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ON RIEMANNIAN CONNECTIONS
AND SEMI-SIMPLICITY OF A LIE ALGEBRA

MANELO ANONA

Abstract. Using a almost product structure defined by a spray, we give
a necessary and sufficient condition, for a linear connection with vanishing
torsion to be Riemannian and, for the semi-simplicity of Lie algebra of pro-
jectable vector fields which commute with a spray. In the general case, we
propose some properties that allow recognizing a semi-simple Lie algebra

1. Introduction

The object of this paper is a review and a complement of our results
in [1], [2], [3] and [4]. All considered objects are smooth. Let M be a
connected paracompact differentiable manifold of dimension n ≥ 2, J the
vector 1−form defining the tangent structure, C the Liouville field on the
tangent space TM , S a spray. We denote Γ = [J, S], Γ is an almost product
structure: Γ2 = I, I being the identity vector 1-form. We can consider Γ
[9] as a linear connection with vanishing torsion. The curvature of Γ is then
the Nijenhuis tensor of h, R = 1

2 [h, h], with h = I+Γ
2 . We will give some

properties of R. We then study a linear connection coming from a metric. At
the end, we are interested in the Lie algebra AS = {X ∈ χ(TM) | [X,S] =
0}, where χ(TM) denotes the set of all vector fields on TM .
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2. Preliminaries

We recall the bracket of two vectors 1−form K and L on a manifold M
[8],

[K,L](X,Y ) = [KX,LY ] + [LX,KY ] +KL[X,Y ] + LK[X,Y ]−K[LX, Y ]

−L[KX,Y ]−K[X,LY ]− L[X,KY ]

for all X, Y ∈ χ(M).
The bracket NL = 1

2 [L,L] is called the Nijenhuis tensor of L. The Lie
derivative LX with respect to X applied to L can be written

[X,L]Y = [X,LY ]− L[X,Y ].

The exterior derivation dL is defined in [5]: dL = [iL, d].
Let Γ be an almost product structure. We denote

h =
1

2
(I + Γ) and v =

1

2
(I − Γ),

The vector 1−form h is the horizontal projector, projector of the subspace
corresponding to the eigenvalue +1, and v the vertical projector correspond-
ing to the eigenvalue −1. The curvature of Γ is defined by R = 1

2 [h, h], which

is also equal to 1
8 [Γ,Γ].

The Lie algebra AΓ is defined by

AΓ = {X ∈ χ(TM) such that [X,Γ] = 0}.
The nullity space of the curvature R is:

NR = {X ∈ χ(TM) such that R(X,Y ) = 0, ∀ Y ∈ χ(TM)}.

Definition 2.1. A second order differential equation on a manifold M is a
vector field S on the tangent space TM such that JS = C.
Such a vector field on TM is also called a semi-spray on M , S is a spray
on M if S is homogeneous of degree 1: [C, S] = S.
In what follows, we use the notation in [9] and [15] to express a geodesic
spray of a linear connection. In local natural coordinates on an open set U
of M , (xi, yj) are the coordinates in TU , a spray S is written

S = yi
∂

∂xi
− 2Gi(x1, . . . , xn, y1, . . . , yn)

∂

∂yi
.

For a connection Γ = [J, S], the coefficients of Γ become Γji = ∂Gj

∂yi
and

the projector horizontal is

h(
∂

∂xi
) =

∂

∂xi
− Γji

∂

∂yj
, h(

∂

∂yj
) = 0

the projector vertical

v(
∂

∂xi
) = Γji

∂

∂yj
, v(

∂

∂yj
) =

∂

∂yj

The curvature R = 1
2 [h, h] become

R =
1

2
Rkijdx

i ∧ dxj ⊗ ∂

∂yk
with Rkij =

∂Γki
∂xj
−
∂Γkj
∂xi

+ Γli
∂Γkj
∂yl
− Γlj

∂Γki
∂yl

,

i, j, k, l ∈ {1, . . . , n}.



32 Manelo Anona

As the functions Gk are homogeneous of degree 2, the coefficients Γkij =
∂2Gk

∂yi∂yj
do not depend on yi, i ∈ {1, . . . , n}. We then have Rkij = ylRkl,ij(x),

the Rkl,ij(x) depend only on the coordinates of the manifold M .

3. Properties of curvature R

Proposition 3.1 ([14]). The horizontal nullity space of the curvature R is
involutive. The elements of AΓ are projectable vector fields.

Proof. From the expression of the curvature R and taking into account
h2 = h, we have

R(hX, Y ) = v[hX, hY ],

If hX ∈ NR, we obtain v[hX, hY ] = 0 ∀Y ∈ χ(TM).
Using the Jacobi Identity, for all hX and hY ∈ NR, we find v[[hX, hY ], hZ] =
0 ∀Z ∈ χ(TM). As we have h[hX, hY ] = [hX, hY ], the horizontal nullity
space of the curvature R is involutive.
We notice that AΓ = Ah = Av.
For X ∈ Ah, we obtain

[X,hY ] = h[X,Y ] ∀Y ∈ χ(TM).

If Y is a vertical vector field, we have h[X,Y ] = 0. This means that X is a
projectable vector field.

Proposition 3.2 ([1]). Let X be a projectable vector field. The two following
relations are equivalent

i) [hX, J ] = 0
ii) [JX, h] = 0

Proof. See proposition 3 of [1].

Proposition 3.3 ([3]). We assume that hNR is generated as a module by
projectable vector fields. If the rank of the nullity space hNR of the curvature
R is constant, there exists a local basis of hNR satisfying Proposition 3.2.

Proof. See proposition 4 of [3].

4. Riemannian manifolds

Given a function E from TM = TM − {0} in R+, with E(0) = 0, C∞ on
TM , C2 on the null section, homogeneous of degree two, such that ddJE has
a maximal rank. The function E defines a Riemannian manifold on M . The
map E is called an energy function, its fundamental form Ω = ddJE defines
a spray S by iSddJE = −dE [10], the derivation iS being the inner product
with respect to S. The vector 1−form Γ = [J, S] is called the canonical
connection [9]. The fundamental form Ω defines a metric g on the vertical
bundle by g(JX, JY ) = Ω(JX, Y ), for all X, Y ∈ χ(TM). There is [9], one
and only one metric lift D of the canonical connection such that:

JT(hX, hY ) = 0, T(JX, JY ) = 0 (T(X,Y ) = DXY −DYX − [X,Y ]);

DJ = 0; DC = v;DΓ = 0; Dg = 0.
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The linear connection D is called Cartan connection. We have

DJXJY = [J, JY ]X, DhXJY = [h, JY ]X.

From the linear connection D, we associate a curvature

(1) R(X,Y )Z = DhXDhY JZ −DhYDhXJZ −D[hX,hY ]JZ

for all X, Y , Z ∈ χ(TM). The relationship between the curvature R and R
is

R(X,Y )Z = J [Z,R(X,Y )]−[JZ,R(X,Y )]+R([JZ,X], Y )+R(X, [JZ, Y ]).

for all X, Y , Z ∈ χ(TM). In particular,

R(X,Y )S = −R(X,Y ).

In natural local coordinates on an open set U of M , (xi, yj) ∈ TU , the
energy function is written

E =
1

2
gij(x

1, . . . , xn)yiyj ,

where gij(x
1, . . . , xn) are symmetric positive functions such that the matrix

(gij(x
1, . . . , xn)) is invertible. And the relation iSddJE = −dE gives the

spray S

S = yi
∂

∂xi
− 2Gi(x1, . . . , xn, y1, . . . , yn)

∂

∂yi
,

with Gk = 1
2y

iyjγikj ,

where γikj = 1
2(
∂gkj
∂xi

+ ∂gik
∂xj
− ∂gij

∂xk
) and γkij = gklγilj .

We have Gk = 1
2y

iyjγkij .

Proposition 4.1. Let E be an energy function, Γ a connection such that
Γ = [J, S]. The following two relationship are equivalent:

i) iSddJE = −dE;
ii) dhE = 0.

Proof. See proposition 1 [3].

Proposition 4.2. For a connection satisfying the Proposition 4.1, the scalar
1−form dvE is completely integrable.

Proof. The Kernel of dvE is formed by vector fields belonging to the
horizontal space Imh (v ◦ h = 0) and vertical vector fields JY such that
LJYE = 0, Y ∈ Imh, taking into account vJ = J .
As we have

[hX, hY ] = h[hX, hY ] + v[hX, hY ] = h[hX, hY ] +R(X,Y ),

for all X, Y ∈ χ(TM), and that dhE = 0 implies dRE = 0. We obtain

[hX, hY ] ∈ KerdvE.
Its remains to show that Lv[hX,JY ]E = 0 ∀X ∈ Imh and, Y ∈ Imh satisfying
LJYE = 0. This is immediate since we have v = I − h.

Proposition 4.3. On a Riemannian manifold (M,E), the horizontal nullity
space hNR of the curvature R is generated as a module by projectable vector
fields belonging to hNR and, orthogonal to the image space ImR of the
curvature R and hNR = hNR.
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Proof. If R◦ = iSR is zero, then the curvature R is zero; in this case,
the horizontal space Imh is the horizontal nullity space of R, isomorphic to
χ(U), U being a open set of M [5].
In what follows, we assume that R◦ 6= 0. According to relation (4.2) of
[3], JX ⊥ ImR ⇐⇒ R(S,X)Y = 0 ∀Y ∈ χ(TM). We obtain R(X,Y ) =
R◦([JY,X]) ∀Y ∈ χ(TM). As R is a semi-basic vector 2−form, the above
relation is only possible if X = S or if X ∈ hNR, then X is generated as a
module by projectable vector fields belonging to hNR. We get hNR = hNR.

Theorem 4.1. Let Γ = [J, S] be a linear connection. The connection Γ
comes from a energy function if and only if

(1) there is an energy function E0 such that dRE0 = 0;
(2) the scalar 1−form dvE0 is completely integrable.

Then, there exist a constant ϕ(x) on the bundle such that eϕ(x)E0 is the
energy function of Γ.

Proof. Both conditions are necessary according to the Proposition 4.1 and
4.2.
Conversely, let E0 be an energy function such that dRE0. We will show that,
there exist a constant ϕ function on the bundle such that dh(eϕE0) = 0.
The equation is equivalent to

dϕ = − 1

E0
dhE0.

The condition of integrability of such an equation is

d(
1

E0
) ∧ dhE0 +

1

E0
ddhE0 = 0,

namely

ddhE0 =
dE0

E0
∧ dhE0.

As dvE0 is completely integrable, we have, according to Frobenius theorem,

ddvE0 ∧ dvE0 = 0

Applying the inner product iC to the above equality, we get

ddvE0 =
dE0

E0
∧ dvE0,

that is to say

ddhE0 =
dE0

E0
∧ dhE0.

This is the condition of integrability sought.
For more information see [3].

5. Lie algebra defined by spray

Let AS = {X ∈ χ(TM) such that [X,S] = 0}. By developing the calcu-
lation [X,S] = 0, we note that the projectable elements of AS are, on an
open set U of M , of the form:

X = Xi(x)
∂

∂xi
+ yj

∂Xi

∂xj
∂

∂yi
.
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Denoting χ(M) the complete lift of the vector fields χ(M) on TM , the

projectable elements of AS are in AS ∩χ(M). The geodesic spray of a linear
connection is defined locally by

ẍi = −Γijkẋ
j ẋk.

A result from [12] shows that the dimension of the Lie algebra AS is at
most equal to n2 + n. If the dimension AS equal to n2 + n, then (M,S)
is isomorphic to (Rn, Zλ) for a unique λ ∈ R, Zλ is given by the equations
ẍi = λẋi, i = 1, . . . , n. This condition is equivalent to the nullity of the
curvature R of Γ cf.[5]. We can see this property on example 5 of [4]. In the
following, we are interested in the nature of the algebra AS . By associating
the equality [X,S] = 0 with the tangent structure J using the Jacobi identity
[8], we can write

[[X,S], J ] + [[S, J ], X] + [[J,X], S] = 0.

Taking into account the hypothesis [X,S] = 0 and a result of [11]: [J,X] = 0,
we find

[X,Γ] = 0 with Γ = [J, S].

We notice that [C, J ] = −J and [C,X] = 0, we then take Γ = [J, S] with
[C, S] = S.
The 1−vector form Γ is a linear connection without torsion in the sense of
[9].

Proposition 5.1 ([1]). The Lie algebra AS coincides with AΓ = AΓ∩χ(M).

Proof. See proposition 9 of [1].

Proposition 5.2. [14] Let H◦ denote the set of projectable horizontal vector
fields and AΓ ∩H◦ = AhΓ, then we have AhΓ = NR ∩H◦ and AhΓ is an ideal
of AΓ.

Proof. The curvature R is written, for all X,Y ∈ χ(TM)

R(X,Y ) = v[hX, hY ].

If hX ∈ AhΓ, we have R(X,Y ) = v◦h[hX, Y ] = 0,∀Y ∈ χ(TM). That means
X ∈ NR.
The curvature R is written, for all X,Y ∈ χ(TM)

R(X,Y ) = [hX, hY ] + h2[X,Y ]− h[hX, Y ]− h[X,hY ].

If X ∈ NR ∩H◦, given hX = X and R(X,Y ) = 0 for all Y ∈ χ(TM), we
find [X,hY ] = h[X,hY ].
If Y is a vertical vector field, the above equality still holds, because it is
zero.
For the ideal AhΓ, it is immediate from the expression of AΓ.

Proposition 5.3. Let AΓ
h

= AhΓ∩AΓ, the set of the horizontal vector fields

AΓ
h

form a commutative ideal of AΓ. The dimension of AΓ
h

corresponds to
the dimension of AhΓ if the rank of AhΓ is constant.
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Proof. By Proposition5.2, AhΓ is an ideal of AΓ, so AΓ
h

= AhΓ ∩ χ(M) is

an ideal of AΓ = AΓ ∩ χ(M), moreover v[X,Y ] = 0, for all X,Y ∈ AΓ
h
.

Propositions 3.2 and 2 of [1] give J [X,Y ] = 0, for all X,Y ∈ AΓ
h
, noting

that [J,Γ] = 0. The horizontal and vertical parts of [X,Y ] are therefore
zero, that is, [X,Y ] = 0.

The existence of such an element of AΓ
h

is given by the proposition3.3.

6. Case of constant values of AΓ

If we expand the equation [X,S] = 0 with S = [C, S], we get

X l
∂Γkij
∂xl

+
∂X l

∂xj
Γkil +

∂X l

∂xi
Γklj +

∂2Xk

∂xi∂xj
− ∂Xk

∂xl
Γlij = 0.

we note that the constant values of AΓ verify

(2) X l
∂Γkij
∂xl

= 0

Proposition 6.1. Le Γ be a linear connection without torsion. If the con-
stant vector fields of AΓ form a commutative ideal of AΓ, they are at most
the constant elements of an ideal I of affine vector fields containing these
constants such that for all X ∈ AΓ, X is written X = X1 +X2 with X2 ∈ I
and that [X1, X2] = 0, the derived ideal of AΓ never coincides with AΓ.

Proof.

1st case:: The functions Gk do not depend on some coordinates in an
open set U of M . To simplify, quite to change the numbering order

of the coordinates, the spray S is such that ∂Gk

∂xp+1 = 0, . . . , ∂G
k

∂xn = 0,

k ∈ {1, . . . , n} and 1 ≤ p ≤ n − 1. Then, we have ∂
∂xp+1 , . . . ,

∂
∂xn ∈

AΓ(U).
For any X ∈ AΓ(U), we can write

X = Xi ∂

∂xi
+ yj

∂Xi

∂xj
∂

∂yi

=

p∑
l=1

(X l ∂

∂xl
+ yj

∂X l

∂xj
∂

∂yl
) +

n∑
r=p+1

(Xr ∂

∂xr
+ yj

∂Xr

∂xj
∂

∂yr
), 1 ≤ j ≤ n.

For the Lie sub-algebra generated by { ∂
∂xp+1 , . . . ,

∂
∂xn } form an ideal

of AΓ(U), we must have [ ∂
∂xh

, X] belong to this ideal for all h, p+1 ≤
h ≤ n.

That implies ∂Xl

∂xh
= 0, for all l such that 1 ≤ l ≤ p and for all h such

that p+ 1 ≤ h ≤ n.
We have Xr = arsx

s + br, p+ 1 ≤ r, s ≤ n; ars, b
r ∈ R.

Denoting

X1 =

p∑
l=1

(X l ∂

∂xl
+ yj

∂X l

∂xj
∂

∂yl
), 1 ≤ j ≤ n

X2 =

n∑
r=p+1

(arsx
s + br)

∂

∂xr
+ arsy

s ∂

∂yr
, p+ 1 ≤ s ≤ n.
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An element X ∈ AΓ, X is written X = X1 +X2 with [X1, X2] = 0.
2nd case:: The elements of AΓ are of the form al ∂

∂xl
, l ∈ {1, . . . , p}.

The decomposition of the elements of AΓ amounts to the same way.
In any case, the derived ideal of AΓ never coincides with AΓ.

Theorem 6.1. The Lie algebra AΓ is semi-simple if and only if the hori-
zontal and projectable vector fields of the nullity space of the curvature R is
zero and the derived ideal of AΓ coincides with AΓ.

Proof. If the Lie algebra AΓ is semi-simple, any commutative ideal of AΓ

reduces to zero by definition. According to the proposition 5.3, the horizon-
tal and projectable vector fields of the nullity space of the curvature R of Γ
is zero. The derived ideal of AΓ coincides with AΓ by a classical result.
Conversely, if X ∈ AΓ, we have [X,h] = 0. According to the Jacobi Iden-
tity cf.[8] [X, [h, h]] = 0, ie. [X,R] = 0. We can write [X,R(Y,Z)] =
R([X,Y ], Z) +R(Y, [X,Z]), for all Y,Z ∈ χ(TM). If X and Y are elements
of a commutative ideal of AΓ, we find

[X,R(Y , Z)] = R(Y , [X,Z]), ∀Z ∈ χ(TM).(3)

If the horizontal and projectable vector fields of the nullity space of the
curvature R is zero, the semi-basic vector 2−form R is non-degenerate on
χ(M) × χ(TM). The only possible case for the equations (3) is that the
commutative ideal of AΓ is at most formed by constant vector fields of AΓ,
according to the proposition 6.1, the derived ideal of AΓ never coincides with
AΓ if this ideal formed by constant vector fields is not zero.

Example 6.1. We take M = R3, a spray S:

S = y1 ∂

∂x1
+ y2 ∂

∂x2
+ y3 ∂

∂x3
− 2(ex

3
(y1)2 + y2y3)

∂

∂y1
.

and the linear connection Γ = [J, S]. The non-zero coefficients of Γ are

Γ1
1 = 2ex

3
y1, Γ1

2 = y3, Γ1
3 = y2.

A base of the horizontal space of Γ is written

∂

∂x1
− 2ex

3
y1 ∂

∂y1
,

∂

∂x2
− y3 ∂

∂y1
,

∂

∂x3
− y2 ∂

∂y1
.

The horizontal nullity space of the curvature is generated as a module by

(y1 − y2)
∂

∂x2
+ y3 ∂

∂x3
− y1y3 ∂

∂y1
.

The horizontal nullity space is not generated as a module by projectable vec-
tor fields in hNR. This linear connection according to the proposition 4.3
cannot come from an energy function.
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The Lie algebra AΓ is generated as Lie algebra by:

g1 = x1 ∂

∂x1
+ x2 ∂

∂x2
− ∂

∂x3
+ y1 ∂

∂y1
+ y2 ∂

∂y2
, g2 =

∂

∂x1
, g3 =

∂

∂x2
.

The Lie algebra AΓ is that of affine vector fieds containing the commutative
ideal {g2, g3}.

7. Lie algebras of infinitesimal isometries

Definition 7.1. A vector field X on a Riemannian manifold (M,E) is called
infinitesimal automorphism of the symplectic form Ω if LXΩ = 0.
The set of infinitesimal automorphisms of Ω forms a Lie algebra. We denote
this Lie algebra by Ag, in general of infinite dimension.

Theorem 7.1. We denote Ag = Ag ∩ χ(M). The Lie algebra Ag is semi-
simple if and only if the horizontal nullity space of the Nijenhuis tensor of
Γ is zero and, the derived ideal of Ag coincides with Ag.

Proof. This is the application of proposition 4.3 and theorem 6.1.
For more information, see [2] and [4].

Example 7.1. We take M = R4 and the energy function is written:

E =
1

2
(ex

3
(y1)2 + (y2)2 + ex

1
(y3)2 + ex

2
(y4)2).

The non-zero linear connection coefficients are

Γ1
1 =

y3

2
, Γ1

3 = −y
3ex

1−x3 − y1

2
, Γ2

4 = −y
4ex

2

2
,

Γ3
1 = −y

1ex
3−x1 − y3

2
, Γ3

3 =
y1

2
, Γ4

2 =
y4

2
, Γ4

4 =
y2

2
.

The horizontal nullity space of the curvature is zero.
The Lie algebra AΓ is generated as Lie algebra by:

g1 = x4 ∂

∂x2
− (−e−x2 +

(x4)2

4
)
∂

∂x4
+ y4 ∂

∂y2
− (

x4y4

2
+ y2e−x

2
)
∂

∂y4
,

g2 = −2
∂

∂x2
+ x4 ∂

∂x4
+ y4 ∂

∂y4
, g3 =

∂

∂x4
, g4 =

∂

∂x1
+

∂

∂x3
.

We see that g4 is the center of AΓ corresponding to the second case of the
proposition 6.1, while the Lie algebra Ag is generated as a Lie algebra by

g1, g2, g3. The Lie algebra Ag is simple and isomorphic to sl(2).

8. Finite dimensional Lie algebra

In this section, we consider only a finite-dimensional Lie algebra over the
field K of zero characteristic class. The notions and notations are those of
[7].

Theorem 8.1. The Lie algebra g is semi-simple if and only if the adjoint
representation of g is semi-simple and the derived ideal of g coincides with
g.
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Proof. The condition is necessary, see Lemma 1 p.72 [7].
Conversely, if the adjoint representation of g is semi-simple, by definition,
the Lie algebra is reductive. By Proposition 5 b) p.78 [7], the derived ideal
of g is semi-simple. Since g = [g, g], then g is semi-simple.

Theorem 8.2. The Lie algebra g is semi-simple if and only if the adjoint
representation of g is semi-simple and the center of g is reduced to {0}.

Proof. This is a consequence of proposition 5 g) p.78 [7].

Theorem 8.3. The Lie algebra g is semi-simple if and only if the derived
ideal coincides with g, any derivation is inner and the radical of g is a
commutative ideal.

Proof. The necessary conditions are well known.
Conversely, let r be the radical of g which is a commutative ideal by hypothe-
sis. Let e1, . . . , ep, ep+1, . . . , en be a base of g such that e1, . . . , ep (p < n) be-
long to r and ep+1, . . . , en a basis of a Levi subalgebra of g. By defining a lin-
ear map D such that D(ei) = ei, 1 ≤ i ≤ p, and D(ep+1) = 0, . . . , D(en) = 0,
the map D is a derivation of g, its trace function is equal to p. If g = [g, g],
the adjoint representation of g belongs to sl(g) which is semi-simple [7] p.71.
Its trace function is zero. We end up with a contradiction if r 6= 0 and if the
derivation D is inner.

Remark 8.1. We can see such reasoning in an example [4] §5.

Remark 8.2. For Lie algebras of countable dimension, see our results in
[13].

Remark 8.3. The radical of the Lie algebra of the example [6] is not com-
mutative.
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