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Congruence Theorems for triangles and

convex quadrilaterals involving heights

Antonella Perucca, Nathaniel Sagman, and Guillaume S. Verfaillie

Abstract. We investigate all Congruence Theorems for triangles involv-
ing heights, and possibly also sides and angles. Moreover, we prove that a
convex quadrilateral, as long as it is not a parallelogram, is determined up
to congruence by its heights. Finally, we prove two Congruence Theorems
involving heights that hold for all convex n-gons.

1. Introduction

Two subsets of the Euclidean plane R2 are congruent if one can be trans-
formed to the other via some sequence of translations, rotations, and re-
flections. Congruence Theorems provide criteria for subsets of R2 to be
congruent. As an example, the Side-Side-Side (SSS) Congruence Theorem
says that two triangles with all the same side lengths must be congruent.
See [5] for a general introduction and discussion on Congruence Theorems.

Congruence Theorems for triangles are well known: they are taught in
high schools and, historically speaking, go back all the way to Euclid [8].
Such Congruence Theorems typically involve lengths of sides and measures of
angles. Congruence Theorems for convex quadrilaterals have been studied
using the classical approach for triangles (see [7]) and also with a more
modern point of view (see [2]). Most recently, in [6], Perucca and Torti
proved Congruence Theorems for convex n-gons, where n can be arbitrarily
large, with the given information being lengths of certain sides and diagonals
and the measures of certain angles. See also [1] about so-called generic
Congruence Theorems for polygons and polyhedra in higher dimensions.
For an axiomatic introduction to Congruence Theorems for polygons, we
refer the reader to [3], which is also interesting from a didactic standpoint.
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For triangles, heights are defined as follows. Given a triangle in R2, let A
be a vertex and let ℓA be the extension of the opposite side of the triangle
to an infinite line in R2. The unique line segment LA stemming from A
that hits ℓA orthogonally is called the altitude of A, and the length hA
of LA is called the height of A. Observe that, if the angle at one of the
other vertices is obtuse, then LA is not contained inside the triangle. The
definitions of altitude and height can easily be generalized for polygons (see
section 3). Altitudes and heights of triangles have been studied since the
3rd century BC; for example, it is attributed to Archimedes that the three
(possibly extended) altitudes of a triangle intersect at a single point (the
orthocenter). It might then come as a surprise that there does not appear
to be any systematic treatment of Congruence Theorems for convex polygons
or even triangles involving heights.

In this paper, we study Congruence Theorems involving heights for tri-
angles, convex quadrilaterals, and convex n-gons. For triangles, we obtain
all possible Congruence Theorems in which the given information includes
a non-empty subset of the heights and (possibly) the side lengths and an-
gles, and we show in the process which extra Congruence Theorems apply to
acute triangles. We show by examples that for every result that is specialized
to acute triangles, the acuteness assumption is necessary (see, for instance,
Examples 2.1 and 2.2). As well, for every case in which it is not obvious
that a Congruence Theorem doesn’t hold, we have a counterexample.

For convex quadrilaterals and beyond, we mostly give sufficient criteria
for congruence, but no complete classification. It seems reasonable that one
could find all possible Congruence Theorems involving heights for convex
quadrilaterals. The methods presented in this paper (in particular in the
proof of Theorem 1.5) should be of use in carrying out that task, and we
opted for leaving convex quadrilaterals for a future investigation.

Before stating our theorems formally, we specify the standard notation
that we will use throughout the paper. For a triangle, we label the vertices
as A,B, and C, and we call the triangle ABC. We denote the corresponding
angles by α, β and γ, and the heights by hA, hB and hC . For the (unoriented)
side connecting vertices A to B, we write AB, and for the length we write
AB. For a triangle A′B′C ′ we use the corresponding notation; for example,
α′ is the angle at A′.

Firstly, all heights determine a triangle.

Theorem 1.1. A triangle is determined up to congruence if we know its
three heights.

Next, we consider knowing one side and two heights, or two sides and one
height, and then knowing two angles and one height, or one angle and two
heights.

Theorem 1.2. A triangle ABC is determined up to congruence if we know

(i) AB, hA and hB and the triangle is acute;
(ii) AB, BC and hB;
(iii) AB, hA and hC and the triangle is acute;
(iv) AB, BC and hC .

Theorem 1.3. A triangle ABC is determined up to congruence if we know
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(i) α, β and any one of hA, hB, and hC ;
(ii) α, hB and hC ;
(iii) α, hA, hB and the triangle is acute.

Our last result for triangles concerns the case of knowing one angle, one
side, and one height.

Theorem 1.4. A triangle ABC is determined up to congruence if we know

(i) α, AB, and hA and the triangle is acute;
(ii) α, BC and hA;
(iii) α, BC, and hB and the triangle is acute;
(iv) α, CA and hB.

Our Examples 2.1, 2.2, and 2.3 for triangles show explicitly that dropping
the acuteness assumption leads to a number of extra pathologies and a lack
of rigidity. With this in mind, for n ≥ 4, we restrict ourselves to convex
n-gons.

For convex quadrilaterals, we show that knowing all the heights is not
enough to specify the congruence class. Indeed, it is possible to construct
infinitely many non-congruent parallelograms with the same heights (see
Example 3.1). However, we prove that, for convex quadrilaterals, parallelism
is the only obstruction.

Theorem 1.5. A convex quadrilateral that is not a parallelogram is deter-
mined up to congruence by its heights.

Finally, we present two results that apply to convex n-gons, where n ≥ 3
is arbitrary.

Theorem 1.6. A convex polygon is determined up to congruence if we know
all heights toward two neighboring sides and the angle between those sides.

Theorem 1.7. A convex polygon is determined up to congruence by the
lenghts of its sides and its heights.

There are plenty of directions for future research: as we indicated above,
it seems within reach to provide a complete list of Congruence Theorems
for convex quadrilaterals. The case of pentagons might be manageable too,
and would help point to more general phenomena. One could also try for
Congruence Theorems for non-convex quadrilaterals and beyond. As well,
one could instead ask for Similarity Theorems (two subsets of R2 are similar
if they are related by scaling), rather than Congruence Theorems. Another
intriguing idea is to study Congruence Theorems involving heights or other
quantities for triangles or convex quadrilaterals in the hyperbolic plane.
Finally, one could study further shapes beyond polygons, allowing for some
curvature away from vertices, or even working with polytopes in higher
dimensional Euclidean spaces (research in the higher dimensional setting is
rather limited at this point, see [1]).

Aside from being independently useful and interesting, the results above
and the examples within the main paper can be turned into exercises for
motivated students and problems for mathematical competitions. Pursuing
some portion of the directions above could be an accessible research project
for undergraduates. School students and math enthusiasts can understand



Congruence Theorems for triangles and convex quadrilaterals involving heights 79

the statements and the research questions presented in this article; we hope
that people will find these Congruence Theorems thought-provoking, and
will feel inspired to try to come up with their own Congruence Theorems.

Acknowledgements. The authors thank Enrico Ganassin, Alex P. Grosche,
Ruixuan Zhang, and also Didac Martinez Granado and Daniel Perrin for
helpful discussions and useful comments. Nathaniel Sagman is funded by
the FNR grant O20/14766753, Convex Surfaces in Hyperbolic Geometry.

2. Congruence theorems for triangles involving heights

Throughout this section, we keep all of the notation from the introduction.
In the work below, we will use the Angle-Side-Angle (ASA) and Side-

Angle-Side Congruence Theorems. The ASA Congruence Theorem says
that, if ABC and A′B′C ′ satisfy α = α′, β = β′, and AB = A′B′, then
ABC is congruent to A′B′C ′. The Side-Angle-Side Congruence Theorem
says that if AB = A′B′, CA = C ′A′, and α = α′, then ABC is congruent
to A′B′C ′.

We also need the following definition and notation: for a vertex A, the
foot FA is the unique intersection point of LA and ℓA. We will often make
use of the observation that for a triangle ABC, the three points A,B, and
FA form a right triangle. If the angle β is acute, then the angle of ABFA at
B is β, and otherwise it is π − β.

2.1. Three heights.

Proof of Theorem 1.1. Suppose we have two triangles ABC and A′B′C ′

such that hA = hA′ , hB = hB′ and hC = hC′ . The area Area(ABC) of
ABC is equal to all three of 1

2hABC, 1
2hBCA and 1

2hCAB, and similar for
A′B′C ′. Let λ > 0 be the constant such that Area(ABC) = λArea(A′B′C ′).
We deduce from the equality of the heights that the triangles are similar,
with proportionality constant λ. The equality hA′ = hA = λhA′ forces λ = 1
and moreover shows that ABC and A′B′C ′ are congruent. □

2.2. One side and two heights, or two sides and one height.

Proof of Theorem 1.2. Toward (i), note that, as β is acute, it is deter-
mined by the formula sinβ = hA/AB. Assuming (i), α is determined by
the analogous formula, and the Congruence Theorem follows from the ASA
congruence theorem.

For (ii), by Pythagoras’ Theorem we can compute FBA and CFB, which
we then sum to get CA. Knowing all side lengths, we can apply the Side-
Side-Side Congruence Theorem.

For (iii), we can compute β via the formula sinβ = hA/AB, using acute-
ness as in (i). Through the formula sinβ = hC/BC, we obtain BC. We
then apply the SAS Congruence theorem using AB, BC, and β.

To see (iv), by Pythagoras’ Theorem, hC and BC determine FCB. Then
AFC = AB − FCB, and AFC and hC determine AC, by Pythagoras again.
We conclude via the SSS Congruence Theorem. □

Example 2.1. If we drop the acuteness assumption, a triangle ABC is
not necessarily determined up to congruence if we know AB, BC and hB.
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Consider a triangle ABC such that α = 45◦ and β = 120◦. Relabel FB

as D and call D′ the symmetric of D at the line AB. That is, if ℓ is the
line stemming from D that hits AB orthogonally, then D′ is the unique
point on ℓ and on the other side of AB with the same distance to AB as
D. Consider a triangle A′B′C ′ such that A = A′, B = B′, and α′ = 135◦.
We clearly have AB = A′B′. Moreover, hB = BD = BD′ = hB′ . Finally,
we have BC > AB (one may compute BC = AB(

√
3 + 1)) so we can move

C ′ without altering A′, B′andα′ while keeping that B′C ′ = BC (one may

compute that hC′ =
√
3+1
2 ).

A B

C

D′

D

C ′

Example 2.2. Similarly, a triangle ABC is not necessarily determined up
to congruence if we know AB, BC, hA and hC . For example, consider an
equilateral triangle ABC and a triangle A′B′C ′ such that A′ = A, B′ = B
(in particular, AB = A′B′) and γ′ = 120◦. Moreover, we may suppose
that CC ′ is parallel to AB, ensuring that hC = hC′ . By construction,
CA and B′C ′ are parallel and hence BC = CA = B′C ′. Finally, we have
hA = hA′ because the lines BC and B′C ′ are symmetric with respect to the
line connecting AB with the intersection point of BC and C ′A′.

A BA

C C ′

2.3. Two angles and one height, or one angle and two heights.

Proof of Theorem 1.3. For (i), we show that we can always compute AB,
and hence we can apply the ASA Congruence Theorem. If we know hA or
hB, then we can find AB via the formulas hA = AB sinβ or hB = AB sinα
respectively. If we know hC , we split into subcases: α and β are acute,
or one of them is obtuse. We record that, independently, AFC = hC sinα
and FCB = hC sinβ are known. In the first situation, AB = AFC + FCB.
In the latter, we assume without loss of generality that α is obtuse. Then
AB = FCB −AFC . As stated above, knowing AB completes the proof.

To prove (ii), we use sinα = hB/AB and sinα = hC/AC to get AB
and AC respectively, and with these quantities in hand we use the SAS
Congruence Theorem.
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To see (iii), we obtain AB via AB = hB sinα, and then sinβ via sinβ =
hA/AB. Since ABC is acute, β is uniquely determined by sinβ. With α, β
and AB, we apply the ASA Congruence Theorem. □

A triangle ABC is not determined up to congruence if we know α, hA
and hB. Indeed, see Example 2.3 below, in which it will be shown that even
AB, α, hA and hB are not enough.

2.4. One angle, one side, and one height.

Proof of Theorem 1.4. Beginning with (i), hA and AB determine sinβ
via sinβ = hA/AB, and, as we’ve argued before, acuteness then implies that
β is uniquely determined. We then go by the ASA Congruence Theorem.
Item (iii) is totally analogous: sin γ = hB/BC and the acute assumption
yields that γ is determined, and hence we can apply ASA again.

The proof of (ii) is more interesting. If we know BC and hA, we can
move A the line ℓ parallel to BC and containing A without changing those
quantities. The angle α is maximal when A is on the perpendicular bisector
of BC and the angle strictly decreases the more we move A away from the
perpendicular bisector (this could be seen as a consequence of the Inscribed
Angle Theorem). So if we fix α, then A can be either the point A0 that
maximizes α, or one of exactly two points on ℓ that are of equal distance
from A0. Thus, up up to reflecting in the line from A0 to BC that hits
BC orthgonally (that is, up to performing a certain congruence-preserving
transformation), the triangle ABC is determined.

For (iv), we compute AB = hB/ sinα and we apply the SAS Congruence
Theorem with CA, AB, and α. □

Example 2.3. A triangle ABC is not necessarily determined up to congru-
ence if we know α, AB, and hA. Note that adding the information of hB
won’t help, since, by hB = AB sinα, knowing α and AB is equivalent to
knowing α and hB. Consider a triangle ABC such that α = 30◦ and β = 60◦

and call D the symmetric of C at the line AB (defined as in Example 2.1).
Then consider the triangle A′B′C ′ such that A = A′, B = B′, α′ = α and
β′ = 120◦. We clearly have AB = A′B′. Moreover, hA = CA = DA = hA′ .

A B

C

C ′

D

Similarly, knowing α, BC, and hB is not sufficient to determine the triangle
up to congruence. Similar to above, the formula hB = AB sinα implies that
adding AB won’t change anything. We know by the theorem above that
there is a unique acute triangle ABC carrying this data. One can construct
a unique triangle A′B′C ′ such that A′ = A, B′ = B, and β′ = π − β, which
is easily seen to have hB′ = hB and B′C ′ = BC.
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3. Congruence theorems for quadrilaterals and convex
polygons

Heights for polygons are defined analogously to heights for triangles. For
polygons, we label the vertices A1, A2, . . . , An and write the polygon as
A1 . . . An, side lengths as AiAi+1 (with An+1 = A1), etc. If A1 . . . An is a
polygon, we can define the height of a vertex Ai relative to a side AjAj+1,
for all j ̸= i. Indeed, let ℓAjAj+1 be the extension of AjAj+1 to an infinite line

in R2. Then the height (of Ai relative to AjAj+1) is the length of the unique
line segment LAi,AjAj+1 stemming from Ai that hits ℓAjAj+1 orthogonally.
By analogy with the triangle case, LAi,AjAj+1 is called the altitude at Ai

relative to AjAj+1, and the point at which Ai strikes AjAj+1 is called the
foot and denoted FAi,AjAj+1 .

We begin our investigation on Congruence Theorems involving heights
with the case of convex quadrilaterals. We point out immediately that the
direct analog of Theorem 1.1 cannot hold.

Example 3.1. For a convex quadrilateral, knowing all heights is not suf-
ficient to determine it up to congruence. Consider for example the square
with all side lengths equal to 1 and the parallelogram with angles 45◦ and
135◦ and such that the distance between the opposite vertical sides is 1 and
the distance between opposite horizontal sides is 1 (or, the lengths of the
two horizontal sides is

√
2). For both convex quadrilaterals, all heights are

equal to 1.

More generally, suppose that two sides of a convex quadrilateral are parallel.
Without loss of generality, they are the sides AB and CD. Then, the heights
from A to CD, from B to CD, from C to AB and from D to AB are all
equal, and in particular equal to the distance between the two sides.

As a consequence of the discussion in the example above, if we have a
parallelogram and we know all heights, then we only know the distances
between the opposite sides. And there is, up to congruence, an infinite
family of parallelograms with prescribed distances of the opposite sides,
precisely one of them being a rectangle.

As stated in the introduction, Theorem 1.5 shows that, for convex quadri-
laterals, parallelograms present the only case where knowing all the heights
is not sufficient.

Proof of Theorem 1.5. Consider a convex quadrilateral ABCD, where
the vertices are listed in cyclic order, and suppose we know all of its heights.
Necessarily, at least one of the angles is less than or equal to π/2. Up to
congruence, we can assume that angle is at the vertex D, and we call this
angle δ; this choice restricts the number of cases that we need to consider.
Furthermore, we can choose coordinates such that A is the origin (0, 0), the
point B is on the positive x-axis, B = (xB, 0), and the quadrilateral ABCD
is in the upper half-plane. We write C = (xC , yC) and D = (xD, yD) and
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remark that yC and yD are the known heights from C and D respectively
toward the side AB. Our only unknowns are xB, xC , and xD.

We call θ the angle between −π
2 and π

2 that the altitude LA,BC from A
to the side BC forms with the positive direction of the x-axis. To ease
notation, we write h for the corresponding height hA,BC . Since A, the foot
FA,BC and B are the vertices of a right triangle,

xB =
h

cos θ

(here, if θ = 0, we think of a line as a degenerate triangle). Next, by
connecting the altitude LC,AB to the line AB, we get the foot FC,AB, which
together with B and C form a right triangle with an angle of |θ| at C.
Examining this triangle, we find that if β ≤ π

2 , which we note corresponds
to θ ≥ 0, then the side that lies on the x-axis has length xB − xC , and we
have xB − xC = yC tan θ, and moreover that

xC =
h

cos θ
− yC tan θ .

If instead β > π/2, then θ < 0 and the x-axis side has length xC − xB, but
we end up with the same formula by noting that

xC − xB = yC tan |θ| = yC tan(−θ) = −yC tan θ.

As above, for notations sake we set h′ = hD,BC , the height from D toward
the side BC. Consider the points A and D and their altitudes relative to
BC, as well as the horizontal segments from A and D respectively to the
side BC. In both cases, the horizontal segments and altitudes are the sides
of a right triangle. Since the two right triangles share an acute angle, namely
the angles at A and D, they are similar. The similarity constant is h′

h . Next,
we draw the triangle with vertices B, (xB, yD), and the point at which the
horizontal line from D hits BC, which has an angle of |θ| at B. Since we
assumed δ ≤ π

2 , the side adjacent to the angle |θ| has length yD, and hence
the opposite side has length yD tan |θ|. Moreover, the point on the line
BC with y-coordinate yD has x-coordinate xD,BC = xB − yD tan θ. To see
this, for β ≤ π/2, this point has x-coordinate xD,BC = xB − yD tan |θ| =
xB − yD tan θ, and for β > π/2 this point has x coordinate xD,BC = xB +
yD tan |θ| = xB + yD tan(−θ) = xB − yD tan θ. We point out in passing that
if instead δ > π/2, then the length of this opposite side would be yC − yD.
Now, xD is xD,BC minus the length of the horizontal line in the triangle of

D, which, using the similarity constant, we see to be h′

h xB. That is,

xD = (xB − yD tan θ)− h′

h
xB =

h− h′

cos θ
− yD tan θ, .

The formulas above show that the values xB, xC , and xD, which are
equivalent to the data of the points A,B,C and D, are determined by the
known heights and the angle θ. To prove the theorem, we show that distinct
values of θ lead to the same values for all heights only if the sides DA and
BC are parallel (equivalently, h = h′) and the sides AB and CD are parallel
(equivalently, yC = yD).
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For α the internal angle of ABCD at A, we have sinα = yD/AD. More-
over, relabelling h′′ = hB,DA, we have h′′ = xB sinα. We deduce that

(h′′)2 =
x2By

2
D

(AD)2
=

x2By
2
D

x2D + y2D
.

Substituting our expressions for xB and xD above, we get

(h′′)2 =
h2

cos2 θ
y2D

(h−h′)2

cos2 θ
+ y2D(1 + tan2 θ)− 2(h− h′)yD

sin θ
cos2 θ

=
h2y2D

(h− h′)2 + y2D − 2(h− h′)yD sin θ
.

Thus, if θ1 and θ2 give the same value of h′′, then we can rearrange the
above formula to get

(h− h′)yD sin θ1 = (h− h′)yD sin θ2.

Since h, h′, and yD are known, the only way for θ1 and θ2 to be distinct is
if h = h′.

To probe the sides AB and CD, note that the line through C and D is
described by the equation

(yD − yC)x− (xD − xC)y + (yCxD − yDxC) = 0.

Observing that the height h′′′′ = hA,CD is the distance from this line to the
origin, we compute, keeping in mind that h = h′,

(h′′′′)2 =
(yCxD − yDxC)

2

(yD − yC)2 + (xD − xC)2
=

y2Dh
2

(yD − yC)2 + h2 − 2h(yC − yD) sin θ
.

Similar to above, different values of θ give rise to the same height h′′′′ only
if yC − yD = 0. □

Remark 3.1. Notice that we only made use of 6 out of 8 heights. In
particular, we did not need to know the values hB,CD and hC,DA.

In view of the remark above, we point out that, generally speaking, up to
congruence, we can choose the coordinate of A to be (0, 0) and B to be on
the x-axis, so this problem should have 5 degrees of freedom. However, in
general, 5 heights are not enough to determine the polygon up to congruence,
as the following example shows.

Example 3.2. We consider non-congruent convex quadrilaterals ABCD
and ABCD′, cyclically ordered, such that the points C, D andD′ are aligned
and such that the heights hB,DA and hB,D′A are the same. The two convex
quadrilaterals share 5 heights but are not congruent. We can also construct
such quadrilaterals so that no two sides are parallel:

A B

D

D′ C ′
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Proof of Theorem 1.6. Let AB and BC be the neighboring sides. By
translating, we can assume B = (0, 0). By considering the height from A
(respectively, C) relative to BC (respectively, AB) we can determine the
length and angle of the line connecting B to A (respectively, C). Indeed,
the relevant altitude is part of the right triangle with points A (respectively
C), the relevant foot, and B, around which the angle is known. Since we
know the position of B, the information of the length and angle determines
A and C. For any other point Ai, using the known height to AB, we can
determine a line parallel to AB on which Ai lies. Using the known height to
BC, Ai lies on another known line parallel to BC. These two lines intersect
in one point, which gives us the location of Ai. □

Proof of Theorem 1.7. Fix a convex n-gon and assume that we know the
lengths of its sides and its heights. To determine the n-gon up to congruence,
we will in fact make use of only 2n (appropriately selected) heights. Call
the vertices A,B,C,D in cyclic order. Up to congruence we can fix the side
AB and the half-plane with respect to AB where the the n-gon lies. By
considering the point C, B and the foot of C relative to AB, we get a right
triangle. Recalling that we know the length of BC, we see that there are
at most two possibilities for C, depending on whether the angle β at B is
less than π/2, or at least π/2. Fixing the choice for C determines the choice
for D. Indeed, consider the line in R2 containing BC. Since the polygon is
convex, we know which side D is on with respect to this line. Then D is
determined: knowing CD, the angle θ between CD and the altitude from D
to BC determines D, and we can compute θ via cos θ = h/CD. All together,
we have at most two possibilities for the location of the two points C,D.

We claim that in fact there is just one possibility, so that C and D are
determined. Iterating the reasoning over all sides of the polygon in cyclic
order will show that we know the whole n-gon up to congruence.

A B

D′ D′′

C ′ C ′′

To prove the claim, we suppose that there are two distinct possibilities for
C,D, and we call the two choices C ′, D′ and C ′′, D′′ respectively. Note that,
by our assumptions, the lengths of C ′D′ and C ′′D′′ are equal. The angle β
at B is either less than π/2, which corresponds to C being to the left of B,
or at least π/2, which corresponds to C being to the right. In the two cases,
we get different values for the height from B relative to CD, which is our
sought contradiction. □

Example 3.3. A convex hexagon is not determined up to congruence if we
know all side lengths and all 4 heights toward one same side. Indeed, we
consider two non-congruent convex hexagons ABCDEF and ABCD′E′F ′,
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whose vertices (in Cartesian coordinates) are as follows:

A = (−2, 1) B = (0, 0) C = (6, 0)

D = (3, 4) E = (−1, 5) F = (−5, 4) D′ = (9, 4) E′ = (5, 5) F ′ = (1, 4) .

A
B C

D D’

E E’

F F’
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