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Parametrization of algebraic points on the
hyperelliptic curve of affine equation

y2 = x(x− 2)(x− 3)(x− 6)(x− 9)

MOHAMADOU MOR DIOGOU DIALLO

Abstract. We describe the families of algebraic points of degree at most
` ≥ 5 on the hyperelliptic curve C with equation:

y2 = x(x− 2)(x− 3)(x− 6)(x− 9).

First, we give a Q-base arising from linear systems and an explicit expression
for the Mordell-Weil group of rational points of the Jacobian. Then, we
use one of the fundamental Abel-Jacobi theorems to describe a principal
divisor of the rational and central function of this work. Finally, following
the different cases associated to the integer αk, we can exhibit families of
points.

1. Introduction

Let C be a smooth projective plane curve defined over Q. For all algebraic
extension field K of Q, we denote by C(K) the set of K-rational points of

C on K and by C(`)(Q) the set of algebraic points of degree d over Q i.e

C(`)(Q) =
⋃

[Q(R):Q]≤`

C(K). The degree of an algebraic point R is the degree of its

field of definition on Q i.e deg(R) = [Q(R) : Q]. It’s well known that the
determintion of C(K) is a difficult problem in number theory beacause there
is still no general algorithm to compute C(K). In the case g ≥ 2, the theorem
of Fatlings proves that C(K) is finite but this proof is not effective [7]. If
the genus g ≥ 2 and by the well known theorem of Mordell-Weil [2, 10, 13]
for any number field K and any curve C the groupe of its K-rational points
C(K) is finitely generated. In other J (K) ∼= J (K)tor × Zr where J (K)tor
is a finite torsion subgroups and r is a positive integer called the rank of
J (K). If the rank is null, then we have equality J (K) = J (K)tor; in this
case we can use the theorem of Riemann-Roch to determine the basis of the
associate linear systems to the curve. Every linear system is a vectoriel on
K of finite dimension. By using the Abel-Jacobi theorem [1] we can give a
parametrisation of algebric points of given degree of C over Q.
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In this paper, we consider the curve C of affine equation

y2 = x(x− 2)(x− 3)(x− 6)(x− 9),

this curve C is a hyperelliptic curve of genus g = 2 (see [3, 9]) and the
Mordell-Weil groupe J (Q) of C is finite, so we can give a parametrisation of

C(`)(Q). We begin by presenting the essential results, then state the main
theorem and finally demonstrate it.

2. Auxiliary results

Definition 2.1. For a divisor D ∈ Div(C), we define the Q-vector space
denoted L(D) by:

L(D) := {f ∈ K(C)\ {0} | div(f) ≥ −D} ∪ {0}.

Corollary 2.1. According to [11], for two divisors D and D′ of div(C), we
have the following implications:

D ≡ D′ =⇒ L(D) w L(D′) =⇒ dimL(D) = dimL(D′).

Lemma 2.1. According to [12], we have: J (Q) ∼= (Z/2Z)4.

Let x =
X

Z
and y =

Y

Z
be rational functions defined on Q.

(1) y2 =

4∏
k=0

(x− γk),

with γk ∈ {0, 2, 3, 6, 9} recpectively for k ∈ {0, . . . , 4}. Let x, y be the affine
coordinates and X, Y and Z the projective coordinates. Let’s say: x = X

Z

and y = Y
Z . The projective equation of the curve is given by:

Z3Y 2 =
4∏

k=0

(X − γkZ).

We note Pk and ∞ the points of C defined by: Pk = [γk : 0 : 1] and
∞ = [1 : 0 : 0].

Lemma 2.2. For curve C, we have the following rationnal divisors:

i): div(x − γk) = 2Pk − 2∞ with Pk = [γk : 0 : 1], k ∈ {0, . . . , 4} and
γk ∈ {0, 2, 3, 6, 9}.

ii): div(y) =
4∑

k=0

Pk − 5∞.

Proof. We will carry out a calculation of this type:

div(t− ω) = (t = ωZ) · C − (Z = 0) · C,

where ω =

{
x
y

and Ω =

{
X
Y

see [6]

Corollary 2.2. The following results are the consequences of Lemma 2.2:

~:

4∑
k=0

j(Pk) = 0,
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~: 2j(Pk) = 0 where k ∈ {0, . . . , 4}.

Thus, The j(Pkk∈{0,...,4}) generate the same subgroup J (Q).

Remark 2.1. The generator of the torsion group of rational points of the
Jacobian J (Q)tor described in [8] is given by:

J (Q)tor ' 〈[P0 −∞] , [P1 −∞] , [P2 −∞] , [P3 −∞]〉.

From Lemma 2.1 and Remark 2.1, we derive the following Lemma:

Lemma 2.3. The mordell-weil group J (Q) of the curve C of affine equation

y2 =

4∏
k=0

(x− γk) is given by:

J (Q) =

{
3∑

k=0

αkj(Pk)

∣∣∣∣∣ αk ∈ {0, 1}

}
.

Lemma 2.4.

1: We have the following linear systems:
• L(∞) = 〈1〉,
• L(2∞) = L(3∞) = L(∞)⊕ 〈x〉,
• L(4∞) = L(3∞)⊕

〈
x2
〉
,

• L(5∞) = L(4∞)⊕ 〈y〉,
• L(6∞) = L(5∞)⊕

〈
x3
〉
,

• L(7∞) = L(6∞)⊕ 〈yx〉,
• L(8∞) = L(7∞)⊕

〈
x4
〉
,

• L(9∞) = L(8∞)⊕
〈
yx2
〉
,

• L(10∞) = L(9∞)⊕
〈
x5
〉
,

• L(11∞) = L(10∞)⊕
〈
yx3
〉
,

2: Generaly for m ∈ N, a Q-basis of the space L(m∞) is given by:

Bm =
{
xi
∣∣∣ i ∈ N and i ≤ m

2

} ⋃ {
yxj

∣∣∣∣ j ∈ N and j ≤ m− 5

2

}
Proof. see [4, 5, 6].

3. Main result

The main result of this paper is the following theorem:

Theorem 3.1. The set of algebraic points of degree at most ` ≥ 5 over Q

on the curve C of affine equation y2 =

4∏
k=0

(x− γk) is given by

C(`) (Q) =


4⋃

k = 0
s ∈ {0, 1}

Ks,k


⋃


3⋃
κ, ϑ = 0
κ 6= ϑ

Pκ,ϑ


⋃(

3⋃
σ=0

Mσ

)
, with:
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Ks,k=



x,−
`+s
2∑
i=s

ai
(
xi + sγik

)
`+s−5

2∑
j=0

bjx
j



∣∣∣∣∣∣∣∣∣∣∣∣

a0 and b0 non-zero,
a `+s

2
6= 0 if ` is even,

b `+s−5
2
6= 0 if ` is odd

and x is a solution
of the equation: `+s

2∑
i=s

ai
(
xi + sγik

)2

x−s=x1−s

 `+s−5
2∑
j=0

bjx
j

2
4∏

k=1

(x−γk)



Pκ,ϑ =



x,−
`+2
2∑
i=1

ai
(
xi + ψiκ,ϑ

)
`−3
2∑
j=0

bjx
j



∣∣∣∣∣∣∣∣∣∣∣∣

a `+2
2
6= 0 if ` is even,

b `−3
2
6= 0 if ` is odd

and x is a solution

of the equation: `+2
2∑
i=1

ai
(
xi + ψiκ,ϑ

)2

x−1=

 `−3
2∑
j=0

bjx
j− 1

2

2
4∏

k=1

(x− γk)



Mσ =



x,−
`+2
2∑
i=1

ai
(
xi + ζiσ

)
`−3
2∑
j=0

bjx
j



∣∣∣∣∣∣∣∣∣∣∣∣

a `+2
2
6= 0 if ` is even,

b `−3
2
6= 0 if ` is odd

and x is a root of

the equation: `+2
2∑
i=1

ai
(
xi + ζiσ

)2

x−1 =

 `−3
2∑
j=0

bjx
j− 1

2

2
4∏

k=1

(x− γk)


Proof. Let R ∈ C(Q̄) such that [Q(R) : Q] = ` with ` ≥ 5 and R /∈
{Pk, ∞} for k ∈ {0, . . . , 4}. Let’s consider Rn with n ∈ {1, . . . , `} the Galois

conjugates of R and let λ =

[∑̀
n=1

Rn − `∞

]
∈ J (Q). From Lemma 2.3, we

have λ = −
3∑

k=0

αkj(Pk) and hence:

(2)

[∑̀
n=1

Rn − `∞

]
=

[
3∑

k=0

αk∞−
3∑

k=0

αkPk

]
.

From the expression (2), this gives the following expression:

(3)

[∑̀
n=1

Rn +

3∑
k=0

αkPk −

(
`+

3∑
k=0

αk

)
∞

]
= 0.
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Equation (3) leads to the existence of a rational function f(x, y) defined
on Q, according to the Abel-Jacobi theorem (cf. [1, 14]), such that:

(4) div(f) =
∑̀
n=1

Rn +

3∑
k=0

αkPk −

(
`+

3∑
k=0

αk

)
∞.

From expression (4) we deduct that f ∈ L

((
`+

3∑
k=0

αk

)
∞

)
, according to

the Lemma 2.4 , f(x, y) can be expressed as follows:

(5) f(x, y) =

`+
∑3
k=0 αk
2∑
i=0

aix
i +

`+
∑3
k=0 αk−5

2∑
j=0

bjyx
j ,

with ordPkf = αk and k ∈ {0, . . . , 3}. Depending on the values taken by
the αk values, we draw up a table of the different cases:

α0 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
α1 0 0 1 0 0 1 0 0 1 0 1 1 1 0 1 1
α2 0 0 0 1 0 0 1 0 0 1 1 1 0 1 1 1
α3 0 0 0 0 1 0 0 1 1 1 0 0 1 1 1 1

1st− : Let’s consider the cases where the αk’s are either all zero, only
one is non-zero or none is zero.
• If all αk’s are zero, then the function f(x, y) of the expression

(5) is written:

(6) f(x, y) =

`
2∑
i=0

aix
i +

`−5
2∑
j=0

bjyx
j ,

with ai, bj ∈ Q, a0 and b0 not simultaneously null (otherwise of
the Rn’s should be egal to P0, which would be absurd), a `

2
6= 0

and b `−5
2
6= 0 depending on whether ` is even or odd (otherwise

one of the Rn’s should be egal to ∞, which would be absurd).
• If only one of the αk’s is zero, then the function f(x, y) of the

expression (5) is written:

(7) f(x, y) =

`+1
2∑
i=0

aix
i +

`−4
2∑
j=0

biyx
j ,

and since ordPkf = 1, which implies that a0 =

`+2
2∑
i=1

aiγ
i
k, so equa-

tion (7) becomes:

(8) f(x, y) =

`+2
2∑
i=1

ai
(
xi + γik

)
+

`−3
2∑
j=0

bjyx
j ,

with ai, bj ∈ Q, b0 6= 0 (otherwise of the Rn’s should be at Pk,
which would be absurd), a `+1

2
6= 0 and b `−4

2
6= 0 depending on
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whether ` is even or odd (otherwise one of the Rn’s should be
at ∞, which would be absurd).
• If none of the αk’s is zero, from Corollary 2.2, the rational di-

visor of f(x, y) is expressed as follows:

(9) div(f) =
∑̀
n=1

Rn + P4 − (`+ 1)∞.

From expression (9), we deduct that f ∈ L ((`+ 1)∞), accord-
ing to the Lemma 2.4 , f(x, y) can be expressed as follows:

(10) f(x, y) =

`+1
2∑
i=0

aix
i +

`−4
2∑
j=0

bjyx
j ,

and since ordP4f = 1, which implies that a0 =

`+2
2∑
i=1

aiγ
i
4, so the

expreesion (10) becomes:

(11) f(x, y) =

`+1
2∑
i=1

ai
(
xi + γi4

)
+

`−4
2∑
j=0

bjyx
j ,

with ai, bj ∈ Q, b0 6= 0 (otherwise of the Rn’s should be at P4,
which would be absurd), a `+1

2
6= 0 and b `−4

2
6= 0 depending on

whether ` is even or odd (otherwise one of the Rn’s should be
at ∞, which would be absurd).

Thus, from equations (6), (8) and (11), for αk’s are either all zero,
only one is non-zero or none is zero, there is exit s ∈ {0, 1} and
k ∈ {0, . . . , 4} such that:

(12) f(x, y) =

`+s
2∑
i=s

ai
(
xi + sγik

)
+

`+s−5
2∑
j=0

bjyx
j .

At points Rn, the function f(x, y) of (12) gives f(x, y) = 0, resulting
in an expression for y as a function of x of the form

y = −

`+s
2∑
i=s

ai
(
xi+sγik

)
`+s−5

2∑
j=0

bjx
j

. By replacing the y in the expression of the

equation (1), we obtain:

(13)

 `+s
2∑
i=s

ai
(
xi + sγik

)2

= x

 `+s−5
2∑
j=0

bjx
j

2
4∏

k=1

(x− γk).
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From the equation (13), becomes the following equation:

(14)

 `+s
2∑
i=s

ai
(
xi + sγik

)2

x−s=x1−s

 `+s−5
2∑
j=0

bjx
j

2
4∏

k=1

(x−γk).

The equation (14) is degree `. In fact, the first member is degree

2

(
`+s

2

)
−s = ` and the second one is degree 2

(
`+s−5

2

)
−s+5 = `.

This gives a first family points of degree `:

Ks,k=



x,−
`+s
2∑
i=s

ai
(
xi + sγik

)
`+s−5

2∑
j=0

bjx
j



∣∣∣∣∣∣∣∣∣∣∣∣

a0 and b0 non-zero,
a `+s

2
6= 0 if ` is even,

b `+s−5
2
6= 0 if ` is odd

and x is a solution
of the equation: `+s

2∑
i=s

ai
(
xi + sγik

)2

x−s=x1−s

 `+s−5
2∑
j=0

bjx
j

2
4∏

k=1

(x−γk)


2nd− : Let’s consider only the cases where two of the αk’s are zero,

then the function f(x, y) of the expression (5) is written:

(15) f(x, y) =

`+2
2∑
i=0

aix
i +

`−3
2∑
j=0

bjyx
j ,

and since ordPκf = ordPϑf = 1 with κ, ϑ ∈ {0, . . . , 3} and κ 6= ϑ,

which implies that a0 =

`+2
2∑
i=1

aiψ
i
κ,ϑ with ψiκ,ϑ = −1

2

(
γiκ + γiϑ

)
, hence

the equation (15) becomes:

(16) f(x, y) =

`+2
2∑
i=1

ai
(
xi + ψiκ,ϑ

)
+

`−3
2∑
j=0

bjyx
j ,

with ai, bj ∈ Q, a `+2
2
6= 0 and b `−3

2
6= 0 depending on whether `

is even or odd (otherwise one of the Rn’s should be at ∞, which
would be absurd). At points Rn, the function f(x, y) of (16) gives
f(x, y) = 0, resulting in an expression for y as a function of x of the

form y = −

`+2
2∑
i=1

ai
(
xi + ψiκ,ϑ

)
`−3
2∑
j=0

bjx
j

. By replacing the expression for y in



Parametrization of algebraic points on the hyperelliptic curve. . . 27

the expression of the equation (1), we obtain:

(17)

 `+2
2∑
i=1

ai
(
xi + ψik

)2

= x

 `−3
2∑
j=0

bjx
j

2
4∏

k=1

(x− γk).

From the equation (17), becomes the following equation:

(18)

 `+2
2∑
i=1

ai
(
xi + ψiκ,ϑ

)2

x−1 =

 `−3
2∑
j=0

bjx
j− 1

2

2
4∏

k=1

(x− γk).

The equation (18) is of degree `. Indeed, the first member is degree

2

(
`+ 2

2

)
−1 = ` and the second one is degree 2

(
`− 3

2
− 1

2

)
+4 = `

This gives a second family points of degree `:

Pκ,ϑ =



x,−
`+2
2∑
i=1

ai
(
xi + ψiκ,ϑ

)
`−3
2∑
j=0

bjx
j



∣∣∣∣∣∣∣∣∣∣∣∣

a `+2
2
6= 0 if ` is even,

b `−3
2
6= 0 if ` is odd

and x is a solution

of the equation: `+2
2∑
i=1

ai
(
xi + ψiκ,ϑ

)2

x−1=

 `−3
2∑
j=0

bjx
j− 1

2

2
4∏

k=1

(x− γk)


3rd− : If only one of the αk’s is zero, from Corollary 2.2, the rational

divisor of f(x, y) is expressed as follows:

(19) div(f) =
∑̀
n=1

Rn + Pσ + P4 − (`+ 2)∞,

where σ ∈ {0, . . . , 3}, from expression (19), we deduct that
f ∈ L ((`+ 1)∞), according to the Lemma 2.4 , f(x, y) can be ex-
pressed as follows:

(20) f(x, y) =

`+2
2∑
i=0

aix
i +

`−3
2∑
j=0

bjyx
j ,

and since ordPσf = ordP4f = 1, which implies that a0 =

`+2
2∑
i=1

aiζ
i
σ

with ζiσ = −1

2

4∑
µ=3

(
γiσ + 9i

)
, hence the equation (20) becomes

(21) f(x, y) =

`+2
2∑
i=1

ai
(
xi + ζiσ

)
+

`−3
2∑
j=0

bjyx
j ,

with ai, bj ∈ Q, a `+2
2
6= 0 and b `−3

2
6= 0 depending on whether `

is even or odd (otherwise one of the Rn’s should be at ∞, which
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would be absurd). At points Rn, the function f(x, y) of (21) gives
f(x, y) = 0, resulting in an expression for y as a function of x of the

form y = −

`+2
2∑
i=1

ai
(
xi + ζiσ

)
`−3
2∑
j=0

bjx
j

. By replacing the y in the expression of

the equation (1), we obtain:

(22)

 `+2
2∑
i=1

ai
(
xi + ζiσ

)2

= x

 `−3
2∑
j=0

bjx
j

2
4∏

k=1

(x− γk).

From the equation (22), becomes the following equation:

(23)

 `+2
2∑
i=1

ai
(
xi + ζiσ

)2

x−1 =

 `−3
2∑
j=0

bjx
j− 1

2

2
4∏

k=1

(x− γk).

The equation (23) is degree `. Indeed, the first member is degree

2

(
`+ 2

2

)
−1 = ` and the second one is degree 2

(
`− 3

2
− 1

2

)
+4 = `.

This gives a third family of points of degree `:

Mσ =



x,−
`+2
2∑
i=1

ai
(
xi + ζiσ

)
`−3
2∑
j=0

bjx
j



∣∣∣∣∣∣∣∣∣∣∣∣

a `+2
2
6= 0 if ` is even,

b `−3
2
6= 0 if ` is odd

and x is a root of

the equation: `+2
2∑
i=1

ai
(
xi + ζiσ

)2

x−1 =

 `−3
2∑
j=0

bjx
j− 1

2

2
4∏

k=1

(x− γk)


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