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ON CERTAIN RELATIONS IN THE ARBELOS

ARNE ERIKSON

Abstract. In this article we consider certain relations in the arbelos con-
necting its twin circles and incircle with two other circles, each internally
tangent to the outer semicircle and each externally tangent respectively to
the left and the right internal semicircle of the arbelos. The main result is
that the sum of the two circles’ radi equals the incircle radius.

1. Introduction

Figure 1. The chords WΦ and YΨ are tangent to the ar-
belos incircle ξ at A1 and B1.

For convenience, in all figures we reflect the arbelos semicircles about
the baseline DE to obtain full circles (see Figure 1). We will use the term
arbelos for this full circle configuration although strictly speaking an arbelos
is only defined by semicircles (“Archimedes’ Book of Lemmas” in [3], prop
4, p.562). The twin circles of an arbelos (dotted in the figure) and their
reflections ω1 and ω2 in the baseline, touch the outer circle α at the points
{W ,Φ} and {Y ,Ψ} respectively.
—————————————
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Proposition 1.1. The chords WΦ and YΨ are tangent to the arbelos in-
circle ξ at A1 and B1, respectively.

Proof. This will be shown in two ways, first (i) not assuming the hypothesis,
and second (ii) assuming its truth.

(i) We have the following circles (see Figure 1): α(A,R), β(B,a), γ(C,b),
ξ(N ,ρ), ω1(V ,r) and ω2(Z,r), where ([2] p.210,[6])

R = a+ b, ρ =
ab(a+ b)

a2 + ab+ b2
, r =

ab

a+ b
.

Also

AY = R, AZ = R−r, SZ = r, AG = R−2b, Y S2 = h1, S1Z = y.

The triangles {SZS1, AGS1} are similar giving

SZ

AG
=

S1Z

AS1
⇔ r

R− 2b
=

y

(R− r)− y
,

(1) ⇒ y =
r(R− r)

R− 2b+ r
.

Also, the triangles {Y S1S2, SZS1} are similar giving

Y S2

SZ
=

Y S1

S1Z
⇔ h1

r
=

y + r

y
,

(2) ⇒ h1 = r(1 +
r

y
).

Substituting for y from (1) we find

(3) h1 =
2r

R− r
(R− b),

and similarly we find

(4) h2 =
2r

R− r
(R− a).

Using expressions from above for R, ρ, and r we have

(5) h1 =
2a2b

a2 + ab+ b2

(6) h2 =
2ab2

a2 + ab+ b2

⇒ h1 + h2 = 2ρ.

(ii) By hypothesis: ∆1L=L∆=ρ (see Figure 1). In the triangle {NCL} we
have NC=b+ρ, LC=w, NL=v, and in the triangle {NAL} we have NL=v,
AL=a−w, AN=(a+b)−ρ. Using the Pythagorean theorem we find

(7) LC = w =
b2(b+ 2a)

a2 + ab+ b2
.

(8) GL = b− w =
ab(a− b)

a2 + ab+ b2
.
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Figure 2. Three generations of arbeli (dashed) by theorem
5.4 of [7], all sharing the parallel lines shown. Representative
twin circles (whole) closely connected with the parallel lines
are shown on the left line. The shared incircle is shown in
red.

⇒ ∆1L−GL = ρ−GL =
2ab2

a2 + ab+ b2
= h2.

And similarly
L∆+GL = ρ+GL = h1.

Hereafter we refer to a member of the circles ωi as a “twin circle”. We
note that the extended lines of the parallel chords in proposition 1.1 are
shared by all arbeli in theorem 5.4 of [7], meaning that the twin circles in
each arbelos all have their tangent points with the outer semicircle on the
same line (either left or right) of the two parallels. In figure 2, we show
three generations of arbeli reflected in their common baseline (green, blue,
purple full circles), and their respective twin circles on the left parallel line.
The shared incircle (red) is also shown.

2. Parallel and perpendicular lines.

We quote a result (adjusting the notation to our figures) from [5], (cor.4,
p.4, fig.4):“If EJ1 cuts β at P and DJ1 cuts γ at I, then PI is a common
tangent to β and γ” (see Figure 3). From this result a corollary can be
made:

Corollary 2.1. J1J2, BP and CI are parallel ⇒ J2Σ is perpendicular to
PI.

Proof. E is the external similarity center of the circles β and α, so the
points P and J1 are homologous. Thus the radi BP and AJ1 are parallel
implying the perpendicularity of the lines J2Σ and PI. Also, the points P
and I are homologous with respect to the external similarity center K (see
Figure 4) of β and γ, so their radi BP and CI are parallel.
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Figure 3. PI is a common tangent to the circles β and γ.
J2Σ and PI are perpendicular to each other.

3. Sum of radi.

Construct a common tangentKΛ to the circles β and γ from their external
similarity center K (see Figure 4). Construct at each of the two tangent
points P and I a circle externally tangent to the circles β and γ respectively
and also internally tangent to the circle α. The two circles, δ1 and δ2,
thus constructed have certain relations with the twin circles ω1, ω2 and the
incircle ξ.

Theorem 3.1. The sum of the radi rL and rR of the circles δ1 and δ2
respectively, equals the the radius ρ of the incircle ξ.

Proof. 1 We have (see Figure 4):

KD = x, KB = Q = a+ 2b+ x, KP = T, KC = x+ b.

1A different proof has been proposed by Paris Pamfilos (private communication).

Figure 4. Tangent circles δ1 and δ2.
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(9)
a

KB
=

b

KC
⇒ x =

2b2

a− b
.

(10) Q =
a(a+ b)

a− b
.

(11) T 2 = Q2 − a2 ⇒ T =
2a

√
ab

a− b
.

Also we have PP1=h and BP1=s

(12)
h

a
=

T

Q
⇒ h =

2a
√
ab

a+ b
.

(13) s2 = a2 − h2 ⇒ s =
a(a− b)

a+ b
.

We find an interesting result that P1G equals the diameter of the twin circle:

P1G = a− s =
2ab

a+ b
= 2r.

Similarly, if we drop a perpendicular (not shown in Figure 4) from I to the
baseline DE, the distance from its intersection with DE to the point G will
also be equal to the diameter of the twin circle. This will be used later.
We have the parallels (BP , AΣ, CI) (see Section 2) and the lines

BP = a, CI = b, AΣ = c, KA = x+ a+ b.

Thus,

(14)
a

KB
=

c

KA
⇒ c =

a2 + b2

a+ b
.

Wemay confirm a well known result, also known as the “Bankoff quadruplet”
circle [2], p. 203 : J1Σ = R − c = (a+ b)− c = 2ab

a+b = 2r, i.e. the diameter
of the twin circle.
We have the collinearity (see Section 2) EPJ1, thus finding:

(15) PΛ · PΩ = PJ1 · PE = PΠ · J2 ⇒ PΠ = 2rL =
PJ1 · PE

J2Σ

We used prop.6 p.31 from [1] in the above. We have (see Figure 4):

J1G = 2
√
ab, P1G = 2r, PP1 = h =

2a
√
ab

a+ b
, J1J3 = J1G−PP1 =

2
√
ab(R− a)

R
,

and using these we find:

(16) PJ1 = 2b

√
a

R
,

(17) PE = 2a

√
a

R
,

and

(18) J2Σ = 2(R− r).
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Substituting (16), (17) and (18) into (15) gives the radius rL of the circle
δ1:

(19) rL =
ra

R− r
=

aρ

R
.

Similarly for radius rR of the circle δ2:

(20) rR =
bρ

R
.

Summing (19) and (20) we get:

(21) rL + rR =
(a+ b)

R
ρ = ρ.

4. Common tangents.

(See Figure 5).

Proposition 4.1. The lines {WΦ, YΨ} are common tangents to the circle
pairs {δ1, ξ} and {δ2, ξ}, respectively.

Proof. We use inversion of the lines {WΦ, YΨ} relative to the circles
{λ(E), λ1(D)} respectively as our tool (see Figure 6). Both lines are per-
pendicular to the baseline ED. We focus on the line WΦ as the same
method and result applies to the line YΨ. An inversion of the line WΦ
relative to λ(E) maps it to the circle α ([8], p.361). We know that the
points {E,P, P2, J1} are collinear: {E,P, J1} by ([5], cor.4, p.4, fig.4), and
(as P2P3∥EG), {E,P, P2} by “Archimedes’ Book of Lemmas” in ([3], prop.
1, p. 561). We also know that J1 is a point on the circumference of the
circle α. If P2 is on the line WΦ, then the points {P2, J1} are inverses of
each other relative to the circle λ(E). This then implies that the circle δ1 is
tangent to the line WΦ. We want to show that:

EJ1 · EP2 = EΦ2.

Figure 5. Common tangents Wϕ and YΨ to circle pairs
{δ1, ξ} and {δ2, ξ}, respectively.
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Figure 6. Inverting lines WΦ, YΨ relative to the circles
λ(E), λ1(D) respectively, maps them each to the circle α.

The calculations proceed as follows (see Figure 7):

(22) E∆1 ·D∆1 = (Φ∆1)
2.

(23) (E∆1)
2 + (Φ∆1)

2 = (EΦ)2.

First we find the segments {EP2,EJ1}. From the similar triangles {PJ3J1, PE1P2}
we have:

(24)
J1J3
PJ3

=
P2E1

PE1
⇒ P2E1 =

PE1 · J1J3
PJ3

,

where the following formulas are found in the introduction (1):

h1 =
2aρ

R
, h2 =

2bρ

R
, PE1 = 2r−h2 =

2b

R
(a−ρ), J1J3 =

2b
√
ab

R
, PJ3 = P1G = 2r.

This gives

(25) P2E1 =
2b
√
ab(a− ρ)

Ra
,

and we find:

(26) (PE1)
2 + (P2E1)

2 = (PP2)
2 ⇒ PP2 =

r

R− r
2a

√
a

R
.

Using EP from equation (17) we have:

(27) EP2 = EP + PP2 = 2a

√
a

R
+

r

R− r
2a

√
a

R
= 2a

√
a

R

(
R

R− r

)
.

We can easily find EJ1 = 2
√
aR, thus giving:

(28) EP2 · EJ1 = 4a2
(

R

R− r

)
=

4a2R2

N
,
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Figure 7. Segments used in the proof of Proposition 4.1.

where N = a2 + ab+ b2 i.e. the denominator of the arbelos incircle radius,
ρ. Now,

(29) ∆D = DG−∆G = 2b− h1 =
2

R
(Rb− aρ) =

2

R

(
b2R2

N

)
,

and

(30) ∆1D = ∆D + 2ρ =
2b

R
(R+ ρ) =

2bR2

N
.

Using E∆1 = 2R−∆1 we find (see equation (22)):

(31) (Φ∆1)
2 = (2R−∆1D)∆1D.

and using equation (23),

(32) (EΦ)2 = (E∆1)
2 + (Φ∆1)

2 = (2R−∆1D)2R =
4R2a2

N
,

which agrees with equation (28), thus confirming that the points P2 and J1
are indeed inverses relative to the circle λ(E). The same will be found for
analogous points related to an inversion of the line YΨ relative to the circle
λ1(D) (see Figure 6).

As a consequence of the above we have the following corollary, which can
easily be verified using expressions previously found, where we also indicate
the twin circles (dotted) found in section 3 (see Figure 8):

Corollary 4.1.

(33) h1 + 2rR = 2ρ

(34) h2 + 2rL = 2ρ.
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Figure 8. Showing h1 + 2rR = 2ρ and h2 + 2rL = 2ρ.

5. Equal circles.

Construct a new arbelos within each of the reference arbelos’ internal
circles β (left) and γ (right), i.e. with the chords EG and GD as respective
baselines. In each new arbelos use a twin circle ω3 and ω4 as one of the
internal circles (see Figure 9). We will use the subscripts {l, r} associated
with the left and right new arbeli, respectively.

Proposition 5.1. The incircles δ3 and δ4 of the arbelos {β, β1, ω3} and
{γ, γ1, ω4}, respectively, are congruent to the circles δ1 and δ2. Also,
the extended line of the segment OO1 joining the pair of circle centers
{δ1(O),δ3(O1)} is perpendicular to the baseline EG. The same is true for
the other pair of congruent circles {δ2, δ4}.

Note: we have not shown the analogous segment of OO1 relating to the
circle centers of {δ2, δ4} in the figure 9.

Proof. We prove this for the arbelos {β, β1, ω3} with the circles β(B,Rl),
β1(T1, u), ω3(C1, r) having incircle δ3(O1, ρl) and a twin circle with radius
rl (not shown in Figure 9), where

Rl = u+ r = a, ρl =
Rlrl

Rl − rl
, rl =

ur

u+ r
=

r(a− r)

a
.

Then

(35) ρl =
Rlrl

Rl − rl
=

a
(
r(a−r)

a

)
a− r(a−r)

a

=
a2b

(a+ b)2 − ab
=

aρ

R
.

This last expression is equal to the equation (19), i.e. to the radius rL of the
circle δ1. In exactly the same way we find that the radius rR of the circle δ2
equals the radius ρr of the circle δ4.
We now show that the segments OG′ and O2G are equal, thus proving the
perpendicularity of OO2 and EG. As both circle centers {O, O1} are on
OO2, this will prove the last part of proposition 5.1. First, consider the
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Figure 9. Equal pairs of circles: δ1 = δ3 and δ2 = δ4.
Equal circles: ω1 = ω2 = ω3 = ω4 (twin circles).

reference arbelos {α, β, γ} where we found in equation (7) an expression for
the segment w = LC (see Figure 1). Adding the radius b to this segment,
we find:

(36) w + b = ρ
R+ b

a
.

This segment is analogous to the segment O2G, and using the appropriate
analogue expressions for the arbelos {β, β1, ω3} we find:

(37) O2G = ρl
Rl + r

u
=

ρ

R
(R+ b).

From figure 9 we deduce OG′ = rL + h2:

(38) OG′ = rL + h2 =
aρ

R
+

2bρ

R
=

ρ

R
(R+ b) = O2G.

6. Further relations.

(See Figure 10).

Proposition 6.1. The circle pairs {β, γ} and {δ1, δ2} have a common
external similarity center at the point K.

Proof. Use E as a center of similarity for the circle δ1(O) to make a
homothetic circle thus: draw lines {EP3P4, EPP2} to intersect the extended
chords of WΦ and YΨ at the points A2 and B2 respectively. Also draw
EO ∩ A2B2 = N1. We have A2B2∥P3P2 and ∠A2J1B2 = 90◦, so A2J1B2 is
a circle ξ1(N1) homothetic to δ1(O) and with diameter equal to that of the
arbelos incircle ξ(N). We note that J1 is a tangent point for the cirles {ξ1, α}.
Likewise we make the same circle ξ1(N1) homothetic to the circle δ2(I1) from
the similarity center D. We now have two external similarity centers, E and
D, one for each of the circle pairs {δ1,ξ1} and {δ2,ξ1} respectively. It is
known ([8] p.507, [4], p.151) that these two external similarity centers will
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Figure 10. K is a common external similarity center of the
circle pairs {β, γ} and {δ1, δ2}

be collinear with that of the circle pairs {δ1, δ2}. From the point K on the
line ED we have the common tangent PI to the circle pairs {δ1, δ2} and
{β, γ}. Thus K is a common external similarity center for these two circle
pairs.

Figure 11. T3∆1 = T4∆.

Join GP and GI to intersect WΦ and YΨ in T3 and T4 respectively (see
Figure 11).

Proposition 6.2. T3∆1 = T4∆.
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Proof. We have the similar triangles {PP1G,T3∆1G} and know the dis-
tances {PP1, PG,∆1G} from previously, hence:

(39) T3∆1 =
∆1G · PP1

P1G
=

2ρ

R

√
ab.

And likewise we have the similar triangles II5G,T4∆G} and know the dis-
tances {II5, I5G,∆G} giving:

(40) T4∆ =
II5 ·∆G

GI5
=

2ρ

R

√
ab = T3∆1.

We know that ∠T3GT4 = 90◦ [5] (cor.4, p.4, fig.4) so now we have a circle
ξ2 through points {T3, G, T4} congruent to the arbelos incircle. Its’ center
T5, is on the extended line NN1, and NN1 ⊥ ED (see Figure 12). We also
know that the points {P4, P2, D} and {P4, P3, E} are collinear by [3] prop.1,
p.561, as the circles {α, δ1,} are tangent at the point P4 and P3P2∥ED. The
same applies to analogous points related to the circle δ2.

Proposition 6.3. Related to the circle δ1(O): Points {K2, P4, P2, T4, D} are
collinear, where K2 is the external similarity center for the circles {δ1, ξ2, γ}.
Similarly related to the circle δ2(I1): Points {K1, I4, I2, T3, E} are collinear,
where K1 is the external similarity center for the circles {δ2, ξ2, β}. Also
K2E ⊥ ED and K1D ⊥ ED.

See Figure 10 for points Ii.
Proof. We consider only the case related to the circle δ1 as the same method
will apply to that of the circle δ2. Let the line P4D intersect the chord YΨ
in T ′

4. We want to show that T ′
4 = T4 (see Figures 12 and 13). We have the

similar triangles △P2∆1D and △T ′
4∆D, hence:

(41)
P2∆1

∆1D
=

T ′
4∆

∆D
⇒ T ′

4 =
∆D · P2∆1

∆1D
.

Now P2∆1 = P2E1 + PP1, where PP1 = h = 2a
√
ab

R , and P2E1 = 2b
√
ab(a−ρ)
Ra

(equations (12),(25)), so:

(42) P2∆1 = P2E1 + PP1 =
2
√
ab

R

[
b

a
(a− ρ) + a

]
=

2aR
√
ab

N
,

where as before N = a2+ab+ b2 i.e. the denominator of the arbelos incircle
radius. From equations (29),(30) we have ∆D = 2

R(
b2R2

N ) and ∆1D = 2bR2

N .
Thus

(43) T ′
4∆ =

∆D · P2∆1

∆1D
=

(2Rb2

N )(2Ra
√
ab

N )
2R2b
N

=
2abR

√
ab

NR
=

2ρ

R

√
ab = T4∆.

(See equation (40)). We have established the collinearity of the points
{K2, P4, P2, D}. The collinearity of the points {G,T3, P} from proposition
6.2 and the collinearity of the points {G,P, P3} (again making use of [3]
prop.1, p.561) here related to the circles {β, δ1} and their tangent point P )
combined give the collinearity of the points {K2, P3, P, T3, G}. We then see
that the three diameters {P3P2, T3T4, GD} of the circles {δ1, ξ2, γ} respec-
tively are all parallell, thus K2 is their common external similarity center.
The same line of argument applies for showing that K1 is the external sim-
ilarity center for the circles {δ2, ξ2, β}. Furthermore, {K2, E} are external
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Figure 12. Collinear points {K2, P4, P2, T4, D,} and
{K1, I4, I2, T3, E} (see Figure 10 for points Ii). K2E ⊥ ED
and K1D ⊥ DE.

similarity centers for circles {δ1, ξ2} and{δ1, ξ1} respectively. Invoking def-
inition 9 in [4] p.6:“...Two or more parallel lines shall be said to have a
common point at infinity or to intersect at infinity...”, we may state that
the external similarity center for the congruent circles {ξ1, ξ2} is a common
point at infinity {K∞} where the two parallel lines {T3A2, T5N1} intersect.
These two lines are perpendicular to the line ED. In order that the three
centers of similarity {K2, E,K∞} be collinear ([8] p.507, [4] p.151) we must
have {K2E∥T3A2∥T5N1}, i.e. K2E ⊥ ED. An identical argument holds for
K1D ⊥ ED.

By the reasoning above, we also see that the external similarity centers
(not shown in the figures) for the circles {δ1, ξ} and {δ2, ξ} will lie on the
lines K2E and K1D respectively. We note that the point J3 is also on the
line K2D which is true if left and right side of J3G

GD = T4∆
∆D are equal. This is

found true and may easily be verified using expressions from above.

Proposition 6.4. The points {K2, J1,K1,K} are collinear.

Proof. The points {K2,K1,K} are collinear by ([8] p.507, [4] p.151) so
we need to show that J1 is also on the line K2K. We consider first the
similar triangles {K1DG,T4,∆G} (see Figure 13). The points {K1, T4, G}
are collinear since the points {G,T4} are homologous relative to the circles
{β, ξ2} withK1 as external similarity center (see Figure 12). We use formulas
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Figure 13. Collinear points {K2, P4, P2, T
′
4, D} and

{K2, J1,K1,K}. See propositions 6.3 and 6.4 respectively.

found above

GD = 2b, ∆G = h1 =
2aρ

R
, T4∆ =

2aρ

R

to find:

(44)
K1D

GD
=

T4∆

∆G
⇒ K1D =

GD · T4∆

∆G
=

(2b)
(
2ρ

√
ab

R

)
(
2aρ
R

) =
2b
√
ab

a
.

Next we consider the similar triangles {J1GK,K1DK} and use formulas
found previously

DK = x =
2b2

a− b
, GK = x+ 2b =

2ab

a− b
.

to find:

(45)
J1G

K1D
=

GK

DK
⇒ J1G =

GK ·K1D

DK
=

(
2ab
a−b

)(
2b
√
ab

a

)
(

2b2

a−b

) = 2
√
ab.

By the power of the point G with regard to the circle α we have:

(46) (J1G)2 = GE ·GE = (2a)(2b) ⇒ J1G = 2
√
ab,

which agrees with equation (45) and the point J1 is on the line K2K.

Referring back to figure 6 and also considering figure 12, we see that an
inversion of the circles {α, β} w.r.t. the circle λ maps them to the lines
{WΦ, YΨ} respectively. Considering the circle δ1 and its’ tangent points
{P4, P, P2} on {α,WΦ, β} respectively, we see that an inversion of δ1 w.r.t.
the circle λ maps δ1 to ξ1 i.e. P4 7→ A2, P 7→ B2, P2 7→ J1. By the same
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token, an inversion of the circle δ2 w.r.t. the circle λ1 maps δ2 to the circle
ξ1 as well, i.e. I4 7→ B2, I 7→ A2, I2 7→ J1.

7. Scaling factors.

We can see in figure 12 the beginnings of a dilation, which is followed
up in figure 14. From the dilation centers E and D, left and right sets of
arbeli are made. In the figure, considering only outer (full) circles, we have
made a right set of four {green, pink, turquoise, yellow} and a left set of
two {green, pink} arbeli (the green one with baseline ED is the reference
arbelos). The whole and dashed lines connect circle centers common to each
arbelos. The purple parallell lines are the equivalent of the extended chords
{WΦ, YΨ} described in the introduction (1). We want to establish scaling
factors for the right and left dilations relative to the dilation centers E and
D, respectively. We use the following formulas previously found:

rL =
aρ

R
=

rρ

b
, rR =

bρ

R
=

rρ

a
,

and the notations

ρ′R, r′, r′RR
, r′LR

, R′
R, a′, b′

for the radi of the first dilated arbelos on the right i.e. with dilation center
E. These are the equivalent of the radi

ρ, r, rR, rL, R, a, b

associated with the reference arbelos. We use some relations previously
found:

r′LR
= ρ, r′ = b, a′ = R.

Thus we have for the first right dilated arbelos,

(47) r′LR
+ r′RR

= ρ′R = ρ+
bρ′R
R

⇒ ρ′R = ρ

(
R

a

)
= ρ

(
b

r

)
,

Figure 14. Dilation of the reference arbelos from centers E
and D.

.
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i.e. a scaling factor of R
a = b

r . An equivalent calculation for the left side
gives:

(48) ρ′L = ρ

(
R

b

)
= ρ

(a
r

)
,

i.e. a scaling factor of R
b = a

r . We may then find some relations (sum, ratio
and product of ρ′R and ρ′L):

(49) ρ′R + ρ′L =
ρR

r
,

(
ρ′R
ρ′L

)
=

b

a
, ρ′Rρ

′
L =

(ρ
r

)2
.

Also:

(50) ρ′RrL = ρ2 = ρ′LrR.

Using the scaling factors from above we confirm that rRL
= rLR

= ρ, i.e.
the radius of the circle ξ1 (see Figure 12):
(51)

rRL
= rL

(
R

a

)
=
(ρa
R

)(R

a

)
= ρ, rLR

= rR

(
R

b

)
=

(
ρb

R

)(
R

b

)
= ρ.

8. Six polar circles and their radi.

We consider polar circles of six triangles, three left (L) and three right (R)
“oriented” triangles, all having bases (i.e. two vertices) alligned with the ar-
belos baseline ED. For the meaning of “oriented”, we refer to a comparison
of figures 16 and 17, where it can be seen that the left oriented triangles
have their third vertex {P5, P2, T4} to the left relative to that {T3, I2, I5} of
the right oriented triangles and vice versa. The polar circles have centers on

Figure 15. Polar circles τ(A2, rpLα
), τ1(P3, rpLβ

) and

τ2(I2, rpLγ
).
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the circles we have discussed in previous sections {δ1, δ2, ξ1}. In figure 15
we have made three polar circles τ(A2, rpLα

), τ1(P3, rpLβ
) and τ2(I2, rpLγ

) of

the left oriented triangles{EP2D}, {EP5G} and {GT4D} respectively. The
notation of the radi is as follows: p stands for polar, Lα, Lβ, Lγ stands for the
left oriented triangle associated with the arbelos circle α, β, γ. The right ori-
ented triangles are {EI2D,ET3G,GI5D} with respective polar circles (not
shown) τ3(B2, rpRα

), τ4(P2, rpRβ
), τ5(I3, rpRγ

).

Proposition 8.1. For the left oriented triangles {EP2D,EP5G,GT4D} the
following is valid: I3G = J1P5 = rpLα

= A2D3 = rpLβ
+ rpLγ

, P2P5 =

T4G = rpLβ
= P3D1, (pink colour code) and J1P2 = I3T4 = rpLγ

= I2D2

(yellow colour code). The same relations will be true for the radi of the polar
circles associated with the right oriented triangles viz. P3G = J1I5 = rpRα

=
rpRβ

+ rpRγ
, P3T3 = J1I2 = rpRβ

and T3G = I2I5 = rpRγ
.

Segments referred to above and their associated triangles are shown more
explicitly in figures 16 and 17. We find it remarkable that these segments
and the radi {rpLα

, rpLβ
, ..., rpRγ

} are equal.

Figure 16. Radi rpLβ
= P5P2 = GT4 (pink), rpLγ

= P2J1 =

T4I3 (yellow) and rpLα
= rpLβ

+ rpLγ
= P5J1 = GI3 of po-

lar circles of left oriented triangles {EP5G,GT4D,EP2D} re-
spectively.

Proof. We will first employ the definition of the radius of a polar circle ([4]
p. 176) to find the radius rpLβ

:

(52)
(
rpLβ

)2
= (P3P5) · (P3P6).
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Figure 17. Radi rpRβ
= P3T3 = J1I2 (purple), rpRγ

=

T3G = I2I5 (blue) and rpRα
= rpRβ

+ rpRγ
= P3G = J1I5 of

polar circles of right oriented triangles {ET3G,GI5D,EI2D}
respectively.

We only need to find P3P5 as we have P3P6 = P2∆1 = 2aR
√
ab

N = 2ρ
√

a
b ,

from equation (42). We have the similar triangles {P3P5P2, J1GE} where

P3P2 = 2rL = h1 =
2ρa

R
, J1G = 2

√
ab, EG = 2a,

thus:

(53)
P3P5

P3P2
=

J1G

EG
⇒ P3P5 =

(P3P2) · (J1G)

EG
=

2ρ
√
ab

R
.

Substituting for P3P6 and P3P5 we find from equation (52):(
rpLβ

)2
=

(
2ρ

√
a

b

)
·

(
2ρ

√
ab

R

)
⇒ rpLβ

= 2ρ

√
a

R
.

Considering the right triangle {GT4∆}, where we previously found

T4∆ =
2ρ

√
ab

R
, ∆G = h1 =

2ρa

R
,

we have:

(54) (T4G)2 = (∆G)2 + (T4∆)2 =
4ρ2a

R
⇒ T4G = 2ρ

√
a

R
= rpLβ

.

This can easily be seen to equal P5P2 by the parallel lines GP5∥DP4 and
EJ1∥GI. It is also trivial to see the sum rpLα

= rpLβ
+rpLγ

from the similar

left oriented triangles defined above: the bases of the two smaller triangles
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sum to that of the larger. We may now calculate rpLα
by using the scaling

factor (see Section 7) R
a on rpLβ

and find:

rpLα
= 2ρ

√
R

a
,

which agrees with the segments {I3G, J1P5} as can easily be verified by
similar triangles and previously found expressions. We also find from the
sum of radi:

rpLγ
= rpLα

− rpLβ
= 2ρ

b√
Ra

.

In exactly the same way we verify the relations quoted in proposition 8.1
for the right oriented triangles and their associated polar radi. We find:

rpRα
= 2ρ

√
R

b
, rpRβ

= 2ρ
a√
Rb

, rpRγ
= 2ρ

√
b

R
.
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