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ON ARBELI OVER THE SAME CHORD

PARIS PAMFILOS

Abstract. In this article we study some structures related to a family of
arbeli possessing a chord of fixed length. We discuss two main aspects. The
first deals with a group permuting the arbeli over a common chord. This
is connected with an aspect of the arbelos in the framework of hyperbolic
geometry. The second aspect deals with certain curves described by notice-
able points in the arbelos configuration. In particular we notice the intimate
relation of the arbelos with the right strophoid.

1. Introduction

The arbelos is a sort of curvilinear triangle ABC whose sides {α, β, γ}
are three semicircles with common endpoints {A,B,C} called vertices and
defining the “chord” AC of the arbelos, which is the diameter of the biggest
involved circle (see Figure 1).
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Figure 1. Arbelos
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Its shape originates from a special knife, used by ancient shoemakers for
the scratching and cutting of skin. With the arbelos are connected the names
of Archimedes, Pappus and Steiner ([6], [17, p.115], [19]). In the sequel we’ll
denote the arbelos through its vertices: ABC , or through its circles: αβγ
if we want to stress the role of its sides. Most of the time we’ll work with the
entire circle carrying the particular semicircle-side of the arbelos, denoting
it also with the same symbol.

In this article we study the “family” of arbeli possessing the same chord
AC , i.e. having the same maximal circle β with diameter AC , which call
the “big” circle or side of the arbelos and the two other circles or sides {α, γ},
called “small” and are defined by a point B of the segment AC. A basic
observation is that two arbeli of this family are connected by an inversion or
a reflection, which fixes the circle β . The inversion can be computed easily
from the data of the two arbeli and can be also represented as composition
of two particular inversions, which interchange each of the two arbeli with
the “symmetric arbelos” AOC on the segment AC.
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Figure 2. κ-inversion mapping ABC to the symmetric AOC

To fix the ideas we discuss briefly the case of such a particular inversion
interchanging the symmetric arbelos AOC with an arbitrary ABC (see
Figure 2). Considering a Cartesian coordinate system and identifying the
common chord AC of the arbeli with the interval [−r, r] , the inversion
fκ w.r.t. the circle κ centered at K(k, 0) with radius R2

κ = k2 − r2 maps
the point B(r2/k, 0) to the origin O and the arbelos with vertices at the

points {A(−r, 0), B( r
2

k , 0), C(r, 0)} to the symmetric arbelos of the segment
[−r, r] . The line κ′ parallel to the y-axis through B is the β-polar of K.

2. The group Permuting the arbeli

As we noticed in the introduction, the family of arbeli over the same
chord AC is connected with a group of transformations that interchanges
any two members of the family. Figure 3 illustrates the case. In this the
two arbeli are defined respectively through the points {B,B′}. There is
then an inversion on the circle κ(K), orthogonal to β, which interchanges
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the arbeli {αβγ, α′βγ′}. The circle κ is determined from the couple of
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Figure 3. Inversion interchanging the arbeli {αβγ, α′βγ′}

points (B,B′). Its diametral points {D,E} are the common harmonics of
the couples of points {(A,C), (B,B′)}. Points {D,E}, per definition, are si-
multaneously harmonic conjugate to (A,C) and (B,B′) ([16, I, p.350]). All
these inversions generate a group G of transformations that leaves invariant
every circle β′ through the points {A,C}.

In [15] we discuss homographies of lines and conics and show, in particular,
that an inversion relative to a circle κ induces a homography on every circle
β orthogonal to κ. It follows that the group G can be represented by a group
of homographies on β or on any other circle β′ passing through {A,C}.
Since these inversions leave invariant each of the two arcs of the circles
β′ defined by the points {A,C}, they define also homographies acting on
the segment AC and leaving it invariant. The following, easily deducible,
formulas give a description of the action of this group and the restriction of
this action on the segment AC.

The inversion on the circle κ(K(k, 0)) orthogonal to β(O, r) is described
through:

(1)


x′ =

k(x2 + y2)− (r2 + k2)x+ kr2

x2 + y2 − 2kx+ k2

y′ =
(k2 − r2)y

x2 + y2 − 2kx+ k2

 with k2 > r2 .

The composition of two such inversions on circles {κ(K(k, 0)), κ′(K ′(k′, 0))}
is :

(2)


x′′ =

k′′(x2 + y2) + (r2 + k′′2)x+ k′′r2

x2 + y2 + 2k′′x+ k′′2

y′′ =
(k′′2 − r2)y

x2 + y2 + 2k′′x+ k′′2

 with k′′ =
r2 − kk′

k′ − k
.

We see that this is also the composition of the reflection (x, y) 7→ (−x, y)
on the y-axis followed by the inversion on the circle κ′′(K ′′(k′′, 0)) . The
reflection can be seen as a limiting case of inversion for K → ∞ .
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It follows that the restriction of these transformations on AC is expressed
through the homographies:

(3)


x′ =

kx− r2

x− k
,

x′′ =
k′′x+ r2

x+ k′′
,


the second kind being again the composition of the reflection x 7→ −x fol-
lowed by a homography of the first kind. In terms of the group PGL(2,R)
these generate the subgroup consisting of classes of non-zero multiples of
matrices of the form

(4)

{(
k −r2

1 −k

)
,

(
k r2

1 k

)
with k2 > r2

}
∪
{(

1 0
0 −1

)
,

(
1 0
0 1

)}
,

representing the group G of permutations of the family of arbeli on the
chord AC as a subgroup of PGL(2,R). We formulate this as a theorem:

Theorem 2.1. The group of transformations permuting the arbeli over the
chord AC is represented as a subgroup of PGL(2,R) through the non-zero
multiples of the matrices (4).

3. The incircles

Returning to figure 2, the circle κ is orthogonal to all the circles {σ}
passing through the points {A,C}, which consequently remain invariant
under the corresponding inversion fκ . An interesting such case is the circle
σ passing through the contact points {P0, Q0} of the incircle ξ0 with the
two equal circles of the symmetric arbelos (see Figure 4).

Since the inversion fκ leaves σ invariant and interchanges the incircles of
the symmetric and the general arbelos, it maps these contact points to the
corresponding contact points of the incircle of the general arbelos ABC . It
follows that this circle σ carries the contact points {P,Q} of the incircle of
every arbelos of the family.
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Figure 4. The inversion fκ interchanging also the corre-
sponding incircles

Figure 5 shows the configuration of the symmetric arbelos on the chord
AC. An angle chasing argument, indicated in the figure, shows that the

angles P̂0AD = P̂0CA . This implies that the circle σ has its center S′
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on β and its radius is r
√
2. In addition it is easily seen that the ratio

of the orthogonal sides of the right triangle AOJ is AO/OJ = 2, and
{|EE′| = |IO| = 2r/3.} We have proved the theorem.

Theorem 3.1. With the notation adopted so far, the incircles of the family
of arbeli with common chord AC touch the two inner circles at points {P,Q}
lying on the circle σ with center S′ and radius r

√
2.
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Figure 5. The circle σ carrying the contacts {P,Q} of the incircles

The following easily to prove lemma, whose proof results from the fact
that the center of an inversion interchanging two circles is also a similarity
center of the circles, leads to a property known to Archimedes.
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Figure 6. Inversion property |AB|
|LM | =

|D′C′|
|L′M ′|
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Lemma 3.1. The inversion fκ w.r.t. to the circle κ(O,R) maps the circle
λ(L) to the circle λ′(L′) . We consider also a line OM and two diameters
{AB,D′C ′} parallel to this line and the distances {LM,L′M ′} of the centers
from this line. Then, the triangles {ABM,D′C ′M ′} are similar and the

ratios are equal: |AB|
|LM | =

|D′C′|
|L′M ′| (see Figure 6).

Returning to figure 5, where we noticed that the diameter of the incircle
|EE′| = 2r/3 of the symmetric arbelos is equal to the distance |IO| of its
center from the chord AC of the arbelos, we deduce the analogous property
for the general arbelos:

Corollary 3.1. The diameter of the incircle of an arbelos is equal to the
distance of its center from the chord.

Figure 7 indicates this by the square on the diameter P ′Q′ of the incircle
ξ , whose opposite side is on the chord AC. The figure suggests also another
property:
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Figure 7. Loci {µ, ν} of centers of incircles and Bankoff circles

Theorem 3.2. The geometric locus of the centers I of the incircles ξ of
the arbeli of the family is an ellipse with center on the y-axis, one focus at
the origin O, and eccentricity 1/2.

Proof. The proof results by considering I as intersection of two lines
{I = OH ∩BT}. Point H is the contact point of β and ξ and T is
the point (0,−2r) . That line BT passes through I results from a trian-
gle property relating the Gergonne center of a triangle and the symmedian
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point of its incircle. It is namely well known and easy to prove that the Ger-
gonne center of a triangle coincides with the symmedian point of its intouch
triangle, i.e. the triangle of contacts with its incircle [8].

In figure 7 the triangle under consideration is the one of the centers of the
three circles IMN . Its intouch triangle is BQP consisting of the contact
points of the three circles.

Because the contact point P is similarity center of the circles {α, ξ} the
triangles {ABP,Q′P ′P} are similar and {P ′, P,B} are collinear. Analo-
gously the points {B,Q,Q′} are collinear and the diameter P ′Q′ of ξ is
antiparallel to PQ . Since I is the middle of P ′Q′ line BI is a symmedian
of the triangle BQP, hence also a Gergonne Cevian of the triangle IMN
and passes through T . These, together with some other characteristic prop-
erties of the triangles {IMN,BQP} have been discussed in [14, Theorem
6.1].

If (b, 0) are the coordinates of B, then those of H can be calculated
using the fact that the circle λ(L) orthogonal to β and AC and passing
through B(b, 0) passes also through the contact point H of {β, ξ}. Point
H is on the polar of L relative to β and its coordinates H(xH , yH) are

xH =
2br2

b2 + r2
, yH =

r(r2 − b2)

b2 + r2
.

Using this, the lines OH and BT can be calculated and their intersection
is found to be:

(5) xI =
4br2

3r2 + b2
, yI =

2r(r2 − b2)

3r2 + b2
.

Eliminating b from these equations we find that the coordinates (x, y) of
I satisfy the equation of an ellipse µ :

(6)
x2

4r2

3

+
(y + 2r/3)2(

4r
3

)2 = 1 .

The eccentricity of this ellipse is 1/2 and it is characterized by its connec-
tion with the equilateral triangle, having its focals at two vertices of the
equilateral and passing through the third vertex, as it is seen in the small
addition of figure 7 picturing a similar to µ ellipse. Another characteristic
of this ellipse is that the five points: the two vertices, the two focals and the
center, divide its major diameter in four congruent segments.

Notice that combining corollary 3.1 with formula (5) we obtain the radius
of the incircle in the form

(7) rξ =
rrαrγ

r2 − rαrγ
.

We notice also that the homothety with center H and ratio that of the radii
of the circles {β, ξ}: r/rξ = (r2 − rαrγ)/(rαrγ) transforms the incircle ξ to
β and the circles {α, β, γ} to the circles {α′, β′, γ′} defining an arbelos with
incircle β (see Figure 8). This fact can be used to transfer properties of
families of arbeli with common incircle, studied in [14] to families of arbeli
over a fixed chord.
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Figure 8. Reduction to arbeli with common incircle

4. The hyperbolic aspect

There is an intimate relation of the arbelos with the non-euclidean or
hyperbolic geometry of the plane, as this is represented in the Poincaré
model of the upper half plane. In this model namely, the arbelos represents a
“triply asymptotic” (or “trebly asymptotic” after Coxeter [4, p.301]) triangle,
i.e. a triangle with its vertices {A,B,C} on the “horizon” of the hyperbolic
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Figure 9. The “altitudes” of the asymptotic triangle

plane, represented by the union of the x-axis and the point at infinity of
the y-axis. Hyperbolic geometry of the plane, and properties of hyperbolic
triangles in particular, have been extensively studied. Abundant references
in the bibliography can be found in the imp‘ressive PhD thesis by Barbu [3].
The group described in § 2 is simply the subgroup of hyperbolic isometries
preserving the big (half) circle β of the arbelos and its interior, which, from
the hyperbolic geometry viewpoint, is a line and a half-plane defined by
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that line. Also the incircle of the arbelos coincides with the incircle of the
hyperbolic asymptotic triangle.

Here we make some remarks regarding this coincidence. Since all triply as-
ymptotic triangles of the hyperbolic plane are isometric (via hyperbolic con-
gruences) the hyperbolic radius of the incircle is the same constant. Figure 9
shows a preliminary step for its calculation. The three circles {σA, σB, σC}
are the three “altitudes” of the hyperbolic asymptotic triangle. They are
represented by circles passing through the vertices {A,B,C} and cutting
orthogonally the opposite sides. It is easily checked that the σA-inversion,
which is a hyperbolic isometry (hyperbolic reflection in σA) preserves β
and interchanges {β, γ}, as well as {σB, σC}. Analogous properties hold for
{σB, σC}. This implies also that the inversions in these three circles preserve
the incircle ξ of the arbelos, which consequently is orthogonal to them and
intersects them at its contact points {P,Q, S} with the sides of the arbelos
(see Figure 10). It follows, that the circles {σA, σB, σC} belong to the pencil
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Figure 10. The hyperbolic radius I1I2 of the asymptotic triangle

P of intersecting type, containing all the circles orthogonal to the x-axis
and the circle ξ. All these circles intersect at a point I1 and its reflection
in the x-axis, the line II1 being orthogonal to the x-axis. These properties
identify ξ with the hyperbolic incircle of the asymptotic triangle and show
that I1 is its center. We have proved most of the following theorem.

Theorem 4.1. The arbelos’ incircle coincides with the incircle of the cor-
responding asymptotic hyperbolic triangle having the hyperbolic center I1
and the hyperbolic radius I1I2 of hyperbolic length k · ln(

√
3), where k is

a constant depending on the unit-length of the hyperbolic model.

Proof. The claim about the radius follows from the definition of the
hyperbolic distance in this model, which in our case is expressed by the
formula k · ln(|I ′I1|/|I ′I2|) = k · (ln(|I ′I1|)− ln(|I ′I2|)). But the euclidean
length |I ′I2| = rξ is the radius of ξ, and |I ′I1| can be computed as the
radius of the circle σ(I ′, |I ′I1|) belonging to the pencil P. For this circle
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holds:

|I ′I1|2 + r2ξ = II ′2 = 4r2ξ ⇒ |I ′I1|2 = 3r2ξ ⇒

ln(|I ′I1|)− ln(|I ′I2|) = ln(
√
3rξ)− ln(rξ) = ln(

√
3) .

Figure 10 suggests also the equality of the angles between the circles
{σA, σB, σC}. This follows from the fact, that the inversion in each of these
circles interchanges the two others, and inversions are conformal mappings.
We notice also that I1 is simultaneously the hyperbolic incenter and the
hyperbolic orthocenter of the asymptotic triangle, the analogous property
in the Euclidean geometry characterizing the equilateral triangle.

5. The Bankoff circles

The Bankoff circle of the arbelos ABC ([2], [18], [12]) is the circle
ζ = (BPQ) passing through the contact points of the three circles: the
two small sides {α, γ} of the arbelos and its incircle ξ (see Figure 7). Its
properties have been studied also in [14] and show that it is the inverse of
the incircle relative to the circle σ(S, |SA|) . Using this and formulas (5) we
obtain the equation of the locus of the centers J of the Bankoff circles:

(8) x2 + 4ry − r2 = 0 .

This is a parabola ν with focus at (0,−3r/4) and vertex at (0, r/4) (see
Figure 7). Writing the equation of the ellipse µ in the equivalent form
µ : 4x2 + 3y2 + 4ry − 4r2 = 0 , we see easily that ν belongs to the pencil of
conics generated by {µ, β}:

(9) ν = µ − 3β .

We notice that this conic pencil contains the couple of parallel lines repre-
sented through equation y(y − 4r) = 0. The radius of the Bankoff circle ζ
and its congruent Archimedean twins is found to be

(10) rζ =
rαrγ
r

.
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2

Α Β Ο C

ζ

ξ

Figure 11. The Archimedean twins {τ1, τ2}
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6. The Archimedean twins

The Archimedean twins ([18], [1]) are two congruent circles {τ1, τ2} tan-
gent respectively to two sides of the arbelos and also tangent to the common
tangent of the small sides {α, γ} (see Figure 11). It is known ([2]) that they
are congruent to the Bankoff circle ζ , hence their radius is given by formula
(10). Circles related somehow to the Arbelos and being congruent to the
Bankoff circle are called “Archimedean”. There are several ways to construct
such circles. A nice example is given by Okumura [13]. In the following we
show that the geometric locus of the centers of circle τ1 is an arc of a curve
of degree 4 (a quartic). For this we use the following simple lemmata.

Lemma 6.1. Circle γ(O, rγ) is tangent internally to circle β(D, r) at a
point A. Consider a Cartesian coordinate system centered at O and D
on its x-axis (see Figure 12). For a point P moving on γ construct the
corresponding circle τ(K) tangent at P to γ and also tangent to β at point
Q. Then, K describes an ellipse and the diameter d of τ , as a function
of the coordinate x of P (x, y) moving on γ, is given by a homographic
relation [15].

A O B D C

γ β

P

S

Q

τ

K

Figure 12. Circle τ tangent to two tangents circles {γ, β}

Proof. Line PQ passes through the similarity center S of {γ, β}. Using
polar coordinates ([10, I, p.306]) w.r.t. O, we see that the center K of τ
describes an ellipse with focals at {O,D} and

d = 2rγ(r − rγ)
rγ + x

rγ(rγ + r)− (r − rγ)x
.(11)

Lemma 6.2. With the notation of lemma 6.1, considering the special case
of P making the circle τ one of the twins, the tangent η of the circles
{γ, τ} at P passes through C (see Figure 13).

Proof. The circle λ(A, |AB|) is orthogonal to τ. Hence the λ-inversion
leaves τ invariant and maps the circle β to the parallel CS′ of BX. The



106 Paris Pamfilos

CA ΒO

γ
β

E

F

T

τλ

P

G C'

X

Sη

F'

Figure 13. The common tangent of {γ, τ} passes through C

contact point P of {β, τ}maps to the τ -diametral F ′. Thus, it is defined the
cyclic quadrangle ABFP. Sides {PF,AB} intersect at C and the equation
|CP ||CF | = |CA||CB| shows that C is on the radical axis of the circles
{κ, γ} which is line η.

Theorem 6.1. The geometric locus of the center K of the incircle τ(K, rτ )
of the curvilinear triangle ABT is an algebraic curve of degree 4 (a quartic)
(see Figure 14).

A B COD

K

P

β

τ

T

V

γ

X

Figure 14. The quartic (arc) described by the center K

Proof. The center of the circle β(O, r) with diameter AC is at the origin
of coordinates and with A(a, 0). The variable circle γ(D, rγ) has diameter
AB with B(b, 0). The triangles {DBV,DPC} are congruent and, since
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|DV | = |DC| , K(x, y) has

|DK| = rγ + rτ
rγ

|DP | and
|DX|
|DK|

=
|DX|
rγ + rτ

=
|DB|
|DV |

=
|DB|
|DC|

=
rγ

2r − rγ
.

Using formula (11) we see that

DX =
r2γ

2r − rγ
and K −D =

2r − rγ
r

(P −D) .

From this, expressing D = (A+B)/2 and rγ = |B −A|/2 and eliminat-
ing the coordinate b of B(b, 0), we find that K(x, y) satisfies the quartic
equation

(12) y4 + 4a(5x− 7a)y2 + 16a(x+ a)(x− a)2 = 0 .

Obviously, the center of the other twin circle describes the symmetric relative
to the y-axis of the arc shown in the figure.

7. The right strophoid

Figure 15 displays a configuration in which we consider all possible arbeli
not on a chord AC of constant length, but arbeli having the chord V O
constant. We’ll see in a moment how these relate to arbeli on a constant
chord. V O is the common chord of two equal circles {λ(L), λ′(L′)} inter-

O

V

U

λλ'

LL'
A

Cαγ
β

κ

Ε

Figure 15. Arbeli with constant chord V O

secting orthogonally. The chord AC passes through O and varies with its
endpoints on these circles. Point E is the “inverting center” of the circle
κ interchanging the two circles {α, γ} of the arbelos. Obviously, varying
the chord AC we obtain all possible ratios OA/OC and through them all
possible arbeli, up to similarity.

Theorem 7.1. Referring to figure 15, as the chord through O of the arbelos
AOC varies, the inverting center E describes a right strophoid.
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Figure 16. Center of the inverting circle describes a right strophoid

Proof. We adopt the Cartesian coordinate system with origin O and y-axis
along OV with U(0, d) and V (0, 2d) implying:

C = d(1 + c
√
2 , 1 + s

√
2) with c = cos(ϕ), s = sin(ϕ).

C ′ =
d√
2
(c− s, c+ s+

√
2) defining the lines OC , UC ′ intersecting at

(x, y) =
d(s− c)√
2(s

√
2 + 1)

(
c
√
2 + 1 , s

√
2 + 1

)
.

Eliminating {c, s} from these equations we obtain the equation of the right
strophoid

(13) y(x2 + y2) + d(x2 − y2) = 0 .

It is easily checked that the projections {A′, C ′} of O on the two lines
{V A, V C} define another diameter of the circle κ on the fixed diameter
OV (see Figure 17). Also the line OX orthogonal to AC at O bisects

the right angle Â′OC ′ and its intersection O′ with line UE is also on the

strophoid. Since the lines {OO′, OE} are bisectors of the angle Â′OC ′,
(A′C ′;O′E) = −1 is a harmonic quadruple and the ratio of the diameters
A′O′/O′C ′ is equal to A′O/C ′E which is equal to the ratio of diameters
AO/OC. This implies that the arbeli AOC and A′O′C ′ are similar, the
last one having a chord of constant length.

The aforementioned harmonic quadruple implies also that the circles
{κ, δ} on diameters {A′C ′, O′E} are orthogonal and produce a direct link
of the strophoid with the arbeli {A′O′C ′}. In fact, the inverting circle δ of
the arbelos A′O′C ′ belongs to the pencil of circles tangent to the y-axis at
the origin and the points {E,O′} of the strophoid belong to the diameters
of these circles through the center U of κ.

This shows that the right strophoid can be generated using a tangent
pencil of circles. For this take a point U on the common tangent of its
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C
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V

U
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κ
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X
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δ

Figure 17. Arbeli on chords {A′O′C ′} of constant length

members (radical axis of the pencil). The diametral points of the member-
circles defined by lines through U describe a right strophoid ([9, p.96], [7]).
This is a special case of a general geometric generation of all possible circular
cubics exposed in [11].

References

[1] Anthony, J.M., In Eves’ circles, MAA Notes, 34(1994) 68-71.
[2] Bankoff, L., Are the twin circles of Archimedes really twins?, Mathematics Magazine,

47(1974) 214-218.
[3] Barbu, C., Contributions to the study of hyperbolic geometry, PhD Thesis Summary,

Babes-Bolyai university, Cluj-Napoca, 2012.
[4] Coxeter, H., Non-Euclidean Geometry, Mathematical Association of America, 1998.
[5] Dodge, C. et al, Those Ubiquitous Archimedean Circles, Mathematics Magazine,

72(1999) 202-213.
[6] Heath, T., The works of Archimedes, Cambridge University Press, Cambridge, 1897.
[7] Johnson, W., The strophoids, American Journal of Mathematics, 3(1880) 320-325.
[8] Kimberling, K.,Encyclopedia of triangle centers, https://faculty.evansville.

edu/ck6/encyclopedia/ETC.html, 2024.
[9] Lockwood, E., A book of curves, Cambridge university press, 1961.
[10] Loney, S., The elements of coordinate geometry I, II, AITBS publishers, Delhi, 1991.
[11] Mathews, R., A general construction of circular cubics, American Mathematical

Monthly, 29(1922) 202-204.
[12] Okumura, H., Dilations and the arbelos, Normat, 60(2012) 4-8.
[13] Okumura, H., Archimedean twin circles in the arbelos, Mathematical Gazette,

97(2013) 512.
[14] Pamfilos, P., On arbeli sharing their incircle, International Journal of Geometry,

14(2025) 50-72.
[15] Pamfilos, P., Homographic relation, http://users.math.uoc.gr/∼pamfilos/

eGallery/problems/HomographicRelation.pdf, 2024.



110 Paris Pamfilos

[16] Pamfilos, P., Lectures on Euclidean Geometry vols. I, II, Springer, Heidelberg, 2024.
[17] Sefrin-Weis, H., Pappus of Alexandria, Book 4, Springer, Heidelberg, 2010.
[18] Dodge, C. et al, Those Ubiquitous Archimedean Circles, Mathematics Magazine,

72(1999) 202-213.
[19] Woo, P., Simple constructions of the incircle of an arbelos, Forum Geometricorum,

1(2001) 133-136.

ESTIAS 4
IRAKLEION 71307
GREECE
E-mail address: pamfilos@uoc.gr


	1. Introduction
	2. The group Permuting the arbeli
	3. The incircles
	4. The hyperbolic aspect
	5. The Bankoff circles
	6. The Archimedean twins
	7. The right strophoid
	References

