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150 CHARACTERIZATIONS OF SQUARES

MARTIN JOSEFSSON and MARIO DALCÍN

Abstract. We prove 72 more sufficient conditions for when a quadrilat-
eral is a square, which together with the 78 in the previous part [28] brings
the total number of known compiled characterizations of squares to 150.

1. Introduction

We continue to collect and compile characterizations of squares, a work
that began in [28], where the first named author proved 78 sufficient con-
ditions for a convex quadrilateral to be a square. In this paper we add an
additional 72 necessary and sufficient conditions, but we only prove the suf-
ficient parts since most of the necessary conditions are well-known or easily
proved properties of squares. This brings the number of known character-
izations of squares to a total of 150, the largest published compilation for
any type of quadrilateral we know of. We have no doubt, however, there are
many more characterizations of squares, both such that are hiding in the
literature and others waiting to be discovered in the future.

It is recommended that the reader study [28] before the present paper
since it contains the basics. After the publication of that paper, the second
named author of this paper contributed with 22 additional characterizations
on the basis of duality, which together with 23 found by the first named
author constitute the new conditions that were missed in [28]. We have also
found 27 more conditions discovered by other mathematicians, as indicated
before each theorem, making a total of 72 additions. (We actually prove 73
sufficient conditions, but Theorem 2.1 (a) is a more general condition than
Theorem 2.1 (c) in [28], so it replaces that one.)

Following the same structure as in [28], the characterizations are grouped
according to which type of quadrilateral we start with and impose addi-
tional restrictions on for it to be a square. At the end, we have compiled a
chronological list with the earliest known publications for each of the char-
acterizations in both the present paper and [28].
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On the second page of [28], we summarized several basic properties of
squares that are reasonable well-known to motivate that we did not prove
any of them. Here we add a few more that are of the same category:

• The diagonals lie on symmetry lines
• The bimedians lie on symmetry lines
• The bimedians are perpendicular
• The bimedians have equal length, equal to any side
• The bimedians are perpendicular bisectors to the sides

A bimedian is a line segment connecting the midpoints of two opposite
sides in a quadrilateral. With semibimedians we mean the four parts into
which the bimedians divide each other. It is well-known that the two bi-
medians bisect each other in all quadrilaterals (they are the diagonals in
Varignon’s parallelogram), so the semibimedians just mean half of each bi-
median.

2. Rectangles

We begin by studying fourteen characterizations for when a rectangle is a
square. The first is from [48, p. 2], but it has surely been known longer, and it
replaces the less general Theorem 2.1 (c) in [28]. The next three are due to
the second named author, and the following seven are due to the first named
author. a on the left-hand side of the equality in (b) can be any of the four
sides. Condition (l) is from [45, p. 267]. The penultimate condition is taken
from Romanian Mathematical Olympiads in 2002 [16, p. 27] (Problem 4 for
Grade 7 in the Second Round, proposed by Mircea Fianu) and the last one
is from the 2022 Central American and Caribbean Mathematics Olympiad
[4]. We cite the official proofs to those two competition problems and have
corrected two typos from [16, p. 27].

A circle tangent to one side of a quadrilateral and the extension of the
two adjacent sides (see Figure 12) is called an escribed circle in accordance
with [22, p. 71]. If the diagonals of quadrilateral ABCD intersect at P , we
name the four triangles ABP , BCP , CDP , DAP the quarter triangles.
Theorem 2.1. A rectangle ABCD with sides a = AB, b = BC, c = CD,
d = DA satisfies any one of:

(a) it has a diagonal bisecting an angle
(b) a = 1

4(a+ b+ c+ d)
(c) it has two adjacent equal semibimedians
(d) the bimedian intersection is equidistant to the sides
(e) it has equal heights to two adjacent sides
(f) it has two adjacent escribed circles with equal radii
(g) it has two adjacent quarter triangles with equal circumradii
(h) it has two adjacent quarter triangles with equal inradii
(i) it has two adjacent quarter triangles with equal exradii
(j) it has shortest perimeter for a given area
(k) it has largest area for given diagonals
(l) it has shortest diagonals for a given area

(m) DF +BE = AE, where E and F are points on BC and DC respec-
tively such that ∠DAF = ∠FAE
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(n) it has four internal circles forming a loop, each tangent to two other
circles and two sides

if and only if it’s a square.

Proof. (a) In a rectangle, alternate angles ∠BAC = ∠DCA, and if also
∠BCA = ∠DCA, then triangle ABC is isosceles and so we have AB = BC
(see Figure 1). Then ABCD is a square according to Theorem 2.1 (a) in
[28].

Figure 1. Given assumptions in (a) and (d)

(b) In a rectangle, a = c and b = c, and together with 4a = a+ b+ c+ d,
we get a = b, so the rectangle is a square according to Theorem 2.1 (a) in
[28].

(c) The two bimedians are equal in length to two adjacent sides in a
rectangle, so a rectangle satisfying this condition is a square according to
Theorem 2.1 (a) in [28].

(d) When the bimedian intersection is equidistant to the sides, the rectan-
gle is partitioned by the bimedians into four quadrilaterals with equal sides
(four rhombi) and a right vertex angle each (see Figure 1), so the rectangle
is a square according to Theorem 3.1 (a) in [28].

(e) We denote by ha and hb the heights to adjacent sides a and b respec-
tively. The area of the rectangle is given by

K = aha = bhb

so we get that a = b is equivalent to ha = hb, and since the first equality
characterizes squares according to Theorem 2.1 (a) in [28], then so does the
second.

(f) The diameters of the escribed circles to a rectangle are equal to the
lengths of the sides they are tangent to (the non-extended sides). Denoting
two adjacent escribed radii by ra and rb directly yields that ra = rb is
equivalent to a = b, which is equivalent to a square according to Theorem
2.1 (a) in [28].

(g) Denoting two adjacent quarter triangle circumradii by R1 and R2 (red
circles in Figure 2) and applying the extended law of sines, we get

R1 = R2 ⇔ a

2 sin θ
=

b

2 sin (π − θ)
⇔ a = b

where θ is one of the angles between the diagonals.
(h) Denoting the diagonal lengths by p and two adjacent quarter triangle

inradii by r1 and r2 (green circles in Figure 2), we get by applying the
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well-known formula for the triangle inradius that

r1 = r2 ⇔ 2Ta
1
2p+

1
2p+ a

=
2Tb

1
2p+

1
2p+ b

⇔ a = b

since the two adjacent quarter triangle areas satisfy Ta = Tb (due to equal
base and height).

Figure 2. Quarter triangle circumradii, inradii, and exradii

(i) With the same notations as in (h) and by denoting the two adjacent
quarter triangle exradii by ρ1 and ρ2 (blue circles in Figure 2) yields

ρ1 = ρ2 ⇔ 2Ta
1
2p+

1
2p− a

=
2Tb

1
2p+

1
2p− b

⇔ a = b.

(j) In a rectangle with adjacent sides a and b and given area K = ab,
we want to minimize the perimeter L = 2a + 2b. Applying the AM-GM
inequality, we get

L = 2a+
2K

a
≥ 2

√
2a · 2K

a
= 4

√
K

where equality holds if and only if 2a = 2K
a , that is, only when K = a2,

which is equivalent to a = b according to K = ab.
(k) In a rectangle with adjacent sides a and b and given diagonals with

lengths p satisfying p2 = a2 + b2 by the Pythagorean theorem, we want to
maximize the area K = ab. We get by using the AM-GM inequality that

K2 = a2b2 = a2(p2 − a2) ≤ a2 + (p2 − a2)

2
=

p2

2

where equality holds if and only if a2 = p2−a2. Together with p2 = a2+ b2,
this is equivalent to a = b.

(l) In a rectangle with adjacent sides a and b and given area K = ab, we
shall minimize the diagonal lengths p. We get

p2 = a2 + b2 = a2 +

(
K

a

)2

≥ 2

√
a2 · K

2

a2
= 2K
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where equality holds if and only if a2 = K2

a2
, that is, only when a = b

according to K = ab.
(m) Let AF intersect the line BC in M and the perpendicular in A to

AM intersect the line BC in N . Since ∠DAF = ∠MAE it follows that
AEM is an isosceles triangle with AE = EM (see Figure 3). Triangle AEN
is also isosceles since

∠ENA = 90◦ − ∠EMA = 90◦ − ∠EAM = ∠EAN

implying that EN = AE. Because B is an interior point on segment EN ,
it follows that

DF +BE = AE = EN = EB +BN,

so DF = BN . It also holds that ∠BAN = ∠DAF . Therefor the right
triangles DAF and BAN are congruent (AAS), so AB = AD. This proves
that ABCD is a square according to Theorem 2.1 (a) in [28].

Figure 3. DF +BE = AE

(n) Let r1, r2, r3, r4 be consecutive radii, and the first two circles be
tangent to side AB at points X and Y (see Figure 4). By the Pythagorean
theorem,

XY =
√

(r1 + r2)2 − (r1 − r2)2 = 2
√
r1r2.

Side AB of the rectangle then has length

AB = r1 + 2
√
r1r2 + r2 = (

√
r1 +

√
r2)

2.

By symmetry, the opposite side has length

CD = (
√
r3 +

√
r4)

2.

Since ABCD is a rectangle, AB = CD and we get
√
r1 +

√
r2 =

√
r3 +

√
r4.

In the same way, the other pair of opposite sides yield
√
r1 +

√
r4 =

√
r2 +

√
r3.
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Adding the last two equalities and simplifying, we obtain r1 = r3 and then
r2 = r4 from any one of these two equations. Hence

AB = (
√
r1 +

√
r2)

2 = (
√
r3 +

√
r2)

2 = BC

so the rectangle is a square according to Theorem 2.1 (a) in [28]. □

Figure 4. Four circles forming a tangent loop

3. Rhombi

Here we study nine conditions for when a rhombus is a square, all dis-
covered by the second named author. If P is the diagonal intersection in
a quadrilateral ABCD, we call a′ = AP , b′ = BP , c′ = CP , d′ = DP the
semidiagonals (not only in rhombi, but in all types of quadrilaterals). a′

and ∠A on the left-hand side of the equalities in (a) and (b) can be any of
the four semidiagonals or angles respectively.

Theorem 3.1. A rhombus ABCD with semidiagonals a′, b′, c′, d′ satisfies
any one of:

(a) a′ = 1
4(a

′ + b′ + c′ + d′)

(b) ∠A = 1
4(∠A+ ∠B + ∠C + ∠D)

(c) it has concurrent perpendicular bisectors to the sides
(d) it has perpendicular bimedians
(e) a bimedian is perpendicular to a side
(f) its bimedian intersection is equidistant to the vertices
(g) the bimedians divide the Varignon parallelogram into four congruent

triangles
(h) it has the largest area for a given perimeter
(i) it has the smallest area circumscribing a given circle

if and only if it’s a square.

Proof. (a) In a rhombus, a′ = c′ and b′ = d′, and when it also holds that
4a′ = a′+b′+c′+d′, we get a′ = b′. Then the rhombus is a square according
to Theorem 3.1 (c) in [28].

(b) The angles in a rhombus satisfy ∠A = ∠C and ∠B = ∠D. Then we
get from 4∠A = ∠A+∠B +∠C +∠D that ∠A = ∠B, so the rhombus is a
square according to Theorem 3.1 (b) in [28].

(c) Concurrent perpendicular bisectors means that it has a circumcircle,
and a cyclic rhombus is a square according to Theorem 3.1 (e) in [28].
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(d) The two angles between the bimedians are equal to the two different
vertex angles in a rhombus (see Figure 5), and when they are both right
angles, the rhombus has four right vertex angles. One is enough for it to be
a square according to Theorem 3.1 (a) in [28].

Figure 5. Bimedians in a rhombus

(e) The angle between a bimedian and a side in a rhombus is equal to a
vertex angle (see Figure 5), so when a bimedian is perpendicular to a side,
then the rhombus has a right vertex angle making it a square according to
Theorem 3.1 (a) in [28].

(f) If the bimedians intersect at M , and Ma is the midpoint of side AB,
then this condition implies that triangles AMMa and BMMa are congruent
(SSS), see Figure 6. Hence MMa⊥AB and ABCD is a square according to
(e).

Figure 6. Bimedian intersection M

(g) Since the bimedians are the diagonals in the Varignon parallelogram,
they bisect each other, so two adjacent triangles created by the bimedians
are congruent if and only if the two angles between the bimedians are equal,
i.e. they are each right angles. Then the rhombus is a square according to
(d).

(h) The area of a rhombus ABCD with side a is K = a2 sinA and the
perimeter is L = 4a, so we have

K =

(
L

4

)2

sinA ≤
(
L

4

)2

where equality holds if and only if A is a right angle. Only then is the
rhombus a square according to Theorem 3.1 (a) in [28].

(i) In a rhombus with side a, height h, and inradius r (which is a given
constant), we have a sinA = h where h = 2r, so the area is given by

K = a2 sinA =
4r2

sinA
≥ 4r2
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where equality holds if and only if A is a right angle. That is the only case
when the rhombus a square according to Theorem 3.1 (a) in [28]. □

There are several dualities between the characterizations for rectangles
and rhombi in this paper and in [28]. Some of them are summarized in
Table 1. A rectangle (rhombus) is a square if and only if any of the conditions
in the left (right) column is satisfied, where P is the diagonal intersection
and M is the bimedian intersection.

Rectangle Rhombus
a = 1

4
(a+ b+ c+ d) ∠A = 1

4
(∠A+ ∠B + ∠C + ∠D)

Two adjacent equal sides Two adjacent equal vertex angles
Tangential Cyclic
Concurrent angle bisectors Concurrent perpendicular bisectors
P is equidistant to the sides P is equidistant to the vertices
Perpendicular diagonals Perpendicular bimedians
Equal bimedians Equal diagonals
A diagonal bisects a vertex angle A bimedian is perpendicular to a side
Two adjacent equal semibimedians Two adjacent equal semidiagonals
M is equidistant to the sides M is equidistant to the vertices

Table 1. Dual characterizations of squares

4. Parallelograms

Next we prove eight sufficient conditions for when a parallelogram is a
square. Conditions (a) and (e) are due to the first named author, while (b),
(c) and (d) where discovered by the second named author. (f) was mentioned
in [44, p. 340] and (g) was proposed as Problem A251 by Ho-Joo Lee in [39]
and a short solution using complex numbers, that we cite, was given by
Michel Bataille. To prove that (h) is a sufficient condition was Problem
4 on the first selection examination for the Junior Balkan Mathematical
Olympiad in Rumania in 2002 [16, p. 58] (proposed by Dinu Şerbănescu; we
cite this proof) and that it is both a necessary and sufficient condition was
given as Problem 336 in September 2004 at The Mathematical Olympiads
Correspondence Program (Olymon) in Canada [49].

Theorem 4.1. A parallelogram ABCD with diagonal intersection P satis-
fies any one of:

(a) its bimedians have equal length and are perpendicular
(b) its bimedians have equal length and one is perpendicular to a side
(c) it has two adjacent equal semibimedians and perpendicular bimedians
(d) it is tangential and has equal diagonals
(e) it is tangential and has perpendicular bimedians
(f) it is harmonic
(g) triangle AMN is right-angled with AM = AN , where M and N are

the midpoints of PD and BC respectively
(h) triangles ABC and AST are directly similar, where S and T are the

midpoints of BP and CD respectively
if and only if it’s a square.
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Proof. (a) The bimedians in a parallelogram are parallel to the sides,
so if they have equal length, then two adjacent sides have equal length (a
rhombus). The angles between the bimedians are equal to the two different
sorts of vertex angles in this rhombus, and if these angles are right, then it
is a square according to Theorem 3.1 (a) in [28].

(b) As in (a), it’s a rhombus. The angle between a bimedian and a side
is equal to a vertex angle, so if this is a right angle, then the rhombus is a
square according to Theorem 3.1 (a) in [28].

(c) Since the bimedians bisect each other in all quadrilaterals, two ad-
jacent equal semibimedians is equivalent to a rhombus, and perpendicular
bimedians means that it is a square according to Theorem 3.1 (c) in this
paper.

(d) Tangential implies it’s a rhombus, and equal diagonals that it’s a
square according to Theorem 3.1 (d) in [28].

(e) Tangential implies it’s a rhombus, and perpendicular bimedians that
it’s a square according to Theorem 3.1 (c).

(f) A harmonic quadrilateral is defined to be a cyclic quadrilateral with
sides satisfying ac = bd. When it is also a parallelogram, it must be a
rectangle (Theorem 2.1 (e) in [31]), so ac = bd implies that a = b, which
yields a square according to Theorem 2.1 (a) in [28].

Figure 7. Parallelogram ABCD

(g) We place the parallelogram in a complex plane with origin at P (see
Figure 7). Let vertices A and B be represented by complex numbers A
and B respectively. Then the other two vertices C and D are −A and −B
respectively, and M and N are −B

2 and B−A
2 respectively. That triangle

AMN is right-angled with AM = AN is equivalent to

A+
B

2
= i

(
B − A

2

)
⇔ w

(
1 +

i

2

)
= i− 1

2
⇔ w = i

where we defined w := A
B . This is equivalent to PA⊥PB and PA = PB,

which in turn holds if and only if ABCD is a square according to Theorem
4.1 (e) in [28].
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(h) From the similarity of triangles AST and ABC (see Figure 8), we
obtain

(1) AS

AB
=

AT

AC
and
(2) ∠SAT = ∠BAC or ∠BAS = ∠CAT.

The relations (1) and (2) imply that triangles BAS and CAT are similar.
Thus

(3) AS

AT
=

AB

AC
=

BS

CT

and ∠ABS = ∠ACT . Therefor ABCD is a rectangle.

Figure 8. Similar triangles AST and ABC

Next we observe that BS = 1
4BD = 1

4AC and CT = 1
2AB. Then the last

equality in (3) becomes AB
AC = AC

2AB , so we get

2AB2 = AC2 = AB2 +BC2.

Hence AB = BC, which proves that ABCD is a square according to Theo-
rem 2.1 (a) in [28]. □

5. Various trapezoids

In this section we study five characterizations regarding when different
types of trapezoids are squares. The first four are due to the first named
author and the fifth is from the old book [18, p. 53]. A trisosceles trapezoid
is a trapezoid with three sides of equal length and a bicentric trapezoid is a
trapezoid with both an incircle and a circumcircle, so it is both tangential
and cyclic. An isosceles trapezoid ABCD can be defined as a quadrilateral
with two pairs of adjacent equal angles, for instance ∠A = ∠B and ∠C =
∠D. A well-known property of these is that they have a pair of congruent
sides called the legs; in this case BC = DA. The other pair of sides (AB
and CD) are called the bases; they are always parallel.

Theorem 5.1. A quadrilateral ABCD satisfies any one of:
(a) it’s a trisosceles trapezoid with a right angle
(b) it’s a trisosceles trapezoid with parallel legs
(c) it’s a trisosceles trapezoid with equal bases
(d) it’s a bicentric trapezoid with a right angle
(e) it’s both an isosceles trapezoid and a kite

if and only if it’s a square.
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Proof. (a) We only consider the case when BC = CD = DA. It is easy to
see that a trisosceles trapezoid is a special case of an isosceles trapezoid, so
we have that ∠A = ∠B and ∠C = ∠D. No matter which of the four vertex
angles is a right angle, we directly get that all four angles are right angles.
Hence we have a rectangle with three equal sides, and only two adjacent
equal sides guarantees that the trapezoid is a square according to Theorem
2.1 (a) in [28].

(b) Parallel legs implies that any two adjacent angles are supplementary
angles and thus all four angles are right angles since for instance ∠C =
∠D. Then it is a rectangle with three equal sides, so a square according to
Theorem 2.1 (a) in [28].

(c) Equal bases implies all four sides are equal (a rhombus), and then a
pair of adjacent equal angles ensures it’s a square according to Theorem 3.1
(b) in [28].

(d) A bicentric trapezoid is a special case of an isosceles trapezoid, and
with one right angle it’s a rectangle. Any tangential rectangle is a square
according to Theorem 2.1 (d) in [28].

(e) Suppose the isosceles trapezoid is defined by ∠A = ∠B and ∠C = ∠D
with property BC = DA, and the kite as DA = AB and BC = CD (other
cases are similar). It follows that AB = BC = CD = DA so it’s a rhombus,
and with ∠A = ∠B it’s a square according to Theorem 3.1 (b) in [28]. □

We note that two special cases of (e) are that when a quadrilateral is both
a rectangle and a kite, or both a rhombus and an isosceles trapezoid, then
it must be a square.

6. Multitype quadrilaterals

Consider a convex quadrilateral ABCD with sides a = AB, b = BC,
c = CD, d = DA and diagonal intersection P . Let a′ = AP , b′ = BP , c′ =
CP , d′ = DP be the semidiagonals. Before we state the next theorem, we
summarize the definitions of the quadrilaterals that we shall study together
with one useful characterization, since a few of them are not so well-known.

Quadrilateral Definition Characterization Ref.
Cyclic Has a circumcircle a′c′ = b′d′ [27]
Equidiagonal Equal diagonals a′ + c′ = b′ + d′ [25]
Extangential Has an excircle |a− c| = |b− d| [22]
Orthodiagonal Perpendicular diagonals a2 + c2 = b2 + d2 [21]
Semidiagonal a′ + b′ = c′ + d′ [13]
Tangential Has an incircle a+ c = b+ d [22]
Trapezoid A pair of parallel sides ∠A+ ∠D = ∠B + ∠C [24]

Table 2. Some quadrilaterals

Semidiagonal quadrilateral is, as far as we know, a new type of quadri-
lateral that is introduced in [13]. Next we study six different combinations
of four types of quadrilaterals that guarantee that we get a square. The
first five is due to the second named author, while the sixth was a problem
in the Hungarian Kömal magazine [36] in 2013, although formulated a bit
differently, and we present our own proof of it.
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Theorem 6.1. A quadrilateral is at the same time any one of the following
combinations:

(a) tangential, extangential, cyclic, and trapezoid
(b) tangential, extangential, equidiagonal, and trapezoid
(c) tangential, extangential, cyclic, and equidiagonal
(d) tangential, extangential, equidiagonal, and semidiagonal
(e) tangential, extangential, cyclic, and semidiagonal
(f) tangential, orthodiagonal, cyclic, and trapezoid

if and only if it’s a square.

Proof. (a) The characterization for extangential quadrilaterals |a − c| =
|b − d| can also be stated as a + b = c + d or a + d = b + c. Together with
the tangential characterization a+ c = b+d we get that a quadrilateral that
is both extangential and tangential satisfies a = b and c = d or a = d and
b = c, so it is a kite. It’s well-known that a cyclic trapezoid is an isosceles
trapezoid. Then a quadrilateral satisfying all four conditions is a square
according to Theorem 5.1 (e) in this paper.

(b) An equidiagonal trapezoid is an isosceles trapezoid (see Theorem 17
(iii) in [25]), so again we have a quadrilateral that is both a kite and an
isosceles trapezoid, that is, a square according to Theorem 5.1 (e).

(c) Theorem 17 (iv) in [25] states that a quadrilateral is both cyclic and
equidiagonal if and only if it is an isosceles trapezoid. Then the conclusion
follows from Theorem 5.1 (e).

(d) Equidiagonal a′+ c′ = b′+d′ and semidiagonal a′+ b′ = c′+d′ implies
that a′ = d′ and b′ = c′. This property is characteristic of an isosceles
trapezoid, so once again we get a square according to Theorem 5.1 (e).

(e) If we rewrite the condition for a semidiagonal to a′ = c′ + d′ − b′ and
substitute in the condition a′c′ = b′d′ for a cyclic, we get (c′ + d′)(b′ − c′) =
0 after simplification and factorization. Hence b′ = c′ and thus a′ = d′,
implying an isosceles trapezoid, and for the fifth time all four conditions
imply a square for the same reason.

(f) Squaring the tangential condition a+ c = b+ d yields a2 + c2 +2ac =
b2+d2+2bd, which by the orthodiagonal condition a2+c2 = b2+d2 simplifies
to ac = bd. Inserting a = b+ d− c and rewriting, we get (d− c)(b− c) = 0.
The solutions are d = c and then a = b, or b = c and thus a = d. Hence we
get a kite. Since a cyclic trapezoid is an isosceles trapezoid, we get a square
due to Theorem 5.1 (e). □

7. Cyclic quadrilaterals

In the following three sections we study characterizations of squares that
are related to different circles. First out is the circumcircle and quadrilater-
als capable of having those are called cyclic. Conditions (a) and (b) in the
next theorem are from [40] and the mathematical Olympiad Baltic Way in
2008 [38] respectively. (c) is from [46, pp. 232–233] (the inequality case is
due to Nicuşor Minculete, but he neglected to state when equality holds),
and (d) is from [6, p. 92]. (e) is from the 1979 Czechoslovakian Mathemat-
ical Olympiad [3] and it was given again at the 1998 Indian Mathematical
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Olympiad [51]. The last condition is from Baltic Way in 1993 [37], but the
proof we give is from [42].
Theorem 7.1. A cyclic quadrilateral ABCD with sides a, b, c, d, escribed
radii ra, rb, rc, rd, and semiperimeter s, that is inscribed in a given circle
with center O and radius R, satisfies any one of:

(a) its diagonals are perpendicular diameters
(b) the expression (ab+ cd)(ac+ bd)(ad+ bc) has a maximal value
(c) it has area K = r2a + r2b + r2c + r2d
(d) it has area K =

(
s
2

)2
(e) it has R = 1 and abcd ≥ 4
(f) the central angles ∠AOB, ∠BOC, ∠COD, ∠DOA, taken in some

order, are the same size as the angles of the quadrilateral ABCD

if and only if it’s a square.
Proof. (a) If the diagonals are diameters, then the quadrilateral is a rectan-
gle (a consequence of Thales’ theorem), and with perpendicular diameters
(diagonals), it’s a square according to Theorem 2.1 (b) in [28].

(b) The product of the area K and the circumradius R in a cyclic quadri-
lateral is according to equation (1) in [28] given by

4KR =
√
(ab+ cd)(ac+ bd)(ad+ bc)

where R is a constant when we have a given circle. Hence the product we
seek to maximize is largest when the area of the quadrilateral is maximal.
Using one of the formulas for the area of a convex quadrilateral (see [5, p.
15]),

K = 1
2pq sin θ ≤ 1

2 · 2R · 2R · 1,
so maximum occurs when the diagonals p and q are perpendicular diameters
(θ = π

2 ). Then the quadrilateral is a square according to (a).
(c) In the proof of Theorem 6.1 (g) in [31], we proved that the area of a

cyclic quadrilateral satisfies K ≤ (ra + rc)(rb + rd) where equality holds if
and only if it is a rectangle. We get

K ≤ (ra + rc)(rb + rd)

≤ 1
2 [(ra + rc)

2 + (rb + rd)
2]

≤ r2a + r2b + r2c + r2d

where we applied the AM-GM inequality in the two forms xy ≤ 1
2(x

2 + y2)

and (x+y)2 ≤ 2(x2+y2), both with equality only for x = y. Equality holds in
the area calculation if and only if the escribed circles to the rectangle satisfy
ra + rc = rb + rd, ra = rc and rb + rd. These yield ra = rb = rc = rd, and
according to Theorem 2.1 (f), two adjacent equal escribed radii is enough
to conclude that the rectangle is a square.

(d) The area of a cyclic quadrilateral is given by the well-known Brah-
magupta’s formula (see [5, p. 42])

K =
√

(s− a)(s− b)(s− c)(s− d).

Then we get from the assumption that
4
√
(s− a)(s− b)(s− c)(s− d) =

s

2
=

(s− a) + (s− b) + (s− c) + (s− d)

4
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and this is the equality case of the AM-GM inequality. Therefore we have
s− a = s− b = s− c = s− d ⇔ a = b = c = d

which means the quadrilateral is a cyclic rhombus, that is, a square according
to Theorem 3.1 (e) in [28].

(e) Applying Ptolemy’s theorem (see [5, p. 35]) and the AM-GM inequal-
ity yields

4 ≥ AC ·BD = ac+ bd ≥ 2
√
abcd ≥ 2

√
4 = 4

where we also used that neither diagonal can exceed the diameter. Hence
equality must hold throughout, so AC and BD are both diameters, implying
that ABCD is a rectangle (with a = c and b = d), and also that ac = bd
(from the AM-GM inequality), so we get a = b. Then the rectangle is a
square according to Theorem 2.1 (a) in [28].

(f) Opposite vertex angles in a cyclic quadrilateral are supplementary, so
a pair of angles from {∠AOB,∠BOC,∠COD,∠DOA} add to 180◦. Then
there are two possibilities depending on if these two angles are adjacent or
opposite.

Figure 9. Case 1

Case 1 (adjacent). Suppose without loss of generality that ∠BOA +
∠BOC = 180◦, which means that O lies on AC. Then AC is a diameter
and we have ∠ABC = ∠CDA = 90◦, implying that at least one of the
central angles is 90◦ (see Figure 9). Suppose without loss of generality it is
∠COD = 90◦. Then ∠AOD = 90◦, so CD = AD and ∠OAD = ∠OCD =
45◦. Now let ∠BCO := x, implying that ∠BAC = 90◦ − x and BAD =
∠135◦ − x and ∠BCD = 45◦ + x. We further have ∠BOC = 180◦ − 2x and
∠BOA = 2x. These equalities imply either 2x = 45◦ + x or 2x = 135 − x.
In both cases we get x = 45◦. This amounts to ∠BCD = ∠BAD = 90◦,
so BC = CD = DA = AB since triangles BOC, COD, DOA, AOB are
congruent (SAS). Hence all angles of ABCD are 90◦ (a rectangle), but since
the central angles have the same value, the diagonals are perpendicular and
ABCD is a square according to Theorem 2.1 (b) in [28].

Case 2 (opposite). Suppose without loss of generality that ∠BOA +
∠COD = 180◦, so ∠BDA + ∠CAD = 90◦. Then the diagonals are per-
pendicular, implying that ABCD is an isosceles trapezoid (see Figure 10).
Assume without loss of generality that AB = CD, so that BC and DA are
parallel. Then ∠ABC = ∠BCD and ∠BAD = ∠CDA. If all four vertex
angles are equal, ABCD is a rectangle and the proof concludes as in case 1.
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Figure 10. Case 2

Otherwise we get either ∠BOA = ∠COD and ∠BOC = ∠AOD, resulting
in all four vertex angles being 90◦ since ∠BOA+∠COD = 180◦, or we have
∠BOA = ∠BOC and ∠AOD = ∠COD. Then AB = BC and DA = CD,
so AB = BC = CD = DA (a rhombus) and since ABCD is cyclic, it must
be a square according to Theorem 3.1 (e) in [28]. □

8. Tangential quadrilaterals

A tangential quadrilateral is a quadrilateral with an incircle and its center
I is called the incenter. The distances from the vertices to the points where
the incircle is tangent to the sides are called the tangent length, and these
are denoted by e, f , g, h. The central angles between radii to the tangent
points will be denoted by α, β, γ, δ (see Figure 11).

Figure 11. Central angles and tangent lengths

We have the following five conditions, all due to the first named author.

Theorem 8.1. A tangential quadrilateral ABCD with sides a, b, c, d,
incenter I, inradius r, tangent length e, f , g, h, and central angles α, β, γ,
δ satisfies any one of:

(a) α = β = γ = δ
(b) e = f = g = h
(c) AI = BI = CI = DI

(d) r = 1
2

4
√
abcd

(e) K = 1
2(AI

2 +BI2 + CI2 +DI2)

if and only if it’s a square.
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Proof. (a) From α = β = γ = δ we get that all eight triangles where these
four different angles are included are congruent by ASA (see Figure 11), so
the tangential quadrilateral is a rhombus with equal vertex angles. That is
a square according to Theorem 3.1 (b) in [28].

(b) We have that α = β = γ = δ implies e = f = g = h due to ASA
congruence (see Figure 11).

(c) We have that α = β = γ = δ implies AI = BI = CI = DI due to
ASA congruence (see Figure 11).

(d) The area of a tangential quadrilateral is given by ([46, p. 132])

K =
√
abcd sin

A+ C

2

and the inradius by the well-known formula r = K
s , so we get

r =
2
√
abcd sin A+C

2

a+ b+ c+ d
≤

2
√
abcd sin A+C

2

4 4
√
abcd

≤ 2
√
abcd

4 4
√
abcd

= 1
2

4
√
abcd

where we applied the AM-GM inequality to get the first inequality, so equal-
ity holds there if and only if the quadrilateral is a rhombus (a = b = c = d).
In the second inequality we have equality if and only if the quadrilateral is
cyclic (∠A + ∠C = π), so in total equality holds only in a cyclic rhombus,
that is, in a square according to Theorem 3.1 (e) in [28].

(e) Let Kc be the area of the quadrilateral with vertices at the points
where the incircle is tangent to the sides. Then the tangential quadrilateral
has area

K = Kc +
1
2

(
e2 sinA+ f2 sinB + g2 sinC + h2 sinD

)
where

Kc =
1
2r

2 (sinA+ sinB + sinC + sinD) .

We get, by applying the Pythagorean theorem, that
K = 1

2

(
(e2 + r2) sinA+ (f2 + r2) sinB + (g2 + r2) sinC + (h2 + r2) sinD

)
= 1

2

(
AI2 sinA+BI2 sinB + CI2 sinC +DI2 sinD

)
≤ 1

2(AI
2 +BI2 + CI2 +DI2)

where equality holds if and only if ∠A = ∠B = ∠C = ∠D = π
2 (a rectangle).

A rectangle with an incircle must be a square since its sides satisfy a+ c =
b + d and a = c and b = d, implying that a = b = c = d (a rhombus), and
the conclusion follows from Theorem 2.1 (a) in [28]. □

9. Bicentric quadrilaterals

A quadrilateral that is at the same time both cyclic and tangential is called
bicentric. Here we study eight conditions that make a bicentric quadrilateral
a square. Conditions (a) and (b) are from the 1995 Brazilian Mathematical
Olympiad [20], which was to prove that if any two of O, I, and P coincide,
then the quadrilateral is a square. The third possible coincide was included
as Theorem 9.1 (c) in [28]. (c) is from [23], while (e) and (f) are from the
recent paper [47]. Conditions (g) and (h) are different interpretations of the
equality case of inequalities proposed by L. Carlitz and G. J. Griffith in 1972
according to [41, pp. 404–405], wherefrom we cite their proofs.
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The radii of the four escribed circles are denoted by ra, rb, rc, rd and we
call these the escribed radii, and the centers of these four circles constitute
vertices of a quadrilateral called the excenter quadrilateral [29, p. 16], which
we denote IaIbIcId.

Theorem 9.1. A bicentric quadrilateral ABCD with sides a = AB, b =
BC, c = CD, d = DA, circumcenter O, incenter I, diagonal intersection
P , circumradius R, inradius r, semiperimeter s, and escribed radii ra, rb,
rc, rd satisfies any one of:

(a) O and P coincide
(b) I and P coincide
(c)

∑
cyc sin

A
2 cos B

2 = 2

(d)
√
a+

√
b+

√
c+

√
d = 4

√
2r

(e) ra = rb = rc = rd
(f) the circumcenters of ABCD and IaIbIcId coincide
(g) it has area K = 2

√
2Rr

(h) s2 = 8
√
2Rr

if and only if it’s a square.

Proof. (a) Applying Thales’ theorem, we get that all four vertex angles
are right, so ABCD is a rectangle. Then a = c and b = d. But it’s also
tangential, so a+ c = b+ d, implying that a = b. This proves that ABCD
is a square according to Theorem 2.1 (a) in [28].

(b) In a cyclic quadrilateral, ∠DAC = ∠DBC. But ∠DAC = ∠CAB
and ∠ABD = ∠CBD, so ∠A = ∠B. Then ∠A = ∠B = 90◦, and in the
same way, ∠C = ∠D = 90◦ (a rectangle). A tangential rectangle is a square
according to Theorem 2.1 (d) in [28].

(c) In [23], we derived that the expression

sin
A

2
cos

B

2
+ sin

B

2
cos

C

2
+ sin

C

2
cos

D

2
+ sin

D

2
cos

A

2

in a bicentric quadrilateral is equal to

(
√
ab+

√
cd)(

√
ad+

√
bc)√

(ab+ cd)(ad+ bc)
.

The AM-GM inequality 2
√
xy ≤ x+ y yields that x+ y+2

√
xy ≤ 2(x+ y),

so (
√
x+

√
y)2 ≤ 2(x+ y), which is equivalent to

√
x+

√
y

√
x+ y

≤
√
2

where equality holds if and only if x = y for positive numbers x and y.
Applying this, we get that

sin
A

2
cos

B

2
+ sin

B

2
cos

C

2
+ sin

C

2
cos

D

2
+ sin

D

2
cos

A

2
≤ (

√
2)2

where equality holds if and only if ab = cd and ad = bc, that is, only when
a = c and b = d (a parallelogram). A bicentric parallelogram is a square
according to Theorem 4.1 (g) in [28].
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(d) By the AM-GM inequality, we have
√
a+

√
b+

√
c+

√
d

4
≥

4

√√
abcd =

4
√
K ≥ 4

√
(2r)2 =

√
2r

where equality in the first inequality holds only in a rhombus and in the
second only in a square. We used that the area of a bicentric quadrilateral
is given by
(4) K =

√
abcd

(see [5, p. 50]), and the inequality K ≥ 4r2 which was proved to hold in a
tangential quadrilateral in [28, p. 25].

(e) We have according to Lemma 9.1 in [28] that

ra =
a

c
r

and similar formulas hold for the other escribed radii. Hence

ra = rb = rc = rd ⇔ a

c
=

b

d
=

c

a
=

d

b

so we get a = c and b = d (a parallelogram). A bicentric parallelogram is a
square according to Theorem 4.1 (g) in [28].

Figure 12. Excenter quadrilateral IaIbIcId

(f) In [46, pp. 162–163], it’s proved that the distance between the circum-
center O in a bicentric quadrilateral ABCD and the center Ia in one of the
escribed circles is given by the formula

OI2a = R2 +
(√

4R2 + r2 − r
)
ra.

Similar formulas hold for the three other distances OIb, OIc and OId. It’s
well-known that IaIbIcId is always a cyclic quadrilateral (see Figure 12; for
a proof, see [29, pp. 16–17]). If O is also the circumcenter of IaIbIcId, then

OI2a = OI2b = OI2c = OI2d

and it’s easy to see that this is equivalent to ra = rb = rc = rd. According
to (d), this holds if and only if ABCD is a square.
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(g) The diagonals in a cyclic quadrilateral are given by AC = 2R sinB
and BD = 2R sinA, so by Ptolemy’s theorem,
(5) ac+ bd = AC ·BD = 4R2 sinA sinB.

In a tangential quadrilateral, cot A
2 = e

r and cot B
2 = f

r (see Figure 11), so

a = e+ f = r

(
cot

A

2
+ cot

B

2

)
,

and
b = r

(
cot

B

2
+ cot

C

2

)
= r

(
cot

B

2
+ tan

A

2

)
since ∠C = π − ∠A in a cyclic quadrilateral. The other two sides are given
by the similar formulas

c = r

(
tan

A

2
+ cot

B

2

)
, d = r

(
cot

A

2
+ tan

B

2

)
where we have also used ∠D = π − ∠B. A short calculation confirms that

ac+ bd = r2
(
4 +

(
cot

A

2
+ tan

A

2

)(
cot

B

2
+ tan

B

2

))
= 4r2

(
1 +

1

sinA sinB

)
.(6)

Multiplying (5) and (6), we obtain
(ac+ bd)2 = 16R2r2(1 + sinA sinB).

The AM-GM inequality and (4) yields

ac+ bd ≥ 2
√
abcd = 2K.

Hence
4K2 ≤ (ac+ bd)2 = 16R2r2(1 + sinA sinB) ≤ 16R2r2(1 + 1 · 1) = 32R2r2

and we get
K2 ≤ 8R2r2

where equality holds if and only if ac = bd and ∠A = ∠B = π
2 , which in

a bicentric quadrilateral is equivalent to a tangential rectangle, that is, a
square according to Theorem 2.1 (d) in [28].

(h) Applying the AM-GM inequality, we get
(7) ac+ bd ≤ 1

4(a+ c)2 + 1
4(b+ d)2 = 1

2(a+ c)2 = 1
2s

2

where we used that a+c = b+d holds in tangential quadrilaterals. Equality
holds if and only if a = c and b = d (a parallelogram), and the only bicentric
parallelogram is a square according to Theorem 4.1 (g) in [28].

Using the formulas for a and c from the proof of (f) yields

a+ c = r

(
tan

A

2
+ cot

A

2
+ tan

B

2
+ cot

B

2

)
= r

(
2

sinA
+

2

sinB

)
which attains its minimum value when ∠A = ∠B = π

2 (a square). From (7)
and (6), we obtain

s4 ≥ 4(ac+ bd)2 = 64R2r2(1 + sinA sinB)
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and since the minimum of a+ c occurs when ∠A = ∠B = π
2 , it follows that

s4 ≥ 128R2r2

where equality holds only for a square. □

10. Convex quadrilaterals

In this section we study six characterizations that make a general convex
quadrilateral a square. Both condition (a), which is just another way of
stating that a quadrilateral is a square if and only if it is both a rhombus
and a rectangle, and (c) are from the old book [19, p. 124], and (b) is from
the old book [10, p. 41]. (d) is a beautiful symmetric but not minimal
condition (two equalities can be dropped) due to the second named author,
while (e) is from the 2004 Indian Mathematical Olympiad [2], and (f) is from
the 2002 Third selection examination for the Junior Balkan Mathematical
Olympiad [16, pp. 79–80] (proposed by Mircea Fianu). We reproduce the
proofs given at the two last cited sources.

Theorem 10.1. A convex quadrilateral ABCD with sides a, b, c, d, diag-
onals p, q, and semidiagonals a′, b′, c′, d′ satisfies any one of:

(a) it has 4 equal sides and 4 equal angles
(b) it has equal, perpendicular, and bisecting diagonals
(c) each diagonal and each bimedian is a symmetry line
(d) a = b = c = d and a′ = b′ = c′ = d′

(e) QA = QB = QC = QD and LK
LM = CD

CB where K, L, M , N are the
midpoints of AB, BC, CD, DA respectively and BD bisects KM
at Q

(f) the area of triangle XPY is constant, where P is the diagonal inter-
section, and X and Y are points on the sides of ABCD such that
angle XPY is equal to the angle between the diagonals

if and only if it’s a square.

Proof. (a) This is equivalent to the definition of squares we used in [28],
since 4 equal angles and 4 right angles are equivalent due to the angles sum
of a convex quadrilateral.

(b) Bisecting diagonals means it’s a parallelogram, the addition of equal
diagonals that it must be a rectangle, and also perpendicular diagonals that
the rectangle is a square according to Theorem 2.1 (b) in [28].

(c) That each diagonal is a symmetry line is a characterization of rhombi
and that each bimedian is a symmetry line is a characterization of rectangles,
so this is just another way of stating (a).

(d) a = b = c = d implies a rhombus (by definition), and according to
Theorem 3.1 (c) in [28], only two adjacent semidiagonals are needed to be
equal for ABCD to be a square.

(e) Triangles QKB and QMD are congruent (SAS), so MD = KB and
thus AB = CD. It also follows, by alternate angles, that AB and DC
are parallel (see Figure 13). A pair of equal and parallel sides implies that
ABCD is a parallelogram according to Theorem 2.1 (b) in [30]. Triangles
QMD and QMC are also congruent (SSS), so ∠QMD = ∠QMC = 90◦ and



150 characterizations of squares 25

Figure 13. Midpoints K, L, M , N

by alternate angles, ∠QKA = ∠QKB = 90◦. From these angle equalities
and the fact that a bimedian in a parallelogram is parallel to a pair of
opposite sides, it follows that ∠A = ∠B = ∠C = ∠D = 90◦ (a rectangle).
Finally, triangles LCM and LBK are congruent (SAS), so LM = LK, and
then CD = CB, implying that ABCD is a square according to Theorem
2.1 (a) in [28]

Figure 14. ∠DPL = ∠BPK = θ

(f) Assume that ∠APD := θ ≤ 90◦ is the angle between the diagonals.
Then [APD] = [BPC] by the assumption, where square brackets denote
area of the included triangle. We get

1
2AP ·DP sin θ = 1

2BP · CP sin θ

so
AP

CP
=

BP

DP
.

Together with ∠DPC = ∠APB, this implies that triangles DPC and APB
are similar and CD is parallel to AB (see Figure 14). Next we draw a line
segment KL through P with K ∈ AB and L ∈ CD such that ∠DPL =
∠BPK = θ. Then triangles DPL and BPK are similar and have equal
area, so they are congruent. We get that DP = BP , and in the same way,
CP = AP . Therefor ABCD is a parallelogram according to Theorem 3.1
(a) in [30]. We also get that [BPC] = [BPK] and [BPC] = [APB]. Hence
A ≡ K and

θ = ∠BPA = ∠BPK = ∠BPC = 90◦.

This confirms that ABCD is a rhombus.
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Finally we consider the angle bisectors RP and TP to the angles between
the diagonals, with R ∈ DA and T ∈ AB. Then ∠RPT = ∠APD = θ =
90◦, so [RPT ] = [APD]. Hence [APT ] = [DPR], and we obtain

[DPR] = [APR] = 1
2 [APD].

This proves that PR is a median in triangle APD, so AP = DP . Then the
rhombus is a square according to Theorem 3.1 (c) in [28]. □

In [19, p. 124], Henrici conclude the short section on squares by stating
that in a square, the median lines (what we call bimedians) are equal, and
each is the perpendicular bisector of the other. This is true, but he adds
that the converse also holds and that the proof is left to the reader. This is
however not a true statement and here is why. The bimedians always bisect
each other in all quadrilaterals, but if they are perpendicular and equal,
then the quadrilateral has equal and perpendicular diagonals (see [25, p.
137]). Such quadrilaterals are not necessarily squares, but what we called
midsquare quadrilaterals in [25, p. 137] (see Figure 15). It’s only if their
diagonals also bisect each other that they are squares (see [25, p. 138]).
This was part (b) in the theorem we just proved.

Figure 15. A midsquare quadrilateral ABCD

11. Area

In the last theorem we prove six area formulas that are sufficient condi-
tions for when a convex quadrilateral is a square, where (b) is due to the
second named author. Conditions (c), (d), and (e) were inspired from in-
equalities proved in [46, pp. 181–182, 185–186, 195], but the equality cases
were not stated specifically there for the first two of them. Those inequali-
ties are due to A. Pop in 1989 and Gerasimov in 1967. The last condition is
the equality case of an inequality given as Problem 12033 in the American
Mathematical Monthly in 2018, proposed by Dao Thanh Oai and Leonard
Giugiuc [14]. We cite proofs from the last two sources here.

Theorem 11.1. A convex quadrilateral with sides a, b, c, d, diagonals p,
q, semidiagonals a′, b′, c′, d′, quarter triangle circumradii R1, R2, R3, R4,
bimedians m, n, and distance v between the diagonal midpoints, has an area
K satisfying any one of:
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(a) K = a2 = b2 = c2 = d2

(b) K = 1
2(a

′2 + b′2 + c′2 + d′2)

(c) K = R2
1 +R2

2 +R2
3 +R2

4

(d) K = 1
2(m

2 + n2 + v2)

(e) K = 1
4

√
(a+ b)(b+ c)(c+ d)(d+ a)

(f) K = 1
8(a

2 + b2 + c2 + d2 + p2 + q2 − ab− cd+ pq)

if and only if it’s a square.

Proof. (a) From a2 = b2 = c2 = d2 we get a rhombus, and since rhombii
have area K = a2 sinA, we also get that the rhombus has a right vertex
angle, so it’s a square according to Theorem 3.1 (a) in [28].

(b) If we denote one of the angles between the diagonals by θ, we have
that the area of a convex quadrilateral satisfies

K = 1
2 sin θ(a

′b′ + b′c′ + c′d′ + d′a′)

= 1
2 sin θ(a

′ + c′)(b′ + d′)

≤ 1
4 sin θ[(a

′ + c′)2 + (b′ + d′)2]

≤ 1
2 sin θ(a

′2 + b′2 + c′2 + d′2)

≤ 1
2(a

′2 + b′2 + c′2 + d′2)

where we used the AM-GM inequality in the two forms xy ≤ 1
2(x

2+y2) and
(x+ y)2 ≤ 2(x2 + y2). We have equality throughout the area calculation if
and only if a′ + c′ = b′ + d′, a′ = c′, b′ = d′, and θ = 90◦, that is, only when
the diagonals have equal lengths, bisect each other, and are perpendicular.
This is equivalent to a square according to Theorem 10.1 (b).

(c) Using the extended law of sines, we get

R2
1 +R2

2 +R2
3 +R2

4 =
a2 + b2 + c2 + d2

4 sin2 θ
≥ a2 + b2 + c2 + d2

4
≥ K

where θ is one of the angles between the diagonals. The last inequality was
proved in the proof of Theorem 12.1 (a) in [28], where equality holds if and
only if the quadrilateral is a square.

(d) In a convex quadrilateral, the bimedians and the diagonals are related
according to the formula 2(m2 + n2) = p2 + q2, and we also have

a2 + b2 + c2 + d2 = p2 + q2 + 4v2,

where the last equality is due to Euler (both relations were derived in [5,
pp. 9–10]). We get

m2 + n2 + v2 =
p2 + q2

2
+

a2 + b2 + c2 + d2 − p2 − q2

4

=
a2 + b2 + c2 + d2

4
+

p2 + q2

4
≥ K +K = 2K

where the two inequalities we used at the end were proved in [28, p. 33] and
[25, p. 138]. Equality holds in the first if and only if the quadrilateral is a
square, and in the second if and only if the quadrilateral has diagonals that
are equal and perpendicular; altogether only in a square.
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(e) The area of a convex quadrilateral is, according to Bretschneider’s
formula (see [5, pp. 18–19]), given by

K2 = (s− a)(s− b)(s− c)(s− d)− abcd cos2
(
A+ C

2

)
≤ (s− a)(s− b)(s− c)(s− d)(8)

where equality holds if and only if it is cyclic. Next we note that

2
√

(s− c)(s− d) =
√

(a+ b)2 − (c− d)2 ≤ a+ b,

2
√
(s− a)(s− d) =

√
(b+ c)2 − (a− d)2 ≤ b+ c,

2
√
(s− a)(s− b) =

√
(c+ d)2 − (a− b)2 ≤ c+ d,

2
√
(s− b)(s− c) =

√
(d+ a)2 − (b− c)2 ≤ d+ a

where equality holds if and only if c = d = a = b. Multiplying these four
and substituting into (8) yields

K2 ≤ 1
16(a+ b)(b+ c)(c+ d)(d+ a)

where equality holds only for a cyclic rhombus, that is, just for a square.
(f) By Ptolemy’s inequality and the AM-GM inequality, we have

2pq ≤ 2(ac+ bd) ≤ a2 + c2 + b2 + d2

and 2pq ≤ p2 + q2. Since real algebraic squares are never negative,

0 ≤ (a− c)2 + (b− d)2 + (p− q)2

where equality holds if and only if a = c, b = d, p = q, that is, only in
rectangles (parallelograms with equal diagonals). Expanding, adding these
three inequalities, rewriting, and dividing all terms by 2 yields

ac+ bd− pq + 4pq ≤ a2 + b2 + c2 + d2 + p2 + q2.

The area of a convex quadrilateral satisfies

K = 1
2pq sin θ ≤ 1

2pq

so 8K ≤ 4pq with equality only for perpendicular diagonals. Via substitu-
tion, we get

ac+ bd− pq + 8K ≤ a2 + b2 + c2 + d2 + p2 + q2

where equality holds if and only if the quadrilateral is a rectangle with
perpendicular diagonals, so only in a square. Now we only have to solve for
K to finish the derivation. □

The observant reader might have noticed by reading between the lines
in the proof of (d) an interesting conclusion: if we know that the area of a
convex quadrilateral is given by K = 1

2(m
2 + n2 + v2), then it is a square

(and they have v = 0), but if we only know that the area is given by the
formula K = 1

2(m
2+n2), then we are limited to conclude that the diagonals

are equal and perpendicular (a midsquare quadrilateral).
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12. Most useful characterizations

Of the 150 characterizations of squares we have studied in this paper and
in [28], which have been the most useful in the proofs of other characteriza-
tions, and how frequently were they used? This is accounted for in Table 3.

Characterization Number of proofs
Rectangle with 2 adjacent equal sides 42
Rectangle with perpendicular diagonals 18
Rhombus with a right vertex angle 15
Rhombus that is cyclic 9
Rhombus with 2 adjacent equal vertex angles 9
Quad with 4 equal sides and 4 right angles 6
Both isosceles trapezoid and kite 6

Table 3. Most frequently used characterizations

Note that at the end of several proofs, it is possible to refer to at least
two different characterizations as the reason for why the quadrilateral is a
square, so the numbers in Table 3 are approximate. Nonetheless they are
clear on which are the most useful characterizations. It is interesting that
the definition of squares we chose in [28] is only on sixth place. Besides the
seven characterizations in Table 3, twenty others were used between one and
five times, for a total of forty-five times.

13. Chronological compilation

We conclude by summarizing all 150 characterizations of squares that
have been collected in theorems in the present paper and in [28]. They
are given in chronological order with respect to the oldest source for the
sufficient condition that we know of, but several of them have surely been
published earlier (like for instance those with number 35, 36, 41, 55 and 58;
they are definitely elementary, but rarely included in math books).

The following notations are used: A quadrilateral ABCD, abbreviated
Q or quad, has sides a = AB, b = BC, c = CD, d = DA, diagonals
p = AC, q = BD, area K, semiperimeter s, diagonal intersection P (in
italic), and semidiagonals a′ = AP , b′ = BP , c′ = CP , d′ = DP . A
cyclic quadrilateral has circumradius R (in italic) and circumcenter O, and
a tangential quadrilateral has inradius r and incenter I. For a bicentric
quadrilateral, all of these four latter terms apply. Regarding the meaning of
other notations, please see the corresponding theorems in the two papers.

BQ is used as abbreviation for bicentric quadrilateral, CQ for cyclic
quadrilateral, ETQ for extangential quadrilateral, IT for isosceles trapezoid,
ODQ for orthodiagonal quadrilateral, P for parallelogram, Re for rectangle,
Rh for rhombus, TQ for tangential quadrilateral, ∆s for triangles, V’s P for
Varignon’s parallelogram, and w for with.

BraMO, BriMO, CACMO, CheMO, IndMO, IreMO are used as abbrevia-
tions for the Brazilian, British, Central American and Caribbean, Czechoslo-
vakian, Indian, and Irish Mathematical Olympiad respectively.
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# Year Source Short description Ref.
1 -300 Euclid Q with 4 equal sides and 4 right angles [33]
2 1833 Young Rhombus with a right vertex angle [59]
3 1868 Wright P w equal and perpendicular diagonals [57]
4 1869 Chauvenet Q w equal, perp. & bisecting diagonals [10]
5 1871 Todhunter P w largest area for a given perimeter [53]
6 1879 Henrici Q w each diag. & each bimed. a sym. line [19]
7 1879 Henrici Q with 4 equal sides and 4 equal angles [19]
8 1879 Henrici P w equal diag. & 1 diag. bisects an angle [19]
9 1889 Dupuis Rectangle with 2 adjacent equal sides [15]
10 1889 Dupuis Rectangle w largest area for given perim. [15]
11 1893 Smith P that’s both a rectangle and a rhombus [56]
12 1896 Halsted Q that’s both a kite & isosceles trapezoid [18]
13 1898 Hadamard ODQ with equal and bisecting diagonals [17]
14 1899 Beman Rectangle with perpendicular diagonals [8]
15 1948 Tóth Bicentric Q with R =

√
2r [54]

16 1950 Schoenberg Q with K = 1
2
(w2 + x2 + y2 + z2) [52]

17 1961 Kazarinoff Q with largest area for a given perimeter [34]
18 1961 Kazarinoff Cyclic Q w largest area for a given perim. [34]
19 1962 Skopec Q with K = 1

4
(a2 + b2 + c2 + d2) [9]

20 1972 Klamkin Bicentric Q with 8pq = (a+ b+ c+ d)2 [35]
21 1972 Carlitz Bicentric Q with K = 2

√
2Rr [41]

22 1972 Carlitz Bicentric Q with s2 = 8
√
2Rr [41]

23 1974 Jacobs P w 1 right angle & 2 adj. equal sides [56]
24 1976 Ivanova Tangential Q with s = 4r [41]
25 1977 Andreescu Cyclic Q with K = (s/2)2 [6]
26 1979 [CheMO] Cyclic Q with R = 1 and abcd ≥ 4 [3]
27 1981 Niven Q with K = 1

16
(a+ b+ c+ d)2 [43]

28 1986 Meyers Cyclic Q where diag. are perp. diameters [40]
29 1993 [Baltic Way] ∠AOB, ∠BOC, ∠COD, ∠DOA eq. CQ [37]
30 1995 [BraMO] BQ with O and I coinciding [20]
31 1995 [BraMO] BQ with O and P coinciding [20]
32 1995 [BraMO] BQ with I and P coinciding [20]
33 2000 Lee P w AMN right-angled and AM = AN [39]
34 2000 [IreMO] Cyclic Q with K = (abcd)3/4/(R

√
2) [1]

35 2002 Posamentier Rectangle w a diag. bisecting an angle [48]
36 2002 Posamentier Rhombus with equal diagonals [48]
37 2002 Fianu Rectangle with DF +BE = AE [16]
38 2002 Fianu The area of triangle XPY is constant [16]
39 2002 Serbanescu Parallelogram w ABC and AST similar [16]
40 2004 [IndMO] QA = QB = QC = QD and LK

LM
= CD

CB
[2]

41 2005 Yadav Rhombus that is cyclic [58]
42 2005 Tydd Rectangle with equal bimedians [55]
43 2006 Andreescu Re w largest area inscr. in a given circle [7]
44 2006 Andreescu Cyclic Q with K = 2R2 [7]
45 2006 Andreescu Q inscribed in given circle w largest area [7]
46 2008 Usiskin Q with rotational symmetry of order 4 [56]
47 2008 [Baltic Way] CQ w (ab+ cd)(ac+ bd)(ad+ bc) max [38]
48 2012 Josefsson Bicentric Q with

∑
cyc sin

A
2
cos B

2
= 2 [23]

49 2013 Pop Q w K = 1
4

√
(a+ b)(b+ c)(c+ d)(d+ a) [46]

50 2013 [Kömal] TQ, orthodiagonal, cyclic, trapezoid [36]
51 2014 Josefsson Quad with K = 1

2
(a2 + c2) = 1

2
(b2 + d2) [25]

52 2015 Josefsson Quad with K = 1
8

(
(a+ c)2 + (b+ d)2

)
[26]

53 2018 Pamfilos Harmonic parallelogram [44]
54 2018 Dao K = 1

8
(pq − ab− cd+ p2 + q2 +

∑
cyc a

2) [14]
55 2020 Alsina Rectangle that is tangential [5]
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56 2020 Alsina Q w K = 1
2

3
√

(ab+ cd)(ac+ bd)(ad+ bc) [5]
57 2022 [CACMO] Rectangle w 4 interior tangent circles [4]
58 2022 Dalcín Rhombus with 2 adjacent equal angles [11]
59 2022 Dalcín Rhombus w 2 adj. equal semidiagonals [11]
60 2022 Dalcín Q w ∠A = ∠B,∠C = ∠D and a = b = c [11]
61 2022 Dalcín Q w ∠A = ∠B = ∠D and a = b, c = d [11]
62 2022 Dalcín Q w ∠A = ∠B,∠C = ∠D, a = b, c = d [11]
63 2022 Dalcín Q with a = d, b = c and a′ = d′, b′ = c′ [11]
64 2022 Dalcín Q with ∠A = ∠C = ∠D and a = b = c [11]
65 2022 Dalcín Q with a = b = c and a′ = b′ = c′ [11]
66 2022 Dalcín Q with a = b = c and a′ = c′ = d′ [11]
67 2022 Dalcín Q with a = d and a′ = b′ = c′ = d′ [11]
68 2022 Dalcín Q with b = c = d and a′ = d′, b′ = c′ [11]
69 2023 Dalcín P w perpendicular diagonals and a′ = b′ [12]
70 2023 Dalcín Q w ∠A = ∠B,∠C = ∠D, a = c and p⊥ q [12]
71 2023 Dalcín Q w ∠A = ∠B,∠C = ∠D, a′ = c′, p⊥ q [12]
72 2023 Dalcín Q w a′ = b′, c′ = d′, a = c and p⊥ q [12]
73 2023 Dalcín IT w a′ = b′, c′ = d′ and ∠A = ∠C [12]
74 2023 Dalcín ODQ with a = b = d and ∠A = ∠B [12]
75 2023 Dalcín ODQ with a = b = d and a′ = b′ [12]
76 2023 Dalcín ODQ with a = d and a′ = b′ = c′ [12]
77 2023 Dalcín ODQ with ∠A = ∠B = ∠C and b = d [12]
78 2023 Dalcín ODQ with ∠A = ∠B = ∠C and a = d [12]
79 2023 Dalcín ODQ with d′ = a′ = b′ and ∠A = ∠B [12]
80 2023 Dalcín ODQ with a = c and a′ = b′ = c′ [12]
81 2023 Josefsson Rectangle w concurrent angle bisectors [28]
82 2023 Josefsson Re w diagonals divide it into 4 congr. ∆s [28]
83 2023 Josefsson Rectangle w diag. intersect. eq.di. to sides [28]
84 2023 Josefsson Rhombus with AE = BE [28]
85 2023 Josefsson Rhombus w diag. intersect. eq.di. to vert. [28]
86 2023 Josefsson P that is cyclic with perp. diagonals [28]
87 2023 Josefsson P that is both cyclic and tangential [28]
88 2023 Josefsson Q w a′ = b′, c′ = d′, b = c and ∠A = ∠D [28]
89 2023 Josefsson Q w ∠C = ∠D, b = c = d and p⊥ q [28]
90 2023 Josefsson Q w ∠A = ∠B,∠C = ∠D, b = c, a′ = d′ [28]
91 2023 Josefsson Kite with equal and bisecting diagonals [28]
92 2023 Josefsson Kite w AB = CD & a right vertex angle [28]
93 2023 Josefsson Kite w AB ∥ CD & a right vertex angle [28]
94 2023 Josefsson Q w a = b, c = d and ∠B = ∠D = 90◦ [28]
95 2023 Josefsson Tangential Q with K = 4r2 [28]
96 2023 Josefsson Q circumscr. given circle w smallest area [28]
97 2023 Josefsson TQ w largest area for a given perimeter [28]
98 2023 Josefsson Bicentric Q with a

c
+ c

a
+ b

d
+ d

b
= 4 [28]

99 2023 Josefsson Bicentric Q with ra + rb + rc + rd = 4r [28]
100 2023 Josefsson Bicentric Q with 1

ra
+ 1

rb
+ 1

rc
+ 1

rd
= 4

r
[28]

101 2023 Josefsson BQ w largest area for a given perimeter [28]
102 2023 Josefsson Q w K = 1

6
(ab+ ac+ ad+ bc+ bd+ cd) [28]

103 2023 Pop BQ w cir.cent. of ABCD & IaIbIcId coinc. [47]
104 2023 Pop Bicentric Q with ra = rb = rc = rd [47]
105 2024 Pamfilos Re w shortest diagonals for given area [45]
106 2025 Dalcín Rectangle with a = 1

4
(a+ b+ c+ d) [32]

107 2025 Dalcín Re w 2 adjacent equal semibimedians [32]
108 2025 Dalcín Re w bimedian intersec. eq.dist. to sides [32]
109 2025 Josefsson Re w shortest perimeter for given area [32]
110 2025 Josefsson Re w largest area for given diagonals [32]
111 2025 Josefsson Re w equal heights to two adjacent sides [32]
112 2025 Josefsson Re w two adj. equal escribed circle radii [32]
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113 2025 Josefsson Re w 2 adj. quarter ∆s w eq. circumradii [32]
114 2025 Josefsson Re w 2 adj. quarter ∆s w equal inradii [32]
115 2025 Josefsson Re w 2 adj. quarter ∆s w equal exradii [32]
116 2025 Dalcín Rhombus with a′ = 1

4
(a′ + b′ + c′ + d′) [32]

117 2025 Dalcín Rh w ∠A = 1
4
(∠A+ ∠B + ∠C + ∠D) [32]

118 2025 Dalcín Rhombus with concurrent perp. bisectors [32]
119 2025 Dalcín Rhombus with perpendicular bimedians [32]
120 2025 Dalcín Rhombus w a bimedian perp. to a side [32]
121 2025 Dalcín Rhombus w bimed. intersec. eq.di. to vert. [32]
122 2025 Dalcín Rh w bimed. div. V’s P into 4 congr. ∆s [32]
123 2025 Dalcín Rhombus w max area for a given perim. [32]
124 2025 Dalcín Rhombus w min area circ.scr. given circle [32]
125 2025 Josefsson P w equal and perpendicular bimedians [32]
126 2025 Dalcín P w equal bimed. & one is perp. to a side [32]
127 2025 Dalcín P w 2 adj. eq. bimed. parts & perp. bimed. [32]
128 2025 Dalcín P that is tangential and has equal diag. [32]
129 2025 Josefsson P that is tangential and has perp. bimed. [32]
130 2025 Josefsson Trisosceles trapezoid with a right angle [32]
131 2025 Josefsson Trisosceles trapezoid with parallel legs [32]
132 2025 Josefsson Trisosceles trapezoid with equal bases [32]
133 2025 Josefsson Bicentric trapezoid with a right angle [32]
134 2025 Dalcín TQ, extangential, cyclic, trapezoid [32]
135 2025 Dalcín TQ, extangential, equidiagonal, trapezoid [32]
136 2025 Dalcín TQ, extangential, cyclic, equidiagonal [32]
137 2025 Dalcín TQ, ETQ, equidiagonal, semidiagonal [32]
138 2025 Dalcín TQ, extangential, cyclic, semidiagonal [32]
139 2025 Josefsson Cyclic Q with K = r2a + r2b + r2c + r2d [32]
140 2025 Josefsson Tangential Q with α = β = γ = δ [32]
141 2025 Josefsson Tangential Q with e = f = g = h [32]
142 2025 Josefsson Tangential Q with AI = BI = CI = DI [32]
143 2025 Josefsson Tangential Q with r = 1

2

4
√
abcd [32]

144 2025 Josefsson TQ w K = 1
2
(AI2 +BI2 + CI2 +DI2) [32]

145 2025 Josefsson BQ with
√
a+

√
b+

√
c+

√
d = 4

√
2r [32]

146 2025 Dalcín Q w a = b = c = d & a′ = b′ = c′ = d′ [32]
147 2025 Josefsson Q with K = a2 = b2 = c2 = d2 [32]
148 2025 Dalcín Q with K = 1

2
(a′2 + b′2 + c′2 + d′2) [32]

149 2025 Josefsson Q with K = R2
1 +R2

2 +R2
3 +R2

4 [32]
150 2025 Josefsson Q with K = 1

2
(m2 + n2 + v2) [32]

Table 4. Characterizations of squares
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