marinescu inequality. These results contribute
to the broader effort of systematically improving classical triangle inequali-
ties and may inspire further research into sharp bounds involving elementary
triangle functions.

Acknowledgments. The author sincerely thanks Nikolaos Dergiades from
Greece and Martin Lukarevski from Macedonia for reading the manuscript
and offering valuable suggestions that contributed to its improvement. The
author sincerely thanks Professor Catalin Barbu for his kind support and
valuable suggestions throughout the preparation of this manuscript.

References

[1] Bankoff, L., Solution of Problem 825, Crux Mathematicorum, 10 (1984), no. 5,
pp. 168.

[2] Bottema, O., Djordjevic, R. Z., Janic, R. R., Mitrinovic, D. S., and Vasic, P. M.,
Geometric Inequalities, Wolters-Noordhoff Publishing, Groningen, 1969.

[3] Garfunkel, J., Problem 825, Crux Mathematicorum, 9 (1983), no. 3, pp. 79.
[4] Jiang, W. D., The Garfunkel–Bankoff inequality and the Finsler–Hadwiger inequality,

Elemente der Mathematik, 78 (2023), pp. 82–84.
[5] Lukarevski, M., Problem 11938, American Mathematical Monthly, 123 (2016), no. 9.
[6] Lukarevski, M., A simple proof of Kooi’s inequality, Mathematics Magazine, 93(2)

(2020), pp. 225.
[7] Lukarevski, M., A new look at the Fundamental triangle inequality, Mathematics

Magazine, 96(2) (2023), pp. 141–149.
[8] Lukarevski, M. and Marinescu, D. S., A refinement of the Kooi’s inequality, Mit-

tenpunkt and applications, Journal of Mathematical Inequalities, 13 (2019), no. 3,
pp. 827–832.

[9] Lukarevski, M., One sharpening of the Garfunkel-Bankoff inequality and some appli-
cations, The Mathematical Gazette, 108(572) (2024), pp. 348–351.

[10] Finsler, P. and Hadwiger, H., Einige Relationen im Dreieck, Commentarii Mathe-
matici Helvetici, 10 (1937), no. 1, pp. 316–326.

[11] Tran, Q. H., Some generalisations of Weitzenböck’s inequality, Mathematical Gazette,
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