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Parametrization of algebraic points on the
hyperelliptic curve of affine equation

Y’ = z(x —2)(x —3)(z —6)(z —9)
MOHAMADOU MOR DIOGOU DIALLO

Abstract. We describe the families of algebraic points of degree at most

£ > 5 on the hyperelliptic curve C with equation:
y? = x(x —2)(z — 3)(z — 6)(xz — 9).

First, we give a Q-base arising from linear systems and an explicit expression
for the Mordell-Weil group of rational points of the Jacobian. Then, we
use one of the fundamental Abel-Jacobi theorems to describe a principal
divisor of the rational and central function of this work. Finally, following
the different cases associated to the integer «yp, we can exhibit families of
points.

1. INTRODUCTION

Let C be a smooth projective plane curve defined over Q. For all algebraic
extension field K of Q, we denote by C(K) the set of K-rational points of
C on K and by C¥ (Q) the set of algebraic points of degree d over Q i.e
c(Q) = U C(K). The degree of an algebraic point R is the degree of its

[Q(R):Ql<¢

field of definition on Q i.e deg(R) = [Q(R) : Q]. It’s well known that the
determintion of C(K) is a difficult problem in number theory beacause there
is still no general algorithm to compute C(K). In the case g > 2, the theorem
of Fatlings proves that C(K) is finite but this proof is not effective [7]. If
the genus g > 2 and by the well known theorem of Mordell-Weil [2, 10, 13]
for any number field K and any curve C the groupe of its K-rational points
C(K) is finitely generated. In other J(K) = J (K)o x Z" where J(K)ior
is a finite torsion subgroups and 7 is a positive integer called the rank of
J(K). If the rank is null, then we have equality J(K) = J(K)or; in this
case we can use the theorem of Riemann-Roch to determine the basis of the
associate linear systems to the curve. Every linear system is a vectoriel on
K of finite dimension. By using the Abel-Jacobi theorem [1] we can give a
parametrisation of algebric points of given degree of C over Q.
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In this paper, we consider the curve C of affine equation
y* = a(x —2)(z - 3)(x - 6)(x - 9),
this curve C is a hyperelliptic curve of genus g = 2 (see [3, 9]) and the
Mordell-Weil groupe J(Q) of C is finite, so we can give a parametrisation of
C (K)(@). We begin by presenting the essential results, then state the main
theorem and finally demonstrate it.
2. AUXILIARY RESULTS

Definition 2.1. For a divisor D € Div(C), we define the Q-vector space
denoted L(D) by:

L(D) = {f e K(C\{0} | div(f) = -D}U{0}.

Corollary 2.1. According to [11], for two divisors D and D' of div(C), we
have the following implications:

D =D — L(D) = L(D') = dim £(D) = dim £(D').
Lemma 2.1. According to [12], we have: J(Q) = (Z/27)*.

X Y
Let x = 7 and y = - be rational functions defined on Q.

4
(1) v =[] -,
k=0
with v, € {0,2,3,6,9} recpectively for k € {0,...,4}. Let x, y be the affine
coordinates and X, Y and Z the projective coordinates. Let’s say: x = %
and y = % The projective equation of the curve is given by:
4
732 = [[(X = w2).
k=0

We note Py and oo the points of C defined by: P, = [y : 0 : 1] and
co=[1:0:0].

Lemma 2.2. For curve C, we have the following rationnal divisors:

i): div(x — i) = 2P, — 200 with Py = [y, : 0: 1], k € {0,...,4} and
v €40, 2, 3, 6, 9}.

4
i1): div(y) = Z Py, — 500.
k=0
Proof. We will carry out a calculation of this type:
divit —w)=(t=wZ)-C—(Z=0)-C,

Wherew:{;: andQ:{ X see [6]

Y

Corollary 2.2. The following results are the consequences of Lemma 2.2:

4
®: Y j(P) =0,
k=0
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®: 2j(Py) =0 where k € {0,...,4}.

,,,,,

Remark 2.1. The generator of the torsion group of rational points of the
Jacobian J(Q)ior described in [8] is given by:

J(Q)tmquo—oo], [Pl—OO], [PQ_OO]a [P3_OO]>
From Lemma 2.1 and Remark 2.1, we derive the following Lemma:

Lemma 2.3. The mordell-weil group J(Q) of the curve C of affine equation
4
y? = H(:U — k) is given by:
k=0

3
JQ) = {Zam(m ar. € {0, 1}}.
k=0

Lemma 2.4.

1: We have the following linear systems:

[}
5
g

I
=

e L(11c0) = L(1000) @ (ya?),
2: Generaly for m € N, a Q-basis of the space L(moo) is given by:

iENandiS%} U {yxj

Proof. see [4, 5, 6].

B, = {x’

jENandjgm;S}

3. MAIN RESULT

The main result of this paper is the following theorem:

Theorem 3.1. The set of algebraic points of degree at most £ > 5 over QQ
4

on the curve C of affine equation y> = H(:n — Yg) is given by
k=0

4 3 3
¢ Q) = U K [U U Peo | U (U Mg>, with:
k=0 K, 9 =0 o=0
s € {0,1} K #Y
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( [-‘re
ag and by non-zero,
Zal z! +8’}/k aers 7 0 if £ is even,
2
T, — e bz+;75 #0if 0 is odd
and x is a solution
= J
Kasr Z bjx of the equation:
bts 2 L4s=5 2
Zai (2" + s7}) x5 =g Z b’ H(w—yk)
[\ i=s =0 k=1 )
( H2 A A aere £ 0 if £ is even,
a; .Z‘Z + wz " 2
_; i ) bes # 0 if € is odd
’ £4—3
2 , and x s a solution
P = bz’
" = J of the equation:
42 2 =3 2
2 . . 2 .1 4
Y o)) = [ nert ) TTe -
i=1 j= k=1
= £0if 0
2 A A Qei2 if £ is even,
a; (xz 4 Cz) 2 . .
— v bes #£0 if £ is odd
1= 2
T, —
o and x s a root of
_ j
Mo bjz the equation:
7=0
o2 2 3 2 A
2
Z zt + C’ P bjxj_% H T — Vi)

Proof. Let R € C(Q) such that [Q(R):Q] = ¢ with £ > 5 and R ¢

{Pyg, oo} for k € {0,...,4}. Let’s consider R,, with n € {1,..., ¢} the Galois
l

> R, —too

n=1

conjugates of R and let A\ = € J(Q). From Lemma 2.3, we

3
have A = — Zakj(Pk) and hence:
k=0

(2)

¢ 3 3
ZR” —Koo] = [Zakoo — ZakPk )
n=1 k=0 k=0
From the expression (2), this gives the following expression:

¢ 3 3
(3) ZRn+ZakPk—<€+Zak>oo]:O.
n=1 k=0 k=0
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Equation (3) leads to the existence of a rational function f(z,y) defined
on Q, according to the Abel-Jacobi theorem (cf. [1, 14]), such that:

J4 3 3
(4) div(f) =) Rn+ Y 0Py — <e+zak> 0.
n=1 k=0 k=0

3
From expression (4) we deduct that f € £ ((Z + Z ozk) oo) , according to
k=0

the Lemma 2.4 | f(x,y) can be expressed as follows:

Z+Z%:O ag Z+22:0 ap—5
2 2
(5) flz,y) = Z a;x' + Z bjyx’,
i—0 =0

with ordp, f = a4 and k € {0,...,3}. Depending on the values taken by
the oy values, we draw up a table of the different cases:

a|0]1]0j0]jOf1|1|1]j0|O|O|1|1|1|0O]1
ap |00]1]0(0|1]|0|0O]1|O|1|1]1|0]|1]1
az 000|100 1]|0jO|1|1|1]j0O|1|1]1
a3 [0]0]0(0|2|0Of0Of1|1]|1|O]jOf1|1|1]|1
15t — : Let’s consider the cases where the a;’s are either all zero, only

one is non-zero or none is zero.
e If all ay’s are zero, then the function f(z,y) of the expression
(5) is written:

4 £—5
2 2

(6) flay) = aix’ + ) bjyal,
i=0 j=0

with a;,b; € Q, ag and by not simultaneously null (otherwise of
the R,’s should be egal to Py, which would be absurd), a: # 0
2

and be—s # 0 depending on whether ¢ is even or odd (otherwise

one of %che R,’s should be egal to oo, which would be absurd).
e If only one of the ay’s is zero, then the function f(z,y) of the
expression (5) is written:

e s
2 2
(7) fla,y) = '+ biyal,
i=0 =0
42
2

and since ordp, f = 1, which implies that ag = Z ai’y,i, S0 equa-

i=1
tion (7) becomes:
42 £=3
(8) flay) = ai (& +70) + Dby,
i=1 j=0

with a;,b; € Q, by # 0 (otherwise of the R,’s should be at Py,
which would be absurd), azs1 # 0 and bes # 0 depending on
2 2



(11)

(13)
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whether ¢ is even or odd (otherwise one of the R,,’s should be
at 0o, which would be absurd).

e If none of the ay’s is zero, from Corollary 2.2, the rational di-
visor of f(x,y) is expressed as follows:

V4
div(f) =Y Rn+ Py — (£ +1)o0.

n=1

From expression (9), we deduct that f € £((¢/+ 1) c0), accord-
ing to the Lemma 2.4 | f(x,y) can be expressed as follows:

£+1 -4
2 2
f(wv y) = Zai-rz + Z bjyxja
i=0 =0

4+2
2

and since ordp, f = 1, which implies that ap = Z amfi, so the
=1
expreesion (10) becomes:

4

2
Fla,y) = ai (2’ +95) + ) bjyad,
; pard

1 -4

w‘+

@
I
—

with a;,b; € Q, by # 0 (otherwise of the R,’s should be at P,
which would be absurd), ae1 # 0 and bs—s # 0 depending on
2 2

whether ¢ is even or odd (otherwise one of the R,,’s should be
at 0o, which would be absurd).
Thus, from equations (6), (8) and (11), for ay’s are either all zero,
only one is non-zero or none is zero, there is exit s € {0,1} and

k € {0,...,4} such that:

l+s l+s5—5
2

tes L4s—5
f(z,y) = Zai (m” + 8"}/,2) + Z bjya’.
=5 7=0

At points R,,, the function f(z,y) of (12) gives f(z,y) = 0, resulting

in an expression for y as a function of x of the form
l+s

2
Z a; (xi—i-sq/,i)
=8
y = - l+s—5
2

Z bj$j
7=0

equation (1), we obtain:

. By replacing the y in the expression of the

L+s 2 {+s—5 2

N
Zai (" +sv) | ==
=5

p) 4
b’ H(a; — V)-
0

j= k=1
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(14)

K:s,k::
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From the equation (13), becomes the following equation:

Lts 2 L4s=5 2
2 2

4
Z a; (:L" + s'y,i) xS =g Z bz’ H(x—fyk).
i=s 7=0 k=1
The equation (14) is degree ¢. In fact, the first member is degree
L l+s—5
2 ; —s = £ and the second one is degree 2 ( ts )—s+5 =/
This gives a first family points of degree £:
( Ots \
2 , , ap and bg non-zero,
(2 X2 . .
Zai (2" + s7) aers # 0 if £ is even,
— 2
z, —=2 P beys—s # 0 if £ is odd
+s—5 B}
2 b and x is a solution
Z% it of the equation:
]:
Ots 2 e4s—5 2
Z a; (2" + svp) | a5 =a'"* Z bjx’! H(ﬂi—%)
i=s j=0 k=1
ond_ : Let’s consider only the cases where two of the ay’s are zero,

then the function f(x,y) of the expression (5) is written:

£4+2 £-3
2

H2 =3
f($7 y) = Zaixz + b]’ny‘],
1=0 0

j=

and since ordp, f = ordp, f = 1 with x, ¥ € {0,...,3} and k # 9,

042
2
. 4 1, . ,
which implies that ag = Z ity 9 with iy, 5 = —3 (v +7y), hence
i=1
the equation (15) becomes:
2 £=3
Flay) = ai (2" +4Ly) + > by,
i=1 j=0

with a;,b; € Q, aes2 # 0 and be—s # 0 depending on whether ¢
2 2
is even or odd (otherwise one of the R,’s should be at oo, which

would be absurd). At points R,, the function f(x,y) of (16) gives

f(z,y) = 0, resulting in an expression for y as a function of x of the
42

=
Yo ai (@ + )
=1

form y = — = . By replacing the expression for ¥ in

-3

2
J
bjx
=0

.
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the expression of the equation (1), we obtain:
2

(17) Z a; (x’ + w,zc) ==z Z bz’ H T —Yg).
i=1 5=0 k=1

From the equation (17), becomes the following equation:

2 -3 2 4

42
2 2
(18) Sai(@ +uly) | a7t = (Y badz | [[@—w)
i=1 j=0

k=1
The equation (18) is of degree ¢. Indeed, the first member is degree

{42 (-3 1
2 <—; —1 = £ and the second one is degree 2 <2 — 2) +4 =17

This gives a second family points of degree /:
.

( 42 . .
2 _ A aer2 7 0if £ is even,
a; (2° + wz 2
Z i ( ) bes # 0 if £ is odd
— 2
’ £—3
N ‘ and x is a solution
" = J of the equation'
2 2 =
2 . ) 2 1 4
2 afa i) | o= | D bt | @ =m)
i=1 Jj=0 k=1
\ Vs

3rd_ : If only one of the a;’s is zero, from Corollary 2.2, the rational
divisor of f(z,y) is expressed as follows:

¢
(19) div(f) =Y Rn+ Pr+ Py — (£ +2)o0
n=1
where o € {0,...,3}, from expression (19), we deduct that
feL((¢+1)o0), according to the Lemma 2.4 , f(z,y) can be ex-
pressed as follows:

l+2
(20) Z a;z’ + Z bjya?,

042
2
and since ordp, f = ordp,f = 1, which implies that ap = Zaigf,

4
. 1 . .
with (¢ = ~5 Z (7. +9°), hence the equation (20) becomes
n=3

o2 3

2 . . 2 -

(21) flay) = ai (e’ + )+ bjyal,
i=1 =0

with a;,b; € Q, a2 # 0 and be—s # 0 depending on whether £
2 2

is even or odd (otherwise one of the R,’s should be at oo, which
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(22) doai(a'+ )| ==
=1 J
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would be absurd). At points R, the function f(x,y) of (21) gives
f(z,y) = 0, resulting in an expression for y as a function of x of the
042
2
Z a; (xl + C;)

i=1

form y = — . By replacing the y in the expression of

£—3

o
bjx

Jj=
the equation (1), we obtain:

042 2 -3 2

P} 4
bjx’ H(m — Vk)-
=0 k=1

From the equation (22), becomes the following equation:

2 2
242
o2 4

(23) Zai (:L’I + Cf,) 7l = Z bjxj_% H(m — Yk)-
=0

(1]

2]

3]

i=1 k=1

The equation (23) is degree ¢. Indeed, the first member is degree

(42 l— 1
2 % —1 = £ and the second one is degree 2 (23 — 2)+4—€.

This gives a third family of points of degree ¢:

042
2 0if 21
Zai (xi+Ci) ar2 =+ 1. 1s‘. even,
; 7 bes #0if £ is odd
T, — =1 — 2
= and z is a root of
Mo bz the equation:
=0
42 2 =3 2
2 . . 2 .1 4
ai (2 + ) |t =D bz | [ —w)
=1 Jj=0 k=1
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