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The Relationship between a Convex Quadrilateral’s

Semi-Excircles and Diagonals

THOMAS E. COOPER

Abstract. In this article, the author generalizes a result about the ratios
of the areas of the pairs of triangles created by the diagonals of a tangen-
tial quadrilateral to a more general result for all convex quadrilaterals. The
result is a theorem establishing a relationship between the areas of the tri-
angles formed by a diagonal of a convex quadrilateral and the lengths of the
segments formed by the points of tangency with semi-excircles.

1. Introduction

In his exploration of a Nagel line for a tangential quadrilateral (i.e., a
quadrilateral that has an incircle tangent to all four sides), Myakishev [4]
references a result found in the notes of Yiu [5]. While proving another
property for tangential quadrilaterals, Yiu proves the following result.

Theorem 1.1. Let ABCD be a tangential quadrilateral, and let W , X, Y ,
and Z be the points of tangency of the incircle with sides AD, AB, BC, and
CD, respectively. Let P be the intersection of the diagonals. Then

∆BCD

∆ABD
=

PC

PA
=

Y C

WA

and

∆ACD

∆ABC
=

PD

PB
=

ZD

XB
.

Yiu [5] provides a short proof relying on the fact that the chords formed
by the opposite points of tangency with the incircle intersect each other at
the intersection of the diagonals (see Figure 1).
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Figure 1

2. A Theorem for Convex Quadrilaterals

While exploring convex quadrilaterals and their semi-excircles, the author
discovered a relationship similar to the one in Theorem 1.1 that holds for
all convex quadrilaterals. Since the term excircle is typically reserved for
a circle that is tangent to all four of the lines containing the sides of a
quadrilateral, we will use the term semi-excircle coined by Gemawati et al
[1] for a circle that is externally tangent to the side of a quadrilateral and
the extensions of the two adjacent sides. While only certain quadrilaterals
have an excircle [2], all convex quadrilaterals have four semi-excircles.

Although Myakishev [4] never explicity mentions semi-excircles, he uses
the four isotomic conjugates of the points of tangency with the incircle of
a tangential quadrilateral to define a Nagel point. In fact, the isotomic
conjugate of a point of tangency of the side of a tangential quadrilateral
with the incircle is the point of tangency with that side’s semi-excircle for
the same reason that a triangle’s Nagel point is the isotomic conjugate of its
Gergonne point [3]. Given that fact, Theorem 1.1 can be viewed as a special
case of a more general theorem for convex quadrilaterals that we will state
and prove after proving a few lemmas.

Lemma 2.1. Let ABCD be a convex quadrilateral. Let the diagonals in-
tersect at point P , and let the four semi-excircles intersect sides AD, AB,
BC, and CD at points I, J , K, and L, respectively, then

AI ·DL · CK ·BJ

AJ ·DI · CL ·BK
= 1.

Proof. Let O1, O2, O3, and O4 be the centers of the semi-excircles off sides
AD, AB, BC, and CD, respectively. Let ri be the radius of the semi-excircle
with center Oi. Label the other points of tangency of the semi-excircles with
the extended sides T1 through T8 as in Figure 2. Note that the vertices
of the quadrilateral, the centers of the semi-excircles, and the 12 points of
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tangency form four pairs of similar kites. From these similar kites, we have
the following proportions:

AI

AJ
=

r1
r2
,
DL

DI
=

r4
r1
,
CK

CL
=

r3
r4
, and

BJ

BK
=

r2
r3
.

The lemma follows directly from these proportions.

Figure 2

Lemma 2.2. Let ABCD be a trapezoid with
←→
AB ∥

←→
CD. Let the four semi-

excircles intersect sides AD, AB, BC, and CD at points I, J , K, and L,
respectively, then

CL

DL
=

AJ

BJ
=

AI

BK

Proof. Label the centers of the semi-excircles, the points of tangency, and
the radii of the semi-excircles as in the proof of Lemma 2.1 and Figure 2.
Additionally, label the intersections of the exterior angle bisectors at A, B,
C, andD with the opposite parallel sides as E1, E2, E3, and E4, respectively.

Since
←→
AB ∥

←→
CD, ∠E1DO1

∼= ∠AE2O1. Using the angle bisectors, ∠E1DO1
∼=

∠IDO1 and ∠O1AD ∼= ∠O1AE2. So, ∆AO1D ∼ ∆AO1E2. Therefore,
∠AO1D and ∠AO1E2 are right angles, being congruent and supplemen-
tary. By a similar argument, ∆BO3C is a right triangle. Thus, we have the
following sets of similar triangles:

∆AJO2 ∼ ∆AIO1 ∼ ∆O1ID ∼ ∆O4LD
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and

∆BJO2 ∼ ∆BKO3 ∼ ∆O3KC ∼ ∆O4LC

Therefore,
r2
AJ

=
DL

r4
and

BJ

r2
=

r4
CL

,

which implies
CL

DL
=

AJ

BJ
.

As noted in the proof of Lemma 2.1,

AI

AJ
=

r1
r2

and
BJ

BK
=

r2
r3
.

Since ABCD is a trapezoid, r1 = r3 and thus,

AJ

BJ
=

AI

BK
.

Lemma 2.3. Let ABCD be a trapezoid with
←→
AB ∥

←→
CD. Let the diagonals

intersect at point P, and let the four semi-excircles intersect sides AD, AB,
BC, and CD at points I, J , K, and L, respectively, then

|∆ACD|
|∆ABC|

=
DP

BP
=

AI ·DL

AJ ·BK
=

CL ·DI

BJ · CK

and
|∆BCD|
|∆ABD|

=
CP

AP
=

DL · CK

DI ·AJ
=

BK · CL

AI ·BJ
.

Proof. The last equality in each of these sets follows from Lemma 2.1 for
any convex quadrilateral. The equality of the ratio of the areas and the ratio
of the segments of the diagonal is well known and straightforward to show
with similar triangles for any convex quadrilateral.

Let R be the foot of the altitude from D to AC, and let S be the foot of
the altitude from B to AC. Then, triangles ∆DRP and ∆BSP are similar
with the congruent vertical angles and congruent right angles. Thus,

|∆ACD|
|∆ABC|

=
1
2AC ·DR
1
2AC ·BS

=
DR

BS
=

DP

BP
.

By a similar argument,
|∆BCD|
|∆ABD|

=
CP

AP
.

To prove the remaining equality in each of the two sets, label the centers of
the semi-excircles, points of tangency, radii of the semi-excircles, and other
intersections as in the proof of Lemma 2.2 and shown in Figure 2.

We need to show that the segment LJ is concurrent with the diagonals
AC and BD. Let LJ intersect AC and BD at points X and Y , respectively.

Since
←→
AB ∥

←→
CD, ∆CLX ∼ ∆AJX and ∆DLY ∼ ∆BJY . Thus,

CL

AJ
=

LX

JX
and

DL

BJ
=

LY

JY
.
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So, by Lemma 2.2,
LX

JX
=

LY

JY
,

and it must be that X = Y = P .
Also by Lemma 2.2,

AI

AJ
=

BK

BJ
.

So,
AI

AJ ·BK
=

1

BJ
=⇒ AI ·DL

AJ ·BK
=

DL

BJ
.

Since ∆DLP ∼ ∆BJP ,
DL

BJ
=

DP

BP
,

and we have the desired result,

DP

BP
=

AI ·DL

AJ ·BK
.

Similarly, since ∆CLP ∼ ∆AJP implies that

CP

AP
=

CL

AJ
,

we have

AI

AJ
=

BK

BJ
=⇒ 1

AJ
=

BK

AI ·BJ

=⇒ CL

AJ
=

BK · CL

AI ·BJ

=⇒ CP

AP
=

BK · CL

AI ·BJ
.

With Lemma 2.3 handling the trapezoid case, we now generalize the re-
sult to all convex quadrilaterals and provide an analytic proof for the non-
trapezoid cases.

Theorem 2.1. Let ABCD be a convex quadrilateral. Let the diagonals
intersect at point P , and let the four semi-excircles intersect sides AD, AB,
BC, and CD at points I, J , K, and L, respectively, then

|∆ACD|
|∆ABC|

=
DP

BP
=

AI ·DL

AJ ·BK
=

CL ·DI

BJ · CK

and
|∆BCD|
|∆ABD|

=
CP

AP
=

DL · CK

DI ·AJ
=

BK · CL

AI ·BJ
.

Proof. The first and last equality in each of these sets has already been
addressed in the proof of Lemma 2.3.

Assign coordinates so that A = (0, 0), B = (1, 0), C = (c, d), and
D = (a, b) with b and d positive. Then, using vectors,

|∆ADC|
|∆ABC|

=
bc− ad

d
and

|∆BDC|
|∆ABD|

=
bc− ad+ d− b

b
.
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The exterior angle bisector at A has equation

y =
b

a−AD
x,

and the exterior angle bisector at B has equation

y =
d

BC + c− 1
x− d

BC + c− 1
.

Note that these bisectors cannot be vertical. AD is a hypotenuse of a
right triangle with leg |a|, and BC is a hypotenuse of a right triangle with
leg |c− 1|. So a−AD < 0 and BC + c− 1 > 0.

Equating these bisectors, we find that the semi-excenter off side AB has
coordinates(

d(a−AD)

d(a−AD)− b(c− 1 +BC)
,

db

d(a−AD)− b(c− 1 +BC)

)
Thus,

J =

(
d(a−AD)

d(a−AD)− b(c− 1 +BC)
, 0

)
,

and

AJ =
d(a−AD)

d(a−AD)− b(c− 1 +BC)
.

The exterior angle bisector at D has equation

y =
(d− b+ bCD

AD )x+ bc− ad

c− a+ aCD
AD

unless AD(c− a) + aCD = 0, in which case, the bisector is x = a.
In each case, the intersection of the exterior angle bisector at D with the

exterior angle bisector at A gives the semi-excenter off side AD as(
(a−AD)(bc− ad)

−d(a−AD) + b(c+ CD −AD)
,

b(bc− ad)

−d(a−AD) + b(c+ CD −AD)

)
and the point of tangency with the x-axis as(

(a−AD)(bc− ad)

−d(a−AD) + b(c+ CD −AD)
, 0

)
.

Note that

(a−AD)(bc− ad)

−d(a−AD) + b(c+ CD −AD)
− a =

b(AD(c− a) + aCD)

−d(a−AD) + b(c+ CD −AD)
,

which is 0 if and only if AD(c− a) + aCD = 0.
Using the common tangents from A, it follows that

AI =
(a−AD)(ad− bc)

−d(a−AD) + b(c+ CD −AD)
.

Considering possible division by zero, −d(a−AD)+ b(c+CD−AD) = 0
only when bc− ad = 0, b = d, or b = 0. For a convex quadrilateral, b cannot
be zero, nor can bc− ad since the later is twice the area of ∆ACD. If b = d,
we have the trapezoid case which is covered by Lemma 2.3.
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The exterior angle bisector at C has equation

y =
(BC(d− b)− dCD)x+ d(−aBC + CD) + bcBC

BC(c− a) + CD(1− c)

unless BC(c− a) + CD(1− c) = 0, in which case it is x = c.
In each case, intersecting this line with the exterior angle bisector at B

gives a semi-excenter off BC with x- cooridnate

x =
−ad(c+ CB) + bc(c− 1 + CB) + d(c+ CD)

d(1− a+ CD − CB)− b(1− c− CB)
.

Note that

−ad(c+ CB) + bc(c− 1 + CB) + d(c+ CD)

d(1− a+ CD − CB)− b(1− c− CB)
− c =

d(BC(c− a) + CD(1− c))

d(1− a−BC + CD)− b(1− c+BC)
,

and this is zero only when BC(c− a) + CD(1− c) = 0.
So the point of tangency with the x-axis is(

−ad(c+ CB) + bc(c− 1 + CB) + d(c+ CD)

d(1− a+ CD − CB)− b(1− c− CB)
, 0

)
.

It follows that

BK =
−ad(c+ CB) + bc(c− 1 + CB) + d(c+ CD)

d(1− a+ CD − CB)− b(1− c− CB)
− 1

=
(c− 1 + CB)(d(1− a) + b(c− 1))

d(1− a+ CD − CB) + b(c− 1 + CB)
.

Again, we must consider possible division by zero. The denominator
d(1−a+CD−BC)− b(1− c−BC) is zero only if bc−ad+d− b = 0, d = 0,
or d = b. For the convex quadrilateral, d ̸= 0 and bc− ad+ d− b ̸= 0 since
the later is twice the area of ∆BCD. As with the exterior angle bisector at
D, the case where b = d is handled by Lemma 2.3.

Intersecting the exterior angle bisectors at C and D, we find the semi-
excenter off side CD to be (x1, y1) where

x1 =
cAD (ad− bc+ b− d) + aBC (ad− bc)− adCD

AD (ad− bc+ b− d) + (BC − CD)(ad− bc)− bCD

and

y1 =
dAD (ad− bc+ b− d) + bBC(ad− bc)− bdCD

AD (ad− bc+ b− d) + (BC − CD)(ad− bc)− bCD
.

Note that if the exterior angle bisector at C is vertical, it is x = c.

x1 − c =
(BC(c− a) + CD(1− c))(ad− bc)

AD(ad− bc+ b− d) + (BC − CD)(ad− bc)− b(CD)
,

which is 0 when the exterior angle bisector at C is vertical.
If the exterior angle bisector at D is vertical, it is x = a.

x1 − a =
(AD(c− a) + aCD)(ad− bc+ b− d)

AD(ad− bc+ b− d) + (BC − CD)(ad− bc)− b(CD)
,

which is 0 when the exterior angle bisector at D is vertical.
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When is the denominator 0? It arises from the differences in the slopes
of the exterior angle bisectors at C and D.

− CD (AD(ad− bc+ b− d) + (BC − CD)(ad− bc)− b(CD)) =

(AD(d− b) + bCD) (BC(c− a) + CD(1− c))−
(BC(d− b)− dCD) (AD(c− a) + aCD)

Note that this expression will only be zero if the slopes of the two exterior
angle bisectors are the same, which is impossible, or if one is horizontal and
the other is vertical. Although the signs of the variables will vary, both
AD(d − b) + bCD = 0 and AD(c − a) + aCD = 0 imply bc − ad = 0 or
bc+ad = 2ab. But, we know bc−ad > 0. So, the exterior angle bisector at C
is only horizontal or vertical if bc+ad = 2ab. Similarly, BC(d−b)−dCD = 0
and BC(c− a)+CD(1− c) = 0 both imply bc− ad+ d− b = 0 or bc+ ad =
2cd+ b− d. Since bc− ad+ d− b > 0, the exterior angle bisector at D can
only be horizontal or vertical if bc+ ad = 2cd+ b− d.

If bc+ ad = 2ab and bc+ ad = 2cd+ b− d, either b = d or b = d(2c−1)
2(c−1) . In

the later case, the slope of
←→
AD and the slope of

←→
CD are both d

c−1 . Thus, the
denominator of x1 can only vanish if the convex quadrilateral is a trapezoid.

Therefore, the formulas for x1 and x2 hold as long as the quadrilateral is
not a trapezoid, and the trapezoid case is proven with Lemma 2.3.

The perpendicular line to CD through (x1.y1) is

y =
a− c

d− b
(x− x1) + y1,

which intersects CD at (x2, y2) where the coordinates are

x2 =
cAD · CD(u+ t) + auBC · CD + tu2 − ad(a− c)2 − bct2

CD(u(AD +BC − CD) + tAD − bCD)

and

y2 =
d− b

c− a
(x2 − a) + b,

where u = ad− bc and t = b− d.

Computing and simplifying (a− x2)
2 + (b− y2)

2 gives

DL2 =
(u+ t)2(CD ·AD − a2 + ac− bt)2

(u(AD +BC − CD) + tAD − bCD)2
.

Therefore,

DL =
(ad− bc+ b− d)(CD ·AD − a2 + ac− b(b− d))

(ad− bc)(AD +BC − CD) + (b− d)AD − bCD
.

Now that we have coordinates, we need to show that

AI ·DL

AJ ·BK
=

bc− ad

d
.
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(
AI ·DL

AJ ·BK

)(
d

bc− ad

)
=

(−AD · CD + b2 − bd+ a(a− c))(bm+ d(a−AD))(bm+ d(a+ n− 1))

m(b(−c+AD − CD) + d(a−AD))(b((−c+ 1)AD − nc− CD) + d((a− 1)AD + an))

where m = 1− c−BC and n = BC − CD.

Thus, we need to show that this fraction is equal to 1. This is a tedious
exercise that can be verified easily with a CAS.

Expanding the numerator and denominator while replacing AD2, BC2, and
CD2, with a2 + b2, (c− 1)2 + d2, and (a− c)2 + (b− d)2, respectively shows
that they are both equal to the following:

BC(2a2b2 − 2a2bd− 2ab2c+ 2abcd+ 2b4 − 4b3d+ 2b2d2)− 2b4c2 + a2c2d2

+ 3b3c2d+ 2ab2c+ 2ab2c3 − 2a2b2c2 + 3ab2d2 − 4ab2c2 − a2cd2 − a3cd2+

AD ·BC(a2d2 − abcd− acd2 + bc2d) +AD(a2cd2 − abc2d+ abd3 − ac2d2

− ad4 − b2cd2 + bc3d+ bcd3)− 2a2b2 +AD ·BC · CD(−2abd+ ad2 + 2b2c

− bcd− 2b2 + 2bd)− abcd3 − abc3d− 2b4 + a2d4 + CD(−a2cd2 + abc2d

− abd3 + b2cd2 + a2d2 − abcd)− a2bcd− 2ab3d+ 4a2b2c− 2a3bd− 3ab2cd2

+ 2ab3cd− a2bc2d− 2b2d2 + 4b3d+AD · CD(−2abcd+ acd2 + 2b2c2 − bc2d

+ 2abd− ad2 − 4b2c+ 3bcd+ 2b2 − 2bd) + 3abc2d− 2abcd+ a3d2 + 2a3bcd

+BC(2a3bd− a3d2 − 2a2b2c− a2bcd+ a2cd2 + 2ab3d+ 2ab2c2 − 3ab2d2

− abc2d+ abd3 − 2b4c+ 3b3cd− b2cd2) + 2a2bd− 7b3cd− abd3 + 3b2cd2

+ 4b4c+AD(−a2d2 + abcd+ acd2 − bc2d) +BC · CD(−a2d2 + abcd)

Therefore,

|∆ADC|
|∆ABC|

=
AI ·DL

AJ ·BK
.

Since the choice to place A = (0, 0) and B = (1, 0) was arbitrary, we have
proven the relationship between the areas of the pair of triangles formed
by one diagonal and the lengths of the segments formed by the points of
tangency of the semi-excircles. Thus, it is also true that

|∆BCD|
|∆ABD|

=
CP

AP
=

DL · CK

DI ·AJ
=

BK · CL

AI ·BJ
.
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Figure 3
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