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G.O. Kropina metrics on a specific space

SO(n)/SO(n1)× · · · × SO(ns)

Milad Zeinali Laki and Dariush Latifi

Abstract. The space (M,F ) is called a Finsler g.o. space if every geodesic
of (M,F ) is the orbit of a one-parameter subgroup of G. In this paper, we
study the g.o. Kropina spaces (G/H,F ) such that G is SO(n) and H is
a diagonally embedded product H1 × · · · × Hs, where Hk is of the same
type as G. Indeed, we study the space SO(n)/SO(n1)× · · · × SO(ns) with
0 < n1 + · · · + ns ≤ n. In addition, we will examine some properties of
Kropina spaces.

1. Introduction

Matsumoto is the one who first introduced the concept of (α, β)-metrics
in 1972 [11]. These metrics are actually an extension of a metric called the
Randers metric, which is defined in the form F = α+β. The (α, β)-metrics
have many applications in various sciences such as Physics, Mechanics, Seis-
mology, Biology, Control Theory and etc [1]. If we have F = αϕ(s), s = β

α ,

then F is called an (α, β)-metric where α =
√
ãij(x)yiyj is induced by a

Riemannian metric ã = ãijdx
i ⊗ dxj on a connected smooth n-dimensional

manifold M and β = bi(x)yi is a 1-form on M . We note that, Randers

metrics (F = α + β), Matsumoto metrics (F = α2

α−β ) and square metrics

(F = (α+β)2

α ) are examples of (α, β)-metrics. But when we have ϕ(s) = 1
s ,

we will arrive at a well-known (α, β)-metric called the Kropina metric and
we have

(1) F =
α2

β
.
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Now we consider the Kropina metric F = α2/β on a n-dimensional dif-
ferential manifold M . Another representation of this metric can also be
written. Indeed, a Kropina metric F is characterized by a new Riemann-
ian metric h =

√
hij(x)yiyj on M and a vector field W = W i(∂/∂xi) of

constant length 1 with respect to h and we have:

(2) F (x, y) =
h2(y, y)

2h(y,W )
.

Also in a local coordinate system we can write:

aij := e−k(x)hij , 2Wi := ek(x)bi,

b2 = 4e−k(x), bi = 2e−k(x)Wi,
(3)

for a function k(x) of (xi). In this equations, we used Wi(x) := hij(x)W j(x)
and b2 := aijbibj , where (aij) is the inverse matrix of (aij). The pair (h,W )
is called the navigation data of the Kropina metric F = α2/β or the Kropina
space (M,F ). Consider that (M,F ) be a homogeneous Kropina space. We
note that this space can be written as a coset space G/H with a G-invariant

Kropina metric F = α2

β , where both the Riemannian metric α and the form

β are invariant under the action of G. In particular, the Lie algebra of G, has
a decomposition g = h + m, such that Ad (h) (m) ⊂ m, h ∈ H. Identifying
m with the tangent space To(G/H) at the origin o, we get an H-invariant
inner product on m [10].

Now let (G/H, g) be a homogeneous Riemannian manifold. Suppose
that X 6= 0 ∈ g be a vector. Then we say that (M = G/H, g) is a geo-
desic orbit space (or in short g.o. space) if for any geodesic σ(t) we have
σ(t) = exp aX.o, a ∈ R. Geodesic orbit spaces were first studied and pre-
sented by Kowalski and Vanhecke in 1991 [8]. Recall that, geodesic orbit
spaces is a generalization of Riemannian symmetric spaces. Indeed, the class
of geodesic orbit spaces is larger than the class of symmetric spaces [10].

In [10], We study results on Kropina g.o. spaces and we investigate Kropina
g.o. metrics on compact homogeneous spaces with two isotropy summands.
There was also some discussion about navigation data of non-Riemannian
Kropina g.o. metrics.

In this paper, we consider Kropina g.o. spaces F = G/H. Here we have
G = SO(n) and H = H1 × · · · ×Hs. Recall that Hi is of the same type as
G. Indeed, we study the space

SO(n)/SO(n1)× · · · × SO(ns),

with 0 < n1 + · · · + ns ≤ n. It is worth noting that, this space in-
clude the sphere SO(n)/SO(n− 1), the Stiefel manifold SO(n)/SO(n− k),
the Grassmann manifold SO(n)/SO(k)× SO(n− k) and the flag manifold
SO(n)/SO(n1)× · · · × SO(ns) with n1 + · · ·+ ns = n.
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2. Preliminaries

Suppose that M be a smooth n-dimensional C∞ manifold. Also, let for
every a ∈ M , TaM be the tangent space of M at a and TM = ∪a∈MTaM
be the tangent bundle of M . A Finsler metric on a manifold M is a non-
negative function F : TM → R with the following properties [4]:

(1) F is smooth on TM\{0}.
(2) F (x, λy) = λF (x, y) for any x ∈M , y ∈ TxM and λ > 0.
(3) The following bilinear symmetric form gy : TxM × TxM → R is

positive definite

gy(u, v) =
1

2

∂2

∂s∂t
F 2(x, y + su+ tv)|s=t=0.

The geometrical data in Finsler geometry consists of a smoothly varying
family of Minkowski norms, rather than a family of inner products. (α, β)-
metrics are a good example of Finsler metrics, which, as mentioned earlier,
have many uses. The following definition is a comprehensive definition of
these metrics.

Definition 2.1. [10] Suppose that α =
√
ãij (x) yiyj be a norm induced by a

Riemannian metric ã and β (x, y) = bi(x)yi be a 1-form on an n-dimensional
manifold M . Let

b := ‖β(x)‖α :=
√
ãij(x)bi(x)bj(x).

Now, let the function F is defined as follows

(4) F := αϕ(s), s =
β

α
,

where ϕ = ϕ(s) is a positive C∞ function on (−b0, b0) satisfying

ϕ (s)− sϕ′ (s) +
(
b2 − s2

)
ϕ′′ (s) > 0, |s| ≤ b < b0.

Then F is a Finsler metric if ‖β(x)‖α < b0 for any x ∈M . A Finsler metric
in the form (4) is called an (α, β)- metric.

We recall that, a Finsler space having the Finsler function

(5) F (x, y) =
α2(x, y)

β(x, y)
,

is called a Kropina space. We note that, the Riemannian metric ã induces
an inner product on any cotangent space T ∗xM such that

〈dxi(x), dxj(x)〉 = ãij(x).

This induced inner product on T ∗xM induced a linear isomorphism between

T ∗xM and TxM . Then the 1-form β corresponds to a vector field X̃ on M

such that ã
(
y, X̃ (x)

)
= β (x, y) and also, we have

‖β(x)‖α = ‖X̃(x)‖α.
Thus for Kropina metric F we can write

(6) F (x, y) =
α2(x, y)

ã(X̃(x), y)
,
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where for any x ∈M , we have

√
ã(X̃ (x) , X̃ (x)) = ‖X̃(x)‖α < b0.

Definition 2.2. [9] Consider a Finsler space (M,F ). We say that (M,F ) is
a homogeneous Finsler space if the group of isometries of (M,F ), I(M,F ),
acts transitively on M .

In the following we give a definition of a Finsler g.o. space.

Definition 2.3. Let (M,F ) be a Finsler space and G = I(M,F ) the full
group of isometries. The space (M,F ) is called a Finsler g.o. space if every
geodesic of (M,F ) is the orbit of a one-parameter subgroup of G. That is,
if σ is a geodesic, then there exist W ∈ g = Lie(G) and o ∈M , such that

σ (t) = exp (tW ).o.

Now suppose that (G/H,F ) be a homogeneous Finsler space, and p =
eH ∈ G/H. A vector X ∈ g − {0} is called a geodesic vector if the curve
exp (tX).p is a geodesic. For a geodesic vector the second author give the
following lemma:

Lemma 2.4. [9] A vector X ∈ g− {0} is a geodesic vector if and only if

gXm

(
Xm, [X,Z]m

)
= 0, ∀Z ∈ m,

where the subscript m means the corresponding projection, and g is the fun-
damental tensor of F on m.

The S-curvature of a Finsler space is a quantity to measure the rate of
change of the volume form of a Finsler space along the geodesics. Let V be
an n-dimensional real vector space and F be a Minkowski norm on V . For
a basis {bi} of V , let

σF =
V ol(Bn)

V ol{(yi) ∈ Rn| F (yibi) < 1}
,

where V ol means the volume of a subset in the standard Euclidean space
Rn and Bn is the open ball of radius 1. This quantity is generally dependent
on the choice of the basis {bi}. On the other hand, for every y ∈ V − {0}
we have

τ(y) = ln

√
det (gij(y))

σF
,

is independent of the choice of the basis where (gij) is the fundamental
tensor of F . τ = τ(y) is called the distortion of (V, F ).

Definition 2.5. Let (M,F ) be a Finsler space and τ(x, y) be the distortion
of the Minkowski norm Fx on TxM . For y ∈ TxM\{0}, let σ(t) be the
geodesic with

σ(0) = x and σ̇(0) = y.

Then the quantity

S(x, y) =
d

dt

[
τ
(
σ (t) , σ̇ (t)

)]∣∣∣∣∣
t=0

,

is called the S-curvature of the Finsler space (M,F ).
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Recall that, the S-curvature of Kropina metric F = αφ(s) = α2

β has the

form:

(7) S(o, y) = −(n+ 1)s

b2α(y)

{
− c〈[u, y]m, y〉+

α(y)

2s
〈[u, y]m, u〉

}
,

where u is the vector in m corresponding to the 1-form β.

3. Homogeneous Kropina spaces

In this section, we study some properties of homogeneous Kropina spaces.
Suppose that (M,F = α2/β) be a homogeneous Kropina space. Then we
can written M as M = G/H, where G is a connected transitive subgroup
of the full isometry group and H is the isotropy subgroup of G. Assume
that g = Lie(G), h = Lie(H). Therefore there is a reductive decomposition
of g as a direct sum g = h ⊕ m, where m is an Ad(H)-invariant subspace
of g. In this case it is easily seen that both the underlying Riemannian
metric α and the 1-form β are invariant under G. Also, in the navigation
data (h,W ), both h and W are also G-invariant. This reduces the study of
homogeneous Kropina spaces to the study of invariant Kropina metrics on
reductive homogeneous manifolds. Fixed a G-invariant Riemannian metric
α on G/H. Then there is an one-to-one correspondence between the G-
invariant 1-form on G/H and the H-invariant vector in m. Thus we have
the following Theorem from [5]:

Theorem 3.1. There exists a bijection between the set of invariant vector
fields on G/H and the subspace

V = {u ∈ m| Ad(h)u = u, ∀h ∈ H}.

In the following, we examine the relationship betweenG-invariant Kropina
metrics and Riemannian metrics on a homogeneous space G/H. Recall that
the following Proposition from [7]:

Proposition 3.2. Assume that G is a connected Lie group and H is a closed
subgroup of G such that G/H is a reductive homogeneous space with a re-
ductive decomposition g = h+m. Let h be a G-invariant Riemannian metric
on G/H and suppose z ∈ m is an H-fixed vector. Then the corresponding
invariant vector field z on G/H is a Killing vector field with respect to h if
and only if z satisfies

(8) h([z, z1]m, z2) + h(z1, [z, z2]m) = 0, ∀z1, z2 ∈ m.

Theorem 3.3. Let (G/H,F = α2/β) be a homogeneous Kropina space with
navigation data (h,W ). Then the following three conditions are equivalent:

(1) F has vanishing S-curvature.
(2) The linear mapping ad(u)m, where u is the vector in m corresponding

to β, is skew symmetric with respect to α, i.e.,

(9) 〈[u, x]m, y〉+ 〈x, [u, y]m〉 = 0, ∀x, y ∈ m

Furthermore, this is also equivalent to the condition that the invari-
ant vector field ũ generated by u is a Killing vector field with respect
to α.



84 Milad Zeinali Laki and Dariush Latifi

(3) W is a Killing vector field with respect to h, i.e., the linear mapping
ad(w)m, where w = W |o ∈ m, is skew symmetric with respect to h,

〈[w, x]m, y〉h + 〈x, [w, y]m〉h = 0, ∀x, y ∈ m

where h, denotes the inner product on m induced by h.

Proof. First assume that adm(u) is skew symmetric with respect to α, i.e.,

〈[u, x]m, x〉 = 0, and 〈[u, x]m, u〉 = −〈x, [u, u]m〉 = 0.

Thus by using the formula (7), we conclude that the S-curvature is vanish-
ing. The converse is obvious.

Now suppose that, z1 = z2 = y in relation (8) and then we get the relation
(9) or equivalently we get

(10) 〈[x, y]m, y〉 = 0, ∀y ∈ m.

Conversely, set y = z1 + z2 and by replacing it in equation (10) we get

0 = 〈[x, z1 + z2]m, z1 + z2〉
= 〈[x, z1]m, z1〉+ 〈[x, z2]m, z1〉+ 〈[x, z1]m, z2〉+ 〈[x, z2]m, z2〉
= 〈[x, z2]m, z1〉+ 〈[x, z1]m, z2〉.

(11)

The following theorem shows the relationship between Riemannian g.o.
spaces with Kropina g.o. spaces and was proved by the authors.

Theorem 3.4. [10] Suppose that (M = G/H,F = α2

β ) be a homogeneous

Kropina space with navigation data (h,W ). If (G/H, h) is a Riemannian
g.o. manifold and W is a G-invariant Killing vector field of (G/H, h), then
(M,F ) is a Kropina g.o. space.

Definition 3.5. Let (G/H, g) be a homogeneous Riemannian manifold.
The manifold (G/H, g) is called naturally reductive if there is an Ad(H)-
invariant decomposition g = h + m such that for any X,Y, Z ∈ m, we have
〈[X,Y ]m, Z〉+〈Y, [X,Z]m〉 = 0, or, equivalently, for any X,Y ∈ m, the below
relation fulifuld

〈[X,Y ]m, X〉 = 0.

We note that naturally reductive Riemannian homogeneous spaces are
geodesic orbit spaces.

In Finsler setting, there are two versions of the definition of such spaces.
The first one was given by Deng and Hou in [6]. The second definition was
given by Latifi in [9] as follows:

Definition 3.6. A homogeneous manifold G/H with an invariant Finsler
metric F is called naturally reductive if there exists an Ad(H)-invariant
decomposition g = h + m such that

gy([x, u]m, v) + gy(u, [x, v]m) + 2Cy([x, y]m, u, v) = 0,

where y 6= 0, x, u, v ∈ m and Cy is the Cartan tensor of F at y.

Now we have the following lemma for Kropina spaces:
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Lemma 3.7. [10] Let (M = G/H,F ) be a homogeneous Kropina space with
navigation data (h,W ). Then the Kropina metric F is of Berwald type if
and only if ad(w)m, where w = W |o ∈ m, is skew-symmetric with respect to
h and h(w, [m,m]m) = 0.

4. Kropina geodesic orbit property on the space
SO(n)/SO(n1)× · · · × SO(ns), Σni ≤ n

The goal of this section is to investigate the invariant Kropina geodesic
orbit metrics on the following space:

G/H = SO(n)/SO(n1)× · · · × SO(ns).

Let

n0 := n− (n1 + · · ·+ ns) and H = SO(n1)× · · · × SO(ns).

Recall that H can be embedded diagonally in SO(n), so that we can write:

H ∼=
[
Idn0 0

0 H

]
.

Thus if 0n0 is the n0 × n0 zero matrix, then we have:

(12) h =


0n0 0

so(n1)
. . .

0 so(ns)

 .

We note that the above embedding of H is equivalent
(
via conjugation in

SO(n)
)

to any block-diagonal embedding of the factors SO(nj).
In the following we give the isotropy representation of G/H. Let ς = G→

Aut(V ), ς ′ = G→ Aut(W ) are two representations of G for a subspace W
of a vector space V that we can write V = W ⊕W⊥ with respect to some
invariant inner product on V. Then we remark that for the second exterior
power, the following identity is valid:

Λ2(ς + ς ′) = Λ2ς ⊕ Λ2ς ′ ⊕ (ς ⊗ ς ′).

Let denote the standard representation of SO(n) by

λn : SO(n)→ Aut(Rn).

Then the adjoint representation AdSO(n) of SO(n) is equivalent to Λ2λn.
Now assume that

σni : SO(n1)× · · · × SO(ns)→ SO(ni)

and pi = λni ◦ σni be the projection onto the i-factor and the standard
representation of H respectively. Indeed we have:

SO(n1)× · · · × SO(ns)
σni−→ SO(ni)

λni−→ Aut(Rni).
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So

AdG|H =Λ2λn|H = Λ2(p1 ⊕ · · · ⊕ ps ⊕ Ln0) = Λ2p1 ⊕ · · · ⊕ Λ2ps ⊕ Λ2Ln0

⊕ [(p1 ⊗ p2)⊕ · · · ⊕ (p1 ⊗ ps)]⊕ [(p2 ⊗ p3)⊕ · · · ⊕ (p2 ⊗ ps)]
⊕ · · · ⊕ (ps−1 ⊗ ps)⊕ (p1 ⊗ Ln0)⊕ (p2 ⊗ Ln0)⊕ · · · ⊕ (ps ⊗ Ln0),

where Λ2Ln0 is the sum of
(
n0

2

)
trivial representations. We note that the

dimension of the Λ2p1⊕Λ2p2⊕· · ·⊕Λ2ps is
(
n1

2

)
+ · · ·+

(
ns

2

)
and is equal to

the dimension of AdH = Λ2p1 ⊕ · · · ⊕ Λ2ps. The author in [2] showed that
for h ∈ H,X ∈ h and Y ∈ m, the adjoint representation of G decompose as

AdG(h)(X + Y ) = AdG(h)X +AdG/H(h)Y

. Therefore, if we denote the representation AdG/H by %, then the isotropy
representation of G/H is given by

% =Λ2Ln0 ⊕ (p1 ⊗ p2)⊕ · · · ⊕ (p1 ⊗ ps)⊕ (p2 ⊗ p3)⊕ · · · ⊕ (p2 ⊗ ps)
⊕ · · · ⊕ (ps−1 ⊗ ps)⊕ (p1 ⊗ Ln0)⊕ (p2 ⊗ Ln0)⊕ · · · ⊕ (ps ⊗ Ln0).

(13)

It is worth noting that, the dimension of each of pi ⊗ pj is ni × nj and
each of pi ⊗ Ln0 , i = 1, 2, . . . , s, contains n0 equivalent representations of
dimension ni.

By the isotropy representation of G/H given in above, the decomposition
of the tangent space m of G/H can be written as follows:

(14) m = n1 ⊕ n2 ⊕ · · · ⊕ n(n0
2 )

s⊕
06i<j

mij ,

where we have:

dim(ni) = 1,

m0j = mj
1 ⊕mj

2 ⊕mj
3 ⊕ · · · ⊕mj

n0
,

dim(mj
l ) = nj , l = 1, 2, . . . , n0,

so(n0) ∼= n1 ⊕ · · · ⊕ n(n0
2 ).

Assume that B : so(n)× so(n)→ R given by

B(X,Y ) = −Trace(XY ), X, Y ∈ so(n),

be the Ad(SO(n))-invariant inner product. We obtain a B-orthogonal de-
composition g = h⊕m where h = so(n1)⊕· · ·⊕so(ns), m ∼= To(G/H). Then
we consider the Lie brackets on g = so(n) as follows. Assume that MnR be
the set of real n × n matrices and let Eab ∈ MnR be the matrix with 1 in
the (a, b)-entry and zero elsewhere. Now, for 1 ≤ a < b ≤ n we set

(15) eab := Eab − Eba.
Note that eab = −eba. Recall that the set

B := {eab : 1 ≤ a < b ≤ n},
constitutes a basis of so(n), which is orthogonal with respect to B. The
proof of the following lemma is immediate.

Lemma 4.1. For a, b, c distinct, the only non-zero bracket relations among
the vectors (15) are [eab, ebc] = eac.



G.O. Kropina metrics on a specific space SO(n)/SO(n1)× · · · × SO(ns) 87

We note that, a choice for the modules in the decomposition (14) is:

for 1 ≤ i < j ≤ s :

mij = span{eab : n0 + n1 + · · ·+ ni−1 + 1 ≤ a ≤ n0 + n1 + · · ·+ ni,

n0 + n1 + · · ·+ nj−1 + 1 ≤ b ≤ n0 + n1 + · · ·+ nj},

for 1 ≤ j ≤ s :

m0j = span{eab : 1 ≤ a ≤ n0,

n0 + n1 + · · ·+ nj−1 + 1 ≤ b ≤ n0 + n1 + · · ·+ nj},

and

so(n0) = span{eab: : 1 ≤ a < b ≤ n0}.
In this case, the equivalent modules in the decomposition of m0j are given

by:

mj
l = span{elb : n0+n1+· · ·+nj−1+1 ≤ b ≤ n0+n1+· · ·+nj}, l = 1, . . . , n0.

Also we have:

so(nj) = span{eab : n0+n1+· · ·+nj−1+1 ≤ a < b ≤ n0+n1+· · ·+nj}, j = 1, . . . , s.

Hence, for the B-orthogonal we have the following decomposition:

(16) m = n⊕ p,

where

n = so(n0), p =
s⊕

0≤i<j
mij .

Using the above decomposition, we can obtain the following matrix, which
just shows the upper triangular part of so(n):

so(n) m01 m02 . . . m0s

m01 0n1 m12 . . . m1s

m02 m12 0n2 . . . m2s
...

...
. . .

...
...

m0s m1s m2s . . . 0ns

 ,
The matrices m0j are of size n0 × nj , the matrices mij are of size ni × nj ,

and the matrices so(ni) of size ni × ni. We note that, if n0 = 0 or n0 = 1,
then n = {0}. In the former case, the submodules m0j are zero while in the
latter case they are non-zero and irreducible. Moreover, by using Lemma
(4.1), we have:

(17) [so(ni),mlm] =

{
mlm, if i = l or i = m,

0, otherwise
, 0 ≤ i ≤ s, 0 ≤ l < m ≤ s,

and

(18) [mij ,mjl] = mil, for all 0 ≤ i < j < l ≤ s.

In the Riemannian spaces, we have the following Theorem [3]:
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Theorem 4.2. Assume that G/H be the space

SO(n)/SO(n1)× · · · × SO(ns)

where 0 < n1 + · · · + ns ≤ n, and nj > 1, j = 1, . . . , s. A G-invariant
Riemannian metric on G/H is geodesic orbit if and only if it is a normal
metric, i.e. it is induced from an Ad-invariant inner product on the Lie
algebra so(n) of SO(n).

Now, we have the following Theorem for Kropina g.o. spaces:

Theorem 4.3. Assume that (G/H,F ) be a Kropina space where

G/H = SO(n)/SO(n1)× · · · × SO(ns), 0 < n1 + · · ·+ ns ≤ n

and nj > 1, j = 1, . . . , s. In this case, the kropina metric F = α2

β on G/H

with the navigation data (h,W ) is non-naturally reductive, non-Riemannian
G′-geodesic orbit if and only if h is a G-invariant Riemannian normal metric
and W is induced by w ∈ so(n0) with 〈w,w〉 = 1. We note that, G′ is
generated by G and ψt, the flow of W .

Proof. By Theorem 4.2, for geodesic orbit Riemannian metric g on G/H,
the metric endomorphism A can be written as:

A = λId|m, λ > 0.

The inner product B : so(n)×so(n)→ R where it is Ad
(
SO(n)

)
-invariant,

can be written by

B(X,Y ) = −Trace(XY ), X, Y ∈ so(n).

On the other hand, the geodesic orbit Riemannian metric on G/H is
normal metric by Theorem 4.2. Therefore, for the geodesic orbit Riemannian
metric h we have:

(19) hλ(X,Y ) = λB(X,Y ), λ > 0.

We note that, the trivial Ad(H)-submodule is n = so(n0). Now, for every
w ∈ so(n0), assume that W be the G-invariant vector field on

G/H = SO(n)/SO(n1)× · · · × SO(ns)

with respect to a G-invariant Riemannian g.o. metric 〈, 〉 on G/H of the
form (19). By (17) we have the following relation:

hλ
(
[w,X1]m, X1

)
= λB([w,X1]m, X1) = λB([w,X1], X1) = 0, ∀X1 ∈ m.

Therefore, by Theorem 3.3 W is a G-invariant Killing vector field of 〈, 〉.
Therefor by Theorem 3.4 we have (SO(n)/SO(n1)× · · · × SO(ns), F ) with
navigation data (hλ,W ) is a geodesic orbit Kropina space. Then, a Kropina
metric F on the homogeneous manifold

M = SO(n)/SO(n1)× · · · × SO(ns)

with navigation data (h,W ) is a non-Riemannian Kropina G′ − g.o. metric
if and only if h is a Riemannian G− g.o. metric on M and W is induced by
every non-zero w ∈ so(n0) satisfying 〈w,w〉 = 1, where G′ is generated by
G and ψt, the flow of W .
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Now, by consider the naturally reductivity and Lemma 4.1, we have
[p, p] = so(n0)⊕so(n1+· · ·+ns). Hence, there exist non-zero elements u, v ∈
p such that 〈[u, v]m, w〉 6= 0, where w = W |o 6= 0. Now, by Lemma (3.7),
the above G′-invariant Kropina metrics F with navigation data (hλ,W ) are
non-naturally reductive.

Now we have the following results:

Corollary 4.4. Assume that (G/H,F ) be a Kropina space where

G/H = SO(n)/SO(n1)× · · · × SO(ns), 0 < n1 + · · ·+ ns ≤ n

and nj > 1, j = 1, . . . , s. If n0 = 0 or n0 = 1, then any g.o. Kropina metric
F on G/H with respect to G must be Riemannian.

Proof. In this case, there are no trivial submodules and then we have
n = {0} and then W = 0. Thus F must be Riemannian.

Corollary 4.5. Consider (G/H,F ) be a Kropina space with the navigation
data (h,W ), where

G/H = SO(n)/SO(n1)× · · · × SO(ns), 0 < n1 + · · ·+ ns ≤ n

and nj > 1, j = 1, . . . s. Then the non-naturally reductive, non-Riemannian
G′-geodesic orbit Kropina metric F can be written as:

F (x, Y ) =
F 2

2λ
∑

1≤i<j≤n0
wijaij

,

where, G′ is generated by G, ψt is the flow of W , and

F
M
= 2λ

( ∑
1≤i<j≤n0

a2
ij +

∑
1≤j≤s

∑
1≤k≤n0

n0+···+nj−1<l≤n0+···+nj

b2kl

+
∑

1≤i<j≤s

∑
n0+···+nj−1<p≤n0+···+ni

n0+···+nj−1<q≤n0+···+nj

c2
pq

)
.

Proof. For a Riemanniann metric h and vector field W with h(W,W ) = 1,
we Know that:

F (x, y) =
h2(y, y)

2h(y,W )
.

From Theorem 4.3, for the G-invariant Riemannian g.o. metric hλ, the
navigation data of the non-naturally reductive, non-Riemannian G′-geodesic
orbit Kropina metric F is (hλ,W ). We note that here, W is induced by
w ∈ so(n0) with 〈w,w〉 = 1. Now suppose that, MnR be the set of n × n
matrices and Eab ∈ MnR be the matrix with 1 in the (a, b)-entry and zero
elsewhere. Let eij = Eij − Eji. Also, assume that
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W =
∑

1≤i<j≤n0

wijeij ∈ so(n0),

and

Y =
∑

1≤i<j≤n0

aijeij +
∑

1≤j≤s

∑
1≤k≤n0

n0+···+nj−1<l≤n0+···+nj

bklekl

+
∑

1≤i<j≤s

∑
n0+···+nj−1<p≤n0+···+ni

n0+···+nj−1<q≤n0+···+nj

cpqcpq ∈ m.

Since
eijekl = δjkEil − δjlEik − δikEjl + δilEjk,

and then we have:

hλ(W,Y ) = 2λ
∑

1≤i<j≤n0

wijaij ,

and hence

hλ(X,Y ) = 2λ
( ∑

1≤i<j≤n0

a2
ij +

∑
1≤j≤s

∑
1≤k≤n0

n0+···+nj−1<l≤n0+···+nj

b2kl

+
∑

1≤i<j≤s

∑
n0+···+nj−1<p≤n0+···+ni

n0+···+nj−1<q≤n0+···+nj

c2
pq

)
M
= F.

Therefore, we have

F (x, Y ) =
F 2

2λ
∑

1≤i<j≤n0
wijaij

.
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