

Parametrization of algebraic points on the hyperelliptic curve of affine equation $y^2 = x(x-2)(x-3)(x-6)(x-9)$

$$y^2 = x(x-2)(x-3)(x-6)(x-9)$$

MOHAMADOU MOR DIOGOU DIALLO

Abstract. We describe the families of algebraic points of degree at most $\ell \geq 5$ on the hyperelliptic curve \mathcal{C} with equation:

$$y^2 = x(x-2)(x-3)(x-6)(x-9).$$

First, we give a Q-base arising from linear systems and an explicit expression for the Mordell-Weil group of rational points of the Jacobian. Then, we use one of the fundamental Abel-Jacobi theorems to describe a principal divisor of the rational and central function of this work. Finally, following the different cases associated to the integer α_k , we can exhibit families of points.

1. Introduction

Let \mathcal{C} be a smooth projective plane curve defined over \mathbb{Q} . For all algebraic extension field \mathbb{K} of \mathbb{Q} , we denote by $\mathcal{C}(\mathbb{K})$ the set of \mathbb{K} -rational points of \mathcal{C} on \mathbb{K} and by $\mathcal{C}^{(\ell)}(\mathbb{Q})$ the set of algebraic points of degree d over \mathbb{Q} i.e $\mathcal{C}^{(\ell)}(\mathbb{Q}) = \bigcup \mathcal{C}(\mathbb{K})$. The degree of an algebraic point R is the degree of its

field of definition on \mathbb{Q} i.e $\deg(R) = [\mathbb{Q}(R) : \mathbb{Q}]$. It's well known that the determination of $\mathcal{C}(\mathbb{K})$ is a difficult problem in number theory beacause there is still no general algorithm to compute $\mathcal{C}(\mathbb{K})$. In the case $g \geq 2$, the theorem of Fatlings proves that $\mathcal{C}(\mathbb{K})$ is finite but this proof is not effective [7]. If the genus $g \geq 2$ and by the well known theorem of Mordell-Weil [2, 10, 13] for any number field $\mathbb K$ and any curve $\mathcal C$ the groupe of its $\mathbb K$ -rational points $\mathcal{C}(\mathbb{K})$ is finitely generated. In other $\mathcal{J}(\mathbb{K}) \cong \mathcal{J}(\mathbb{K})_{tor} \times \mathbb{Z}^r$ where $\mathcal{J}(\mathbb{K})_{tor}$ is a finite torsion subgroups and r is a positive integer called the rank of $\mathcal{J}(\mathbb{K})$. If the rank is null, then we have equality $\mathcal{J}(\mathbb{K}) = \mathcal{J}(\mathbb{K})_{tor}$; in this case we can use the theorem of Riemann-Roch to determine the basis of the associate linear systems to the curve. Every linear system is a vectorial on K of finite dimension. By using the Abel-Jacobi theorem [1] we can give a parametrisation of algebric points of given degree of \mathcal{C} over \mathbb{Q} .

Keywords and phrases: Mordell-Weil Group, Jacobian, Special algebraic curves and curves of low genus.

(2020) Mathematics Subject Classification: 14L40, 14H15, 14H45. Received: 03.11.2024. In revised form: 12.04.2025. Accepted: 01.03.2025. In this paper, we consider the curve \mathcal{C} of affine equation

$$y^2 = x(x-2)(x-3)(x-6)(x-9),$$

this curve \mathcal{C} is a hyperelliptic curve of genus g=2 (see [3, 9]) and the Mordell-Weil groupe $\mathcal{J}(\mathbb{Q})$ of \mathcal{C} is finite, so we can give a parametrisation of $\mathcal{C}^{(\ell)}(\mathbb{Q})$. We begin by presenting the essential results, then state the main theorem and finally demonstrate it.

2. Auxiliary results

Definition 2.1. For a divisor $D \in Div(\mathcal{C})$, we define the \mathbb{Q} -vector space denoted $\mathcal{L}(D)$ by:

$$\mathcal{L}(D) := \{ f \in \mathbb{K}(\mathcal{C}) \setminus \{0\} \mid div(f) \ge -D \} \cup \{0\}.$$

Corollary 2.1. According to [11], for two divisors D and D' of div(C), we have the following implications:

$$D \equiv D' \Longrightarrow \mathcal{L}(D) \simeq \mathcal{L}(D') \Longrightarrow \dim \mathcal{L}(D) = \dim \mathcal{L}(D').$$

Lemma 2.1. According to [12], we have: $\mathcal{J}(\mathbb{Q}) \cong (\mathbb{Z}/2\mathbb{Z})^4$.

Let $x = \frac{X}{Z}$ and $y = \frac{Y}{Z}$ be rational functions defined on \mathbb{Q} .

(1)
$$y^2 = \prod_{k=0}^{4} (x - \gamma_k),$$

with $\gamma_k \in \{0, 2, 3, 6, 9\}$ recpectively for $k \in \{0, \dots, 4\}$. Let x, y be the affine coordinates and X, Y and Z the projective coordinates. Let's say: $x = \frac{X}{Z}$ and $y = \frac{Y}{Z}$. The projective equation of the curve is given by:

$$Z^{3}Y^{2} = \prod_{k=0}^{4} (X - \gamma_{k}Z).$$

We note P_k and ∞ the points of \mathcal{C} defined by: $P_k = [\gamma_k : 0 : 1]$ and $\infty = [1 : 0 : 0]$.

Lemma 2.2. For curve C, we have the following rationnal divisors:

i): $div(x - \gamma_k) = 2P_k - 2\infty$ with $P_k = [\gamma_k : 0 : 1]$, $k \in \{0, \dots, 4\}$ and $\gamma_k \in \{0, 2, 3, 6, 9\}$.

ii):
$$div(y) = \sum_{k=0}^{4} P_k - 5\infty$$
.

Proof. We will carry out a calculation of this type:

$$div(t - \omega) = (t = \omega Z) \cdot \mathcal{C} - (Z = 0) \cdot \mathcal{C},$$

where
$$\omega = \left\{ \begin{array}{ll} x & \text{and } \Omega = \left\{ \begin{array}{ll} X & \text{see [6]} \end{array} \right. \right.$$

Corollary 2.2. The following results are the consequences of Lemma 2.2:

$$*: \sum_{k=0}^{4} j(P_k) = 0,$$

$$\circledast$$
: $2j(P_k) = 0$ where $k \in \{0, ..., 4\}$.

Thus, The $j(P_{k_{k\in\{0,\ldots,4\}}})$ generate the same subgroup $\mathcal{J}(\mathbb{Q})$.

Remark 2.1. The generator of the torsion group of rational points of the Jacobian $\mathcal{J}(\mathbb{Q})_{tor}$ described in [8] is given by:

$$\mathcal{J}(\mathbb{Q})_{tor} \simeq \langle [P_0 - \infty], [P_1 - \infty], [P_2 - \infty], [P_3 - \infty] \rangle.$$

From Lemma 2.1 and Remark 2.1, we derive the following Lemma:

Lemma 2.3. The mordell-weil group $\mathcal{J}(\mathbb{Q})$ of the curve \mathcal{C} of affine equation $y^2 = \prod_{k=0}^{\infty} (x - \gamma_k)$ is given by:

$$\mathcal{J}(\mathbb{Q}) = \left\{ \sum_{k=0}^{3} \alpha_k j(P_k) \mid \alpha_k \in \{0, 1\} \right\}.$$

Lemma 2.4.

1: We have the following linear systems:

- $\mathcal{L}(\infty) = \langle 1 \rangle$,
- $\mathcal{L}(2\infty) = \mathcal{L}(3\infty) = \mathcal{L}(\infty) \oplus \langle x \rangle$,
- $\mathcal{L}(4\infty) = \mathcal{L}(3\infty) \oplus \langle x^2 \rangle$,
- $\mathcal{L}(5\infty) = \mathcal{L}(4\infty) \oplus \langle y \rangle$, $\mathcal{L}(6\infty) = \mathcal{L}(5\infty) \oplus \langle x^3 \rangle$,
- $\mathcal{L}(7\infty) = \mathcal{L}(6\infty) \oplus \langle yx \rangle$,
- $\mathcal{L}(8\infty) = \mathcal{L}(7\infty) \oplus \langle x^4 \rangle$,
- $\mathcal{L}(9\infty) = \mathcal{L}(8\infty) \oplus \langle yx^2 \rangle$
- $\mathcal{L}(10\infty) = \mathcal{L}(9\infty) \oplus \langle x^5 \rangle$,
- $\mathcal{L}(11\infty) = \mathcal{L}(10\infty) \oplus \langle yx^3 \rangle$,

2: Generaly for $m \in \mathbb{N}$, a \mathbb{Q} -basis of the space $\mathcal{L}(m\infty)$ is given by:

$$\mathcal{B}_m = \left\{ x^i \mid i \in \mathbb{N} \text{ and } i \leq \frac{m}{2} \right\} \bigcup \left\{ yx^j \mid j \in \mathbb{N} \text{ and } j \leq \frac{m-5}{2} \right\}$$

Proof. see [4, 5, 6].

3. Main result

The main result of this paper is the following theorem:

Theorem 3.1. The set of algebraic points of degree at most $\ell \geq 5$ over \mathbb{Q} on the curve C of affine equation $y^2 = \prod_{k=1}^{n} (x - \gamma_k)$ is given by

$$C^{(\ell)}(\mathbb{Q}) = \begin{pmatrix} 4 \\ \bigcup_{k=0}^{4} \mathcal{K}_{s,k} \\ k = 0 \\ s \in \{0,1\} \end{pmatrix} \bigcup \begin{pmatrix} 3 \\ \bigcup_{\kappa,\vartheta = 0}^{3} \mathcal{P}_{\kappa,\vartheta} \\ \kappa,\vartheta = 0 \\ \kappa \neq \vartheta \end{pmatrix} \bigcup \begin{pmatrix} 3 \\ \bigcup_{\sigma = 0}^{3} \mathcal{M}_{\sigma} \end{pmatrix}, \text{ with:}$$

$$\mathcal{K}_{s,k} = \left\{ \begin{pmatrix} \sum_{i=s}^{\frac{\ell+s}{2}} a_i \left(x^i + s \gamma_k^i \right) \\ x, -\frac{i=s}{2} a_i \left(x^i + s \gamma_k^i \right) \\ \sum_{j=0}^{2} b_j x^j \end{pmatrix} \middle| \begin{array}{l} a_0 \ and \ b_0 \ non-zero, \\ a_{\frac{\ell+s}{2}} \neq 0 \ if \ \ell \ is \ even, \\ b_{\frac{\ell+s-5}{2}} \neq 0 \ if \ \ell \ is \ odd \\ and \ x \ is \ a \ solution \\ of \ the \ equation: \\ \begin{pmatrix} \sum_{i=s}^{\frac{\ell+s}{2}} a_i \left(x^i + s \gamma_k^i \right) \\ x, -\frac{i=1}{2} a_i \left(x^i + \psi_{\kappa,\vartheta}^i \right) \\ x, -\frac{i=1}{2} b_j x^j \end{pmatrix}^2 \prod_{k=1}^{4} (x - \gamma_k) \\ \begin{pmatrix} \sum_{i=1}^{\frac{\ell+2}{2}} a_i \left(x^i + \psi_{\kappa,\vartheta}^i \right) \\ x, -\frac{i=1}{2} b_j x^j \end{pmatrix}^2 \prod_{k=1}^{4} (x - \gamma_k) \\ \begin{pmatrix} \sum_{i=1}^{\frac{\ell+2}{2}} a_i \left(x^i + \psi_{\kappa,\vartheta}^i \right) \\ x, -\frac{i=1}{2} a_i \left(x^i + \zeta_\sigma^i \right) \\ x, -\frac{i=1}{2} a_i \left(x^i + \zeta_\sigma^i \right) \\ x, -\frac{i=1}{2} a_i \left(x^i + \zeta_\sigma^i \right) \\ \end{pmatrix}^2 x^{-1} = \begin{pmatrix} \sum_{j=0}^{\frac{\ell-3}{2}} b_j x^{j-\frac{1}{2}} \\ \sum_{j=0}^{2} b_j x^j - \frac{1}{2} \\ \sum_{j=0}^{2} b_j x^j - \frac{1}{2} \end{pmatrix}^2 \prod_{k=1}^{4} (x - \gamma_k) \\ \end{pmatrix}$$

$$\mathcal{M}_{\sigma} = \begin{pmatrix} \sum_{i=1}^{\frac{\ell+2}{2}} a_i \left(x^i + \zeta_\sigma^i \right) \\ \sum_{j=0}^{2} b_j x^j \end{pmatrix}^2 x^{-1} = \begin{pmatrix} \sum_{i=1}^{\frac{\ell-3}{2}} b_j x^{j-\frac{1}{2}} \\ \sum_{j=0}^{2} b_j x^{j-\frac{1}{2}} \end{pmatrix}^2 \prod_{k=1}^{4} (x - \gamma_k) \\ \end{pmatrix}$$

Proof. Let $R \in \mathcal{C}(\bar{\mathbb{Q}})$ such that $[\mathbb{Q}(R) : \mathbb{Q}] = \ell$ with $\ell \geq 5$ and $R \notin \{P_k, \infty\}$ for $k \in \{0, \dots, 4\}$. Let's consider R_n with $n \in \{1, \dots, \ell\}$ the Galois conjugates of R and let $\lambda = \left[\sum_{n=1}^{\ell} R_n - \ell \infty\right] \in \mathcal{J}(\mathbb{Q})$. From Lemma 2.3, we have $\lambda = -\sum_{k=0}^{3} \alpha_k j(P_k)$ and hence:

(2)
$$\left[\sum_{n=1}^{\ell} R_n - \ell \infty\right] = \left[\sum_{k=0}^{3} \alpha_k \infty - \sum_{k=0}^{3} \alpha_k P_k\right].$$

From the expression (2), this gives the following expression:

(3)
$$\left[\sum_{n=1}^{\ell} R_n + \sum_{k=0}^{3} \alpha_k P_k - \left(\ell + \sum_{k=0}^{3} \alpha_k\right) \infty\right] = 0.$$

Equation (3) leads to the existence of a rational function f(x,y) defined on \mathbb{Q} , according to the Abel-Jacobi theorem (cf. [1, 14]), such that:

(4)
$$\operatorname{div}(f) = \sum_{n=1}^{\ell} R_n + \sum_{k=0}^{3} \alpha_k P_k - \left(\ell + \sum_{k=0}^{3} \alpha_k\right) \infty.$$

From expression (4) we deduct that $f \in \mathcal{L}\left(\left(\ell + \sum_{k=0}^{3} \alpha_{k}\right) \infty\right)$, according to the Lemma 2.4, f(x,y) can be expressed as follows:

(5)
$$f(x,y) = \sum_{i=0}^{\frac{\ell + \sum_{k=0}^{3} \alpha_k}{2}} a_i x^i + \sum_{j=0}^{\frac{\ell + \sum_{k=0}^{3} \alpha_k - 5}{2}} b_j y x^j,$$

with $ord_{P_k}f = \alpha_k$ and $k \in \{0, ..., 3\}$. Depending on the values taken by the α_k values, we draw up a table of the different cases:

α_0	0	1	0	0	0	1	1	1	0	0	0	1	1	1	0	1
α_1	0	0	1	0	0	1	0	0	1	0	1	1	1	0	1	1
α_2	0	0	0	1	0	0	1	0	0	1	1	1	0	1	1	1
α_3	0	0	0	0	1	0	0	1	1	1	0	0	1	1	1	1

 1^{st} —: Let's consider the cases where the α_k 's are either all zero, only one is non-zero or none is zero.

• If all α_k 's are zero, then the function f(x,y) of the expression (5) is written:

(6)
$$f(x,y) = \sum_{i=0}^{\frac{\ell}{2}} a_i x^i + \sum_{j=0}^{\frac{\ell-5}{2}} b_j y x^j,$$

with $a_i, b_j \in \mathbb{Q}$, a_0 and b_0 not simultaneously null (otherwise of the R_n 's should be egal to P_0 , which would be absurd), $a_{\frac{\ell}{2}} \neq 0$ and $b_{\frac{\ell-5}{2}} \neq 0$ depending on whether ℓ is even or odd (otherwise one of the R_n 's should be egal to ∞ , which would be absurd).

• If only one of the α_k 's is zero, then the function f(x, y) of the expression (5) is written:

(7)
$$f(x,y) = \sum_{i=0}^{\frac{\ell+1}{2}} a_i x^i + \sum_{j=0}^{\frac{\ell-4}{2}} b_i y x^j,$$

and since $ord_{P_k}f=1$, which implies that $a_0=\sum_{i=1}^{\frac{\ell+2}{2}}a_i\gamma_k^i$, so equation (7) becomes:

(8)
$$f(x,y) = \sum_{i=1}^{\frac{\ell+2}{2}} a_i \left(x^i + \gamma_k^i \right) + \sum_{i=0}^{\frac{\ell-3}{2}} b_j y x^j,$$

with $a_i, b_j \in \mathbb{Q}$, $b_0 \neq 0$ (otherwise of the R_n 's should be at P_k , which would be absurd), $a_{\frac{\ell+1}{2}} \neq 0$ and $b_{\frac{\ell-4}{2}} \neq 0$ depending on

whether ℓ is even or odd (otherwise one of the R_n 's should be at ∞ , which would be absurd).

• If none of the α_k 's is zero, from Corollary 2.2, the rational divisor of f(x, y) is expressed as follows:

(9)
$$div(f) = \sum_{n=1}^{\ell} R_n + P_4 - (\ell + 1)\infty.$$

From expression (9), we deduct that $f \in \mathcal{L}((\ell+1)\infty)$, according to the Lemma 2.4, f(x,y) can be expressed as follows:

(10)
$$f(x,y) = \sum_{i=0}^{\frac{\ell+1}{2}} a_i x^i + \sum_{j=0}^{\frac{\ell-4}{2}} b_j y x^j,$$

and since $ord_{P_4}f = 1$, which implies that $a_0 = \sum_{i=1}^{\frac{\ell+2}{2}} a_i \gamma_4^i$, so the expression (10) becomes:

(11)
$$f(x,y) = \sum_{i=1}^{\frac{\ell+1}{2}} a_i \left(x^i + \gamma_4^i \right) + \sum_{j=0}^{\frac{\ell-4}{2}} b_j y x^j,$$

with $a_i, b_j \in \mathbb{Q}$, $b_0 \neq 0$ (otherwise of the R_n 's should be at P_4 , which would be absurd), $a_{\frac{\ell+1}{2}} \neq 0$ and $b_{\frac{\ell-4}{2}} \neq 0$ depending on whether ℓ is even or odd (otherwise one of the R_n 's should be at ∞ , which would be absurd).

Thus, from equations (6), (8) and (11), for α_k 's are either all zero, only one is non-zero or none is zero, there is exit $s \in \{0,1\}$ and $k \in \{0,\ldots,4\}$ such that:

(12)
$$f(x,y) = \sum_{i=s}^{\frac{\ell+s}{2}} a_i \left(x^i + s \gamma_k^i \right) + \sum_{j=0}^{\frac{\ell+s-5}{2}} b_j y x^j.$$

At points R_n , the function f(x, y) of (12) gives f(x, y) = 0, resulting in an expression for y as a function of x of the form

$$y = -\frac{\sum_{i=s}^{\frac{\ell+s}{2}} a_i \left(x^i + s\gamma_k^i\right)}{\sum_{j=0}^{\frac{\ell+s-5}{2}} b_j x^j}$$
 equation (1), we obtain:

(13)
$$\left(\sum_{i=s}^{\frac{\ell+s}{2}} a_i \left(x^i + s \gamma_k^i \right) \right)^2 = x \left(\sum_{j=0}^{\frac{\ell+s-5}{2}} b_j x^j \right)^2 \prod_{k=1}^4 (x - \gamma_k).$$

From the equation (13), becomes the following equation:

(14)
$$\left(\sum_{i=s}^{\frac{\ell+s}{2}} a_i \left(x^i + s \gamma_k^i \right) \right)^2 x^{-s} = x^{1-s} \left(\sum_{j=0}^{\frac{\ell+s-5}{2}} b_j x^j \right)^2 \prod_{k=1}^4 (x - \gamma_k).$$

The equation (14) is degree ℓ . In fact, the first member is degree $2\left(\frac{\ell+s}{2}\right)-s=\ell$ and the second one is degree $2\left(\frac{\ell+s-5}{2}\right)-s+5=\ell$. This gives a first family points of degree ℓ :

$$\mathcal{K}_{s,k} = \left\{ \begin{pmatrix}
\sum_{i=s}^{\frac{\ell+s}{2}} a_i \left(x^i + s \gamma_k^i \right) \\
x, -\frac{i=s}{2} a_i \left(x^i + s \gamma_k^i \right) \\
\sum_{j=0}^{\ell+s-5} b_j x^j
\end{pmatrix} \begin{vmatrix}
a_0 \text{ and } b_0 \text{ non-zero,} \\
a_{\frac{\ell+s}{2}} \neq 0 \text{ if } \ell \text{ is even,} \\
b_{\frac{\ell+s-5}{2}} \neq 0 \text{ if } \ell \text{ is odd} \\
\text{and } x \text{ is a solution} \\
\text{of the equation:}
\end{cases} \right\}$$

$$\left\{ \left(\sum_{i=s}^{\frac{\ell+s}{2}} a_i \left(x^i + s \gamma_k^i \right) \right)^2 x^{-s} = x^{1-s} \left(\sum_{j=0}^{\frac{\ell+s-5}{2}} b_j x^j \right)^2 \prod_{k=1}^4 (x - \gamma_k) \right\}$$

 2^{nd} : Let's consider only the cases where two of the α_k 's are zero, then the function f(x,y) of the expression (5) is written:

(15)
$$f(x,y) = \sum_{i=0}^{\frac{\ell+2}{2}} a_i x^i + \sum_{j=0}^{\frac{\ell-3}{2}} b_j y x^j,$$

and since $ord_{P_{\kappa}}f = ord_{P_{\vartheta}}f = 1$ with κ , $\vartheta \in \{0, \dots, 3\}$ and $\kappa \neq \vartheta$, which implies that $a_0 = \sum_{i=1}^{\frac{\ell+2}{2}} a_i \psi^i_{\kappa,\vartheta}$ with $\psi^i_{\kappa,\vartheta} = -\frac{1}{2} \left(\gamma^i_{\kappa} + \gamma^i_{\vartheta}\right)$, hence the equation (15) becomes:

(16)
$$f(x,y) = \sum_{i=1}^{\frac{\ell+2}{2}} a_i \left(x^i + \psi_{\kappa,\vartheta}^i \right) + \sum_{j=0}^{\frac{\ell-3}{2}} b_j y x^j,$$

with $a_i, b_j \in \mathbb{Q}$, $a_{\frac{\ell+2}{2}} \neq 0$ and $b_{\frac{\ell-3}{2}} \neq 0$ depending on whether ℓ is even or odd (otherwise one of the R_n 's should be at ∞ , which would be absurd). At points R_n , the function f(x, y) of (16) gives f(x, y) = 0, resulting in an expression for y as a function of x of the

form
$$y = -\frac{\displaystyle\sum_{i=1}^{\frac{\ell+2}{2}} a_i \left(x^i + \psi^i_{\kappa,\vartheta}\right)}{\displaystyle\sum_{j=0}^{\frac{\ell-3}{2}} b_j x^j}$$
. By replacing the expression for y in

the expression of the equation (1), we obtain:

(17)
$$\left(\sum_{i=1}^{\frac{\ell+2}{2}} a_i \left(x^i + \psi_k^i\right)\right)^2 = x \left(\sum_{j=0}^{\frac{\ell-3}{2}} b_j x^j\right)^2 \prod_{k=1}^4 (x - \gamma_k).$$

From the equation (17), becomes the following equation:

(18)
$$\left(\sum_{i=1}^{\frac{\ell+2}{2}} a_i \left(x^i + \psi_{\kappa,\vartheta}^i \right) \right)^2 x^{-1} = \left(\sum_{j=0}^{\frac{\ell-3}{2}} b_j x^{j-\frac{1}{2}} \right)^2 \prod_{k=1}^4 (x - \gamma_k).$$

The equation (18) is of degree ℓ . Indeed, the first member is degree $2\left(\frac{\ell+2}{2}\right)-1=\ell$ and the second one is degree $2\left(\frac{\ell-3}{2}-\frac{1}{2}\right)+4=\ell$ This gives a second family points of degree ℓ :

$$\mathcal{P}_{\kappa,\vartheta} = \left\{ \begin{pmatrix} \sum_{i=1}^{\frac{\ell+2}{2}} a_i \left(x^i + \psi_{\kappa,\vartheta}^i \right) \\ x, -\frac{i-1}{2} a_i \left(x^i + \psi_{\kappa,\vartheta}^i \right) \\ \sum_{j=0}^{\frac{\ell-3}{2}} b_j x^j \end{pmatrix} \middle| \begin{array}{l} a_{\frac{\ell+2}{2}} \neq 0 \text{ if } \ell \text{ is even,} \\ b_{\frac{\ell-3}{2}} \neq 0 \text{ if } \ell \text{ is odd} \\ \text{and } x \text{ is a solution} \\ \text{of the equation:} \\ \left(\sum_{i=1}^{\frac{\ell+2}{2}} a_i \left(x^i + \psi_{\kappa,\vartheta}^i \right) \right)^2 x^{-1} = \left(\sum_{j=0}^{\frac{\ell-3}{2}} b_j x^{j-\frac{1}{2}} \right)^2 \prod_{k=1}^4 (x - \gamma_k) \right\}$$

 3^{rd} : If only one of the α_k 's is zero, from Corollary 2.2, the rational divisor of f(x,y) is expressed as follows:

(19)
$$div(f) = \sum_{n=1}^{\ell} R_n + P_{\sigma} + P_4 - (\ell+2)\infty,$$

where $\sigma \in \{0, ..., 3\}$, from expression (19), we deduct that $f \in \mathcal{L}((\ell+1)\infty)$, according to the Lemma 2.4, f(x,y) can be expressed as follows:

(20)
$$f(x,y) = \sum_{i=0}^{\frac{\ell+2}{2}} a_i x^i + \sum_{j=0}^{\frac{\ell-3}{2}} b_j y x^j,$$

and since $ord_{P_{\sigma}}f = ord_{P_{4}}f = 1$, which implies that $a_{0} = \sum_{i=1}^{\frac{c+2}{2}} a_{i}\zeta_{\sigma}^{i}$

with $\zeta_{\sigma}^{i} = -\frac{1}{2} \sum_{\mu=3}^{4} (\gamma_{\sigma}^{i} + 9^{i})$, hence the equation (20) becomes

(21)
$$f(x,y) = \sum_{i=1}^{\frac{\ell+2}{2}} a_i \left(x^i + \zeta_{\sigma}^i \right) + \sum_{j=0}^{\frac{\ell-3}{2}} b_j y x^j,$$

with $a_i, b_j \in \mathbb{Q}$, $a_{\frac{\ell+2}{2}} \neq 0$ and $b_{\frac{\ell-3}{2}} \neq 0$ depending on whether ℓ is even or odd (otherwise one of the R_n 's should be at ∞ , which

would be absurd). At points R_n , the function f(x, y) of (21) gives f(x, y) = 0, resulting in an expression for y as a function of x of the

form
$$y = -\frac{\displaystyle\sum_{i=1}^{\frac{\ell+2}{2}} a_i \left(x^i + \zeta^i_\sigma\right)}{\displaystyle\sum_{j=0}^{\frac{\ell-3}{2}} b_j x^j}$$
. By replacing the y in the expression of

the equation (1), we obtain:

(22)
$$\left(\sum_{i=1}^{\frac{\ell+2}{2}} a_i \left(x^i + \zeta_{\sigma}^i\right)\right)^2 = x \left(\sum_{j=0}^{\frac{\ell-3}{2}} b_j x^j\right)^2 \prod_{k=1}^4 (x - \gamma_k).$$

From the equation (22), becomes the following equation:

(23)
$$\left(\sum_{i=1}^{\frac{\ell+2}{2}} a_i \left(x^i + \zeta_{\sigma}^i\right)\right)^2 x^{-1} = \left(\sum_{j=0}^{\frac{\ell-3}{2}} b_j x^{j-\frac{1}{2}}\right)^2 \prod_{k=1}^4 (x - \gamma_k).$$

The equation (23) is degree ℓ . Indeed, the first member is degree $2\left(\frac{\ell+2}{2}\right)-1=\ell$ and the second one is degree $2\left(\frac{\ell-3}{2}-\frac{1}{2}\right)+4=\ell$. This gives a third family of points of degree ℓ :

$$\mathcal{M}_{\sigma} = \left\{ \begin{pmatrix} \sum_{i=1}^{\frac{\ell+2}{2}} a_i \left(x^i + \zeta_{\sigma}^i \right) \\ x, -\frac{i-1}{2} & \sum_{j=0}^{\frac{\ell-3}{2}} b_j x^j \end{pmatrix} & \begin{cases} a_{\frac{\ell+2}{2}} \neq 0 \text{ if } \ell \text{ is even,} \\ b_{\frac{\ell-3}{2}} \neq 0 \text{ if } \ell \text{ is odd} \\ \text{and } x \text{ is a root of } \\ \text{the equation:} \end{cases} \right\}$$

$$\left\{ \left(\sum_{i=1}^{\frac{\ell+2}{2}} a_i \left(x^i + \zeta_{\sigma}^i \right) \right)^2 x^{-1} = \left(\sum_{j=0}^{\frac{\ell-3}{2}} b_j x^{j-\frac{1}{2}} \right)^2 \prod_{k=1}^{4} (x - \gamma_k) \right\}$$

References

- [1] Arbarello, E., Cornalba, M., Griffiths; P. A. and Harris, J., *The Basic Results of the Brill-Noether Theory*, Geometry of Algebraic Curves: Volume I, Springer, 133(3)(1985) 203–224.
- [2] Cassels, J.W.S., Mordell's finite basis theorem revisited, Mathematical Proceedings of the Cambridge Philosophical Society, 100(1)(1986) 31–41.
- [3] Cassels, J.W.S., The Mordell-Weil group of curves of genus 2, Arithmetic and Geometry: Papers Dedicated to IR Shafarevich on the Occasion of His Sixtieth Birthday Volume I Arithmetic, 336(2)(1983) 27–60.
- [4] Diallo, M.M.D., Analytic Parametrization of the Algebraic Points of Given Degree on the Curve of Affine Equation $y^2 = 157(x^2-2)(x^2+x)(x^2+1)$, Transylvanian Journal of Mathematics & Mechanics, **15(2023)** 41–49.
- [5] Diallo, M.M.D., Coly, C.M. and Sall, O., Algebraic Points Of The Family Of Superelliptic Curves Of Tomasz Jdrzejak For A Given Degree, JP Journal of Geometry and Topology, 29(2)(2023) 117–120.

- [6] Fall, M., Diallo, M.M.D. and Coly, C.M., Algebraic Points of any Given Degree on the Affine Curves $y^2 = x(x+2p)(x+4p)(x^2-8p^2)$, Journal of Contemporary Applied Mathematics, 13(1)(2023).
- [7] Faltings, G., Finiteness theorems for abelian varieties over number fields, Arithmetic geometry, (1986) 9-26.
- [8] Lang, J., Two-Descent on the Jacobians of Hyperelliptic Curves.
- [9] Lange, T., Formulae for arithmetic on genus 2 hyperelliptic curves, Applicable Algebra in Engineering, Communication and Computing, 15(2)(2005) 295–328.
- [10] Nagaraj, D.S. and Sury, B., The Mordell-Weil Theorem, Elliptic Curves, Modular Forms and Cryptography: Proceedings of the Advanced Instructional Workshop on Algebraic Number Theory, (2003) 73–84.
- [11] Hartshorne, R., Algebraic geometry, 52(2013).
- [12] Schaefer, E.F., 2-descent on the Jacobians of hyperelliptic curves, Journal of number theory, **51(2)(1995)** 219–232.
- [13] Serre, J.P., Brown, M. and Waldschmidt, M., Lectures on the Mordell-Weil theorem, Springer, (1989).
- [14] Takashi, T., *The Abel–Jacobi Theorem*, Elliptic Integrals and Elliptic Functions, (2023) 167–192.

DEPARTEMENT DE MATHEMATIQUES UNIVERSITE ASSANE SECK DE ZIGUINCHOR SENEGAL, 27000 ZG, SN

E-mail address: m.diallo1836@zig.sn