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VERSIONS OF PYTHAGOREAN THEOREM

IN TO AND TH PLANES

ZEYNEP CAN and EBRU YAZ AKDOĞAN

Abstract. In this paper we first define the Tetrakis Hexahedron and
Truncated Octahedron planes, which are 2-dimensional analytical planes
equipped with metrics induced by two dual semi-regular convex polyhedra
in space and reduced to plane by projection. Then, we present the ana-
logues of Pythagorean Theorem in these planes and show that, even though
the Pythagorean Theorem holds, it is not a prerequisite for a triangle in
mentioned planes to posses a rigth angle. Finally, we provide the necessary
and sufficient conditions for a triangle in TO and TH planes to have a right
angle.

1. Introduction

Development of convex set theory is particularly based on polyhedra. A
Polyhedron, in Euclidean geometry, is defined as a three-dimensional object
with flat, polygonal faces and straight edges. Technically, a polyhedron
is the boundary between the interior and exterior of a solid. In general,
polyhedrons are named according to number of faces. A tetrahedron has four
faces, a pentahedron five, and so on; a cube is a six-sided regular polyhedron
(hexahedron) whose faces are squares. A polyhedron is called uniform if its
faces are all regular polygons and its vertices are all congruent.A polyhedron
is called regular if its faces are all regular polygons, and each face is congruent
to the other faces. Regular polyhedra are uniform, but not vice versa. A
polyhedron is said to be convex if its surface (comprising its faces, edges and
corners) does not intersect itself and the line segment joining any two points
of the polyhedron is contained in the interior or surface of polyhedron.

As mentioned in [33] and [20], Minkowski geometry is a finite-dimensional,
non-Euclidean geometry with a similar linear structure to that of Euclidean
geometry, that is, points, lines, and planes are the same, and angles are

————————————
Keywords and phrases: Dual Polyhedra, Convex Polyhedra, Metric

Geometry, Pythagorean Theorem, Tetrakis Hexahedron Plane, Truncated
Octahedron Plane.

(2010)Mathematics Subject Classification: 51B20, 51N25, 51F99,
51K05, 51K99, 52A15, 52B10

Received: 14.02.2025. In revised form: 12.08.2025. Accepted: 24.04.2025.



6 Zeynep Can and Ebru Yaz Akdoğan

measured in the same way. The most significant difference between Minkowski
and Euclidean geometries is the distance function used. The distance is not
uniform in all directions in Minkowski geometry contrary to Euclidean ge-
ometry. This primarily leads to the unit ball being general, symmetric,
convex set. Through the studies on metric geometry it has seen that convex
polyhedra and some metrics are closely related, for some studies see [25],
[24], [22], [10], [27], [5], [9], [30], [14], [17], [18], [6], [28], [3] and [7]. For ex-
ample in [13] tetrakis hexahedron metric in 3−dimensional analytical space
is defined as

dTH(P1, P2) =
(√

3− 1
)

max

 |x1 − x2|+ |y1 − y2| ,
|x1 − x2|+ |z1 − z2| ,
|y1 − y2|+ |z1 − z2|

+
(
2−
√

3
)

max

 |x1 − x2| ,
|y1 − y2| ,
|z1 − z2|


and in [12] truncated octahedron metric in 3−dimensional analytical space
is defined as

dTO(P1, P2) = max
{

2
3 (|x1 − x2|+ |y1 − y2|+ |z1 − z2|) , |x1 − x2| , |y1 − y2| , |z1 − z2|

}
for the points P1 = (x1, y1, z1) , P2 = (x2, y2, z2) ∈ R3 and in these studies it
has been shown that unit spheres of the spaces furnished by these metrics
are a tetrakis hexahedron and a truncated octahedron as in the Figure 1,
respectively.

Figure 1: Tetrakis Hexahedron and Truncated Octahedron

Since the main difference between Euclidean and Minkowski geometries is
the definition of distance, it becomes intriguing to examine how Euclidean
problems involving distance translate into the framework of Minkowski ge-
ometry, for some studies on Euclidean problems in Minkowski geometries
see [1], [4], [8], [11], [15], [16], [19], [21], [23], [26], [29], [31] and [32].

In this paper, we introduce tetrakis hexahedron and truncated octahedron
metrics in 2-dimensional analytical plane. We explore Pythagorean theorem
and demonstrate that the converse of the Pythagorean theorem does not hold
in these geometries. Finally, we provide a necessary and sufficient condition
for triangle in the R2

TH and R2
TO planes to be a right triangle.

2. TETRAKIS HEXAHEDRON AND TRUNCATED
OCTAHEDRON PLANE GEOMETRIES

In this section we introduce tetrakis hexahedron and truncated octahe-
dron planes by using the projection of dTH and dTO in R3 which were given
in [2] and [13] and give basic concepts and properties of these geometries.
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Definition 2.1. For the points P1 = (x1, y1) and P2 = (x2, y2) given in R2,
the tetrakis hexahedron distance function dTH : R2×R2 −→ [0,∞) is defined
as
(1)
dTH(P1, P2) =

(√
3− 1

)
(|x1 − x2|+ |y1 − y2|) +

(
2−
√

3
)

max {|x1 − x2| , |y1 − y2|}

Proposition 2.1. The distance function dTH in R2 is a metric.

Proof. To show that dTH is a metric it must be shown that dTH is non-
negative defined, symmetric, dTH(P1, P2) = 0 ⇔ P1 = P2 and triangle
inequality is hold. By using the definition of dTH non-negativity, symmetry
property and condition dTH(P1, P2) = 0 ⇔ P1 = P2 would easily be ob-
tained. For dTH(P1, P2) ≤ dTH(P1, P3) + dTH(P3, P2) where P1 = (x1, y1) ,
P2 = (x2, y2) and P3 = (x3, y3), eight cases must be considered. As an exam-
ple if dTH(P1, P2) =

(√
3− 1

)
|x1 − x2|+|y1 − y2|, dTH(P1, P3) = |x1 − x3|+(√

3− 1
)
|y1 − y3| and dTH(P3, P2) =

(√
3− 1

)
|x2 − x3|+ |y2 − y3|, then

dTH(P1, P2) =
(√

3− 1
)
|x1 − x2|+ |y1 − y2|

=
(√

3− 1
)
|x1 + x3 − x3 − x2|+ |y1 + y3 − y3 − y2|

≤
(√

3− 1
)
|x1 − x3|+ |y1 − y3|+

(√
3− 1

)
|x3 − x2|+ |y3 − y2|

≤ |x1 − x3|+
(√

3− 1
)
|y1 − y3|+

(√
3− 1

)
|x3 − x2|+ |y3 − y2|

≤ dTH(P1, P3) + dTH(P3, P2)

Thus dTH in R2 is a metric.
Tetrakis hexahedron circle with center O = (x0, y0) and the radius r is

the set of the points

C1 =
{

(x, y) :
(√

3− 1
)

(|x− x0|+ |y − y0|) +
(

2−
√

3
)

max {|x− x0| , |y − y0|} = r
}

and locus of this set is as in the Figure 2.

Figure 2: Tetrakis Hexahedron circle

Coordinates of the vertices of this circle are V1 : (x0, y0 + r), V2 :
(
x0 +

√
3

3 r, y0 +
√

3
3 r
)

,

V3 : (x0 + r, y0), V4 :
(
x0 +

√
3

3 r, y0 −
√

3
3 r
)

, V5 : (x0, y0 − r), V6 :
(
x0 −

√
3

3 r, y0 −
√

3
3 r
)

,

V7 : (x0 − r, y0) and V8 :
(
x0 −

√
3

3 r, y0 +
√

3
3 r
)

Definition 2.2. For the points P1 = (x1, y1) and P2 = (x2, y2) given in
R2, the truncated octahedron distance function dTO : R2 × R2 −→ [0,∞) is
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defined as

(2) dTO(P1, P2) = max

{
|x1 − x2| , |y1 − y2| ,

2

3
(|x1 − x2|+ |y1 − y2|)

}
Proof. Proof is similar to the dTH case. Similarly by using the defini-
tion of dTO non-negativity, symmetry property and condition dTO(P1, P2) =
0 ⇔ P1 = P2 would easily be obtained. For dTO(P1, P2) ≤ dTO(P1, P3) +
dTO(P3, P2) where P1 = (x1, y1) , P2 = (x2, y2) and P3 = (x3, y3), twenty
seven cases must be considered. As an example if dTO(P1, P2) = 2

3 (|x1 − x2|+ |y1 − y2|),
dTO(P1, P3) = |x1 − x3| and dTO(P3, P2) = |y2 − y3|, then

dTO(P1, P2) = 2
3 (|x1 − x2|+ |y1 − y2|)

= 2
3 (|x1 + x3 − x3 − x2|+ |y1 + y3 − y3 − y2|)

≤ 2
3 (|x1 − x3|+ |y1 − y3|) + 2

3 (|x3 − x2|+ |y3 − y2|)
≤ |x1 − x3|+ |y2 − y3|
≤ dTO(P1, P3) + dTO(P3, P2)

Thus dTO in R2 is a metric.
Truncated octahedron circle with center O = (x0, y0) and the radius r is

the set of the points

C2 =

{
(x, y) : max

{
|x− x0| , |y − y0| ,

2

3
(|x− x0|+ |y − y0|)

}
= r

}
and locus of this set is as in the Figure 3.

Figure 3: Truncated Octahedron circle

Coordinates of the vertices of this circle are V1 :
(
x0 − r

2 , y0 + r
)
, V2 :(

x0 + r
2 , y0 + r

)
, V3 :

(
x0 + r, y0 + r

2

)
, V4 :

(
x0 + r, y0 − r

2

)
, V5 :

(
x0 + r

2 , y0 − r
)
,

V6 :
(
x0 − r

2 , y0 − r
)
, V7 :

(
x0 − r, y0 − r

2

)
and V8 :

(
x0 − r, y0 + r

2

)
.

3. TETRAKIS HEXAHEDRON AND TRUNCATED
OCTAHEDRON VERSIONS OF THE PYTHAGOREAN

THEOREM

Let ABC be a triangle in analytical plane, and a,b,c denote the lenghts
of the sides BC,AC,AB respectively. It is well known in Euclidean plane
geometry that if ABC is a right triangle with right angle at A, then a2 =
b2 + c2. Its converse is also true in Euclidean plane. In this section we
consider the tetrakis hexahedron and truncated octahedron versions of the
Pythagorean theorem. We assume ABC is a triangle in the analytical plane
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with vertices labeled in counterclockwise order with a right angle at A,
tetrakis hexahedron lenghts of sides BC,AC,AB of the triangle ABC are
denoted by aTH , bTH and cTH respectively and truncated octahedron enghts
of sides BC,AC,AB of the triangle ABC are denoted by aTO, bTO and cTO

respectively.
The following proposition which states relation between Euclidean dis-

tance and tetrakis hexahedron or truncated octahedron distance of two
points in analytical plane plays important role in our study.

Proposition 3.1. If A and B are two points in R2, that do not lie on a
vertical line and m is the slope of the line passing through these points, then

(3) dE(A,B) = ρ∆i(m)d∆i(A,B)

where i = 1, 2, ∆1 = TH, ∆2 = TO,

ρ∆1(m) =

√
1 +m2(√

3− 1
)
{1 + |m|}+

(
2−
√

3
)

max {1, |m|}

and

ρ∆2(m) =

√
1 +m2

max
{

1, |m| , 2
3 (1 + |m|)

} .
In addition if the points A and B are on a vertical line, then dE(A,B) =
dTH(A,B) = dTO(A,B).

Proof. Let A = (x1, y1), B = (x2, y2) two points where x1 6= x2, and the
slope of the line passing through these two points is m. By using the def-
initions of dE , dTH and dTO in the plane and the equation m = y2−y1

x2−x1
,

the equation (3) is easily obtained. If also A and B are on a vertical
line, then again by the definitions of dE , dTH and dTO, it is clear that
dE(A,B) = dTH(A,B) = dTO(A,B). This consequence also would be ob-
tained by limiting m→∞, which means ρ∆i(m) = 1 where i = 1, 2.

The next proposition gives a very useful property for our arguments of
the function ρ(m).

Proposition 3.2. If m ∈ R− {0} and m′ = − 1
m , then

(4) ρ∆i(m) = ρ∆i(−m) = ρ∆i(m
′) = ρ∆i(−m′)

Proof. If m ∈ R − {0} then the equations ρ∆i(m) = ρ∆i(−m), ρ∆i(m) =
ρ∆i(m

′) and ρ∆i(m
′) = ρ∆i(−m′) are derived by direct calculations by using

definiton of the function ρ∆i(m) for m, −m, m′and i = 1, 2.
The following proposition states that although the Euclidean lengths and

the tetrakis hexahedron or truncated octahedron lengths of sides AC and
AB of triangle ABC differ from each other, their mutual proportions are
equal.

Proposition 3.3. If ABC is a right triangle with the right angle at A
and dE(A,C) = b, dE(A,B) = c, d∆i(A,C) = b∆i , d∆i(A,B) = c∆i where
i = 1, 2, ∆1 = TH and ∆2 = TO, then

(5)
b

c
=
b∆i

c∆i
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Proof. When the sides AB and AC are parallel to the coordinate axes, it
follows that b = b∆i and c = c∆i , for i = 1, 2. Therefore, the equation (5)
holds. However, if one side of the triangle is not parallel to the coordinate
axes, the other side will also not be parallel to any axis. Also, since the legs
are perpendicular to each other, if the slope of the AB line is m, then the
slope of the AC line m′ = − 1

m , thus b=ρ∆i(m
′)b∆i and c=ρ∆i(m)c∆i are

obtained from the equation (3), where i = 1, 2. In this case clearly b
c =

b∆i
c∆i

.

The theorem below shows how the a∆i , b∆i , c∆i the tetrakis hexahedron
or truncated octahedron lenghts of sides are related to and the slope of one
of the legs or the hypotenuse in the right triangle ABC. That is, the tetrakis
hexahedron or truncated octahedron version of Pythagorean theoerem in-
cludes one more parameter other than the lenghts of sides. If the hypotenus
is paralell to a coordinate axis, then an additional parameter is unncessary.
That is, the relation depends on only the lenghts of legs.

Theorem 3.1. Consider the right triangle ABC, where right angle is at A.
i) If the legs of the triangle ABC are parallel to the coordinate axes, then

(6) a∆1 = (
√

3− 1)(b∆1 + c∆1) + (2−
√

3) max {b∆1 , c∆1}

and

(7) a∆2 = max

{
b∆2 , c∆2 ,

2

3
(b∆2 + c∆2)

}
ii) If the legs of the triangle ABC are not parallel to the coordinate axes,

and the hypotenuse (ie BC side) is not vertical and slope of one of the legs
is m, then
(8)

a∆1 =
(
√

3−1)(|b∆1
m+c∆1 |+|c∆1

m−b∆1 |)+(2−
√

3) max{|b∆1
m+c∆1 |,|c∆1

m−b∆1 |}
[(
√

3−1)(1+|m|)+(2−
√

3) max{1,|m|}]

and
(9)

a∆2 =
max

{
|b∆2m+ c∆2 | , |c∆2m− b∆2 | , 2

3 (|b∆2m+ c∆2 |+ |c∆2m− b∆2 |)
}[

max
{

1, |m| , 2
3 (1 + |m|)

}]
Proof. i) The equations (6) and (7) are is an immediate consequences of
the definitions of dTH and dTO.

ii) Let θ is the angle CBA of the triangle ABC whose vertices labeled
counterclockwise order, thus clearly θ is acute and positive. Let the slopes
of sides AB and BC be m and m1, respectively. Therefore tan θ = m−m1

1+mm1

and the slope of AC is m′ = − 1
m . Also according to the equation (5)

tan θ = b
c =

b∆i
c∆i

. In that case

(10)
b∆i

c∆i

=
m−m1

1 +mm1

By solving equation (10) for m1 we get

(11) m1 =
c∆im− b∆i

b∆im+ c∆i
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where m 6= −c∆i
b∆i

since m 6= 1
m1

. By applying equation (3) for ∆1 to the

equation a2 = b2 + c2 and by using the equation (4)
(12)[ √

1+m2
1

(
√

3−1)(1+|m1|)+(2−
√

3) max{1,|m1|}

]2

a2
∆1

=

[ √
1+m2

(
√

3−1)(1+|m|)+(2−
√

3) max{1,|m|}

]2 (
b2∆1

+ c2
∆1

)
is obtained and by substituting equivalent value of m1 as given in the equa-
tion (11) and taking the square root of both sides of equation (12) it would
be simplified as

a∆1 =
(
√

3−1)(|b∆1
m+c∆1 |+|c∆1

m−b∆1 |)+(2−
√

3) max{|b∆1
m+c∆1 |,|c∆1

m−b∆1 |}
[(
√

3−1)(1+|m|)+(2−
√

3) max{1,|m|}]

Similarly by applying equation (3) for ∆2 to the equation a2 = b2 + c2 and
by using the equation (4)
(13)[ √

1 +m2
1

max
{

1, |m1| , 2
3 (1 + |m1|)

}]2

a2
∆2

=

[ √
1 +m2

max
{

1, |m| , 2
3 (1 + |m|)

}]2 (
b2∆2

+ c2
∆2

)
is obtained and by substituting equivalent value of m1 as given in the equa-
tion (11) and taking the square root of both sides of equation (13) it would
be simplified as

a∆2 =
max

{
|b∆2m+ c∆2 | , |c∆2m− b∆2 | , 2

3 (|b∆2m+ c∆2 |+ |c∆2m− b∆2 |)
}[

max
{

1, |m| , 2
3 (1 + |m|)

}]
Clearly the obtained results are valid when m is the slope of either AB or
AC.

Corollary 3.1. If the hypotenuse (BC side) of the triangle ABC is parallel
to one of the coordinate axes, then

(14)
[
(
√

3− 1)(b∆1 + c∆1) + (2−
√

3) max {b∆1 , c∆1}
]
a∆1 = b2∆1

+ c2
∆1

and

max

{
b∆2 , c∆2 ,

2

3
(b∆2 + c∆2)

}
a∆2 = b2∆2

+ c2
∆2

(15)

Proof. This is a direct concequence of the equations of (12) and (13). If
BC side of the triangle ABC is parallel to x−axis, then m1 = 0 and if BC
is parallel to y−axis, then.m1 −→ ∞ and for both cases ρ(m1) = 1 and
eqution (12) becomes[

(
√

3− 1)(1 + |m|) + (2−
√

3) max {1, |m|}
]2
a2

∆1
=
(
1 +m2

) (
b2∆1

+ c2
∆1

)
and equation (13) becomes[

max

{
1, |m| , 2

3
(1 + |m|)

}]2

a2
∆2

=
(
1 +m2

) (
b2∆2

+ c2
∆2

)
, where m is the slope of AB. Let AD be the altitude from A as in the
Figure 4.
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Figure 4: Altitude from A

Using similar triangles and equation (5), if BC is horizontal, then |m| =∣∣AD
BD

∣∣ =
∣∣AC
AB

∣∣ = b
c =

b∆i
c∆i

and if BC is vertical, then |m| = c
b =

c∆i
b∆i

. Thus

[
(
√

3− 1)
(

1 +
∣∣∣ b∆1
c∆1

∣∣∣)+ (2−
√

3) max
{

1,
∣∣∣ b∆1
c∆1

∣∣∣}]2
a2

∆1
=

[
1 +

(
b∆1
c∆1

)2
]2 (

b2∆1
+ c2

∆1

)
and[

max

{
1,

∣∣∣∣b∆2

c∆2

∣∣∣∣ , 2

3

(
1 +

∣∣∣∣b∆2

c∆2

∣∣∣∣)}]2

a2
∆2

=

(
1 +

(
b∆2

c∆2

)2
)(

b2∆2
+ c2

∆2

)
when BC is horizontal and[
(
√

3− 1)
(

1 +
∣∣∣ c∆1
b∆1

∣∣∣)+ (2−
√

3) max
{

1,
∣∣∣ c∆1
b∆1

∣∣∣}]2
a2

∆1
=

[
1 +

(
c∆1
b∆1

)2
]2 (

b2∆1
+ c2

∆1

)
and[

max

{
1,

∣∣∣∣c∆2

b∆2

∣∣∣∣ , 2

3

(
1 +

∣∣∣∣c∆2

b∆2

∣∣∣∣)}]2

a2
∆2

=

(
1 +

(
c∆2

b∆2

)2
)(

b2∆2
+ c2

∆2

)
when BC is vertical. Obviously by simplifying each of these equations the
equations (14) and (15) are obtained.

Now we give the next corollary which indicates a version of Phythagorean
theorem in R2

TH and R2
TO that uses the slope of the hypotenuse as a param-

eter.

Corollary 3.2. If none of the sides of ABC is parallel to a coordinate axis,
and m1 is the slope of the BC side (hypotenuse), then
(16)

a∆1 =
[(
√

3−1)(1+|m1|)+(2−
√

3) max{1,|m1|}]
[(
√

3−1)(|b∆1
+c∆1

m1|+|c∆1
−b∆1

m1|)+(2−
√

3) max{|b∆1
+c∆1

m1|,|c∆1
−b∆1

m1|}]
(
b2∆1

+ c2
∆1

)
and
(17)

a∆2 =
max{1,|m1|, 23 (1+|m1|)}

max{|b∆2
+c∆2

m1|,|c∆2
−b∆2

m1|, 23(|b∆2
+c∆2

m1|+|c∆2
−b∆2

m1|)}
(
b2∆2

+ c2
∆2

)
Proof. Let m is the slope of AB. If the equation (6) is solved for m, then

(18) m =
b+ cm1

c− bm1
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is obtained, where m1 6= c
b . Substituting this value of m in the equations

(8) and (9) and doing the required calculations yields to the equations (16)
and (17).

Remark 3.1. Note that if the leg AB is parallel to the x−axis, its slope
is m = 0, then the equations (8) and (9) reduce to the equations (6) and
(7). Moreover, when BC is parallel to the x−axis, meaning m1 = 0, then
the equations (16) and (17) simplify to equations (14) and (15). Further-
more, equations (6) and (7) are special cases with limiting m −→ ∞ in
equations (8) and (9), respectively and equations (14) and (15) are spe-
cial cases with limiting m1 −→ ∞ in equations (16) and (17), respectively.
To verify these for ∆1, let us first observe that equations (8) and (14) are
derived from the equation (12). Clearly, if m −→ ∞, then ρ2

∆1
(m) =[ √

1+m2

(
√

3−1)(1+|m|)+(2−
√

3) max{1,|m|}

]2

−→ ∞ and m1 −→ c
b , by equation (11).

Thus as m −→ ∞, equation (12) reduces to the equation (8). Similarly,

as m1 −→ ∞, ρ2
∆1

(m) =

[ √
1+m2

1

(
√

3−1)(1+|m1|)+(2−
√

3) max{1,|m1|}

]2

−→ 1 and

m −→ − c
b by equation (11). Thus in this case as m1 −→ ∞ equation (12)

reduces to the equation (14) again.
If similar calculations are applied for ∆2, then as m −→∞, the equation

(9) reduces to the equation (7), and as m1 −→∞, the equation (17) reduces
to the equation (15).

Remark 3.2. If ABC with a right angle A is labelled in a clockwise order,
then the roles of b and c are interchanged and so the equations (8) and (9)
become

a∆1 =
(
√

3−1)(|c∆1
m+b∆1 |+|b∆1

m−c∆1 |)+(2−
√

3) max{|c∆1
m+b∆1 |,|b∆1

m−c∆1 |}
[(
√

3−1)(1+|m|)+(2−
√

3) max{1,|m|}]

and

a∆2 =
max

{
|c∆2m+ b∆2 | , |b∆2m− c∆2 | , 2

3 (|c∆2m+ b∆2 |+ |b∆2m− c∆2 |)
}[

max
{

1, |m| , 2
3 (1 + |m|)

}]
and equations (16) and (17) become

a∆1 =
[(
√

3−1)(1+|m1|)+(2−
√

3) max{1,|m1|}]
[(
√

3−1)(|c∆1
+b∆1

m1|+|b∆1
−c∆1

m1|)+(2−
√

3) max{|c∆1
+b∆1

m1|,|b∆1
−c∆1

m1|}]
(
b2∆1

+ c2
∆1

)
and

a∆2 =
max{1,|m1|, 23 (1+|m1|)}

max{|c∆2
+b∆2

m1|,|b∆2
−c∆2

m1|,, 23(|c∆2
+b∆2

m1|+|b∆2
−c∆2

m1|)}
(
b2∆2

+ c2
∆2

)
, respectively.

The next example we give, shows that the converse of Theorem 3.1 and
hence the converse of the Corollary 3.2 is not valid in R2

TH , that is if a
triangle ABC in R2

TH has a right angle at A, then it satisfies equation (8) or
(16), which is analogue of a2 = b2 + c2 in Euclidean geometry, but if ABC
satisfies equation (8) or (16), then it doesn’t have to has a right angle. That
means there are triangles with no right angle in R2

TH that satisfies equation
(8) or (16).
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Example 3.1. Let C1 be the TH−circle with center O = (0, 0) and ra-
dius r, with vertices labeled counterclockwise as V1, V2,. . ., V8, thus co-

ordinates of these vertices are V1 : (0, r), V2 :
(√

3
3 r,

√
3

3 r
)

, V3 : (r, 0),

V4 :
(√

3
3 r,

√
3

3 r
)

, V5 : (0,−r), V6 :
(
−
√

3
3 r,−

√
3

3 r
)

, V7 : (−r, 0) and V8 :(
−
√

3
3 r,

√
3

3 r
)

. Let A =
(
−1+3

√
3

13 r, 5+2
√

3
13 r

)
be the foot of the perpendic-

ular from O the line segment V1 V8. Consider the circle C2 with center

O′ =
(
−3+4

√
3

39 r, 15−7
√

3
39 r

)
and radius r, where A is to be the vertex V ′8 on

the line with the slope −1 passing through O′. Thus, we obtain the triangle
AOO′ with a right angle at O with the vertices labeled counterclockwise. Let
dTH(O,O′) = c, dTH(O,A) = b and dTH(O′, A) = a, see Figure 4. Let
A′ be a point on the intersection of TH−circle C1 and the TH−circle C2,
implying dTH(O,A) = b and dTH(O′, A′) = a, which yields dTH(O,A′) = b
and dTH(O′, A) = a. Applying equation (8) in the Theorem 3.1 to the tri-
angle AOO′, the equation

[(√
3− 1

)
(1 + |m|) +

(
2−
√

3
)

max {1, |m|}
]
a =(√

3− 1
)

(|bm+ c|+ |cm− b|)+(2−
√

3) max {|bm+ c| , |cm− b|} is obtained.
By a little observation the equation is also valid for the triangle A′OO′ which
has no right angle. Thus, it is shown that the converse of the Theorem 3.1
, and hence the converse of the Corollary 3.2, is not true in R2

TH .

Figure 5:Obtaining the triangle A′OO′ with no right angle which satisfies equation (5) in R2
TH .

Next we provide an example to demonstrate that the converse of Theorem
3.1 and hence the converse of the Corollary 3.2 is not valid in R2

TO, following
similar reasoning to the one given above.

Example 3.2. Let C1 be the TO−circle with center A = (7, 5) and radius 4
and C2 be a TO−circle with center B = (9, 5) and radius 4. As in the Figure
5 these two circles intersect through two line segments. Consider the points
C = (7, 9), C ′ = (8, 9) and the triangles CAB and C ′AB. Since CAB is a
right triangle with right angle at A equation (7) in the Theorem 3.1 holds.
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But clearly dTO (A,C) = dTO (A,C ′) = 4, dTO (B,C) = dTO (B,C ′) = 4,
dTO (A,B) = 2 thus equation (7) is still valid for the triiangle C ′AB which
is not a right triangle. Thus the converse of the Theorem 3.1 , and hence
the converse of the Corollary 3.2, is not true in R2

TO.

Figure 6:Obtaining the triangle ABC ′ with no right angle which satisfies equation (7) in R2
TO.

The following theorem provides the necessary and sufficient conditions for
a triangle in the R2

∆i
where ∆1 = TH and ∆2 = TO to form a right angle.

The sufficient condition is essentially represents an alternative form of the
converse of the Pythagorean theorem.

Theorem 3.2. Let ABC be a triangle in R2
∆i

, with a∆i , b∆i and c∆i repre-
senting the tetrakis hexahedron and truncated octahedron distances of sides
BC,AC,AB for ∆1 = TH and ∆2 = TO respectively. Assume that none
of the sides of triangle ABC is parallel to the y−axis, meaning that m1,m
and m′ are finite. Therefore, CAB is a right angle if and only if

(19) ρ∆i(m1)a2
∆i

= ρ∆i(m)(b2∆i
+ c2

∆i
) = ρ∆i(m

′)(b2∆i
+ c2

∆i
)

where

ρ∆1(x) =
1 + x2[(√

3− 1
)
{1 + |x|}+

(
2−
√

3
)

max {1, |x|}
]2

and

ρ∆2(x) = ρ∆2(m) =
1 + x2[

max
{

1, |x| , 2
3 (1 + |x|)

}]2
Proof. If equation (19) is valid for ∆1, then ρ∆1(m) = ρ∆1(m′) and

ρ∆1(m1)a2
∆1

= ρ∆1(m)b2∆1
+ ρ∆1(m)c2 = ρ∆1(m′)b2∆1

+ ρ∆1(m′)c2.

Therefore it is easily obtained that

(20) ρ(m1)a2 = ρ(m)b2 + ρ(m′)c2
∆1
.
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Using the equation (3) for equation (20) it is found that a2 = b2 + c2 where
a, b, c are the Euclidean lenghts of sides BC,AC,AB . In the Euclidean case
the converse of Pythagorean theorem is valid. So the angle CAB is right
angle.

Now suppose that the angle CAB is right. Then clearly m′ = − 1
m and

thus by equation (4) ρ∆1(m) = ρ∆1(m′). Since a2 = b2 +c2 in the Euclidean
case, and using the equation (3) to Euclidean Pythegorean theorem one can
obtaine the equation (19). By analogous calculations for ∆2 it can be easily
seen that CAB is a right angle if and only if ρ∆2(m1)a2

∆2
= ρ(m)(b2∆2

+

c2
∆2

) + ρ(m′)(b2∆2
+ c2

∆2
).
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