
INTERNATIONAL JOURNAL OF GEOMETRY
Vol. 14 (2025), No. 1, 44 - 49

GOLDEN SECTIONS IN CONTEMPORARY MUSIC
AND IN THE EUCLIDEAN LINE SEGMENT

DIMITRIS M. CHRISTODOULOU and ATHANASIOS ZERVAS

Abstract. An equal temperament is a musical tuning system that approximates
just intervals within an octave in order to suppress some beat acoustic frequencies
known to be dissonant to the human ear. Division of an octave into n segments
always results in n frequencies that form a geometric sequence with common ratio
rn = 21/n. This ratio is a golden ratio for any choice of integer n ≥ 2. In western
music, the widely used golden ratio of r12 = 21/12 ≃ 1.059463 has heretofore
gone unappreciated because of the unfortunate widespread perception that the only
golden ratio is the Euclidean φ = (1 +

√
5)/2 ≃ 1.618034 that results from the

section of a line segment into only two noncongruent parts. Confusion has also
been compounded by lack of distinction between golden ratios of lengths versus
those of discrete physical values (such as frequencies in music). In this work, we
clarify these issues, and we extend the n = 2 Euclidean golden section to n ≥ 3
partitions.

1. Introduction

The dimensionless number φ = (1 +
√

5)/2 ≃ 1.618034 [24], the positive root
of the unitless equation

(1)
1
φ
= φ − 1 ,

was termed the ‘golden ratio’ [16] in the early 19th century, when it captivated the
imagination of scientists and laymen alike [3, 12, 13, 18, 21]. In the next 200 years,
the golden ratio was “found” to appear virtually everywhere in nature, music, the
arts, architecture, the sciences, the pseudosciences, and the human body itself [13],
although many such accounts were eventually discredited, or altogether disproven,
or found to originate from loose rational approximations of φ [9, 10, 13, 18, 19, 21,
26] or its conjugate (‘silver’) ratio φ⋆ ≡ φ−1 ≃ 0.618034 [25].

In recent times, the controversy over the appearance of φ continues unabated
(e.g., [1, 4, 7, 19, 29]). With the notable exception of closed elliptical orbits in
Newtonian and Hookean potentials [4], an academic exercise in which each set of
orbits includes precisely one exact golden ellipse, other realizations of φ are rough
approximations, thus manifestly open to debate. We highlight two examples:
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(a) The axisymmetric dumbbell shapes of red blood cells [29]:
The spontaneous curvature introduced to a shape model of a biological
vesicle, properly normalized, was predicted to have a value of −φ [17].
A fit to the data of a new analytic model in pressure equilibrium with its
surroundings and with zero tensile stress [15] produced a value of −1.67
[29]. So, it seems that favoring −φ rather than −5/3 may be debatable.

(b) A conspicuous key change in Lady Gaga’s song Perfect Illusion [7, 22]:
It has been claimed that the key changes 111 seconds into the song whose
duration is 179 seconds. Then, 179/111 = 1.6126 with a deviation of only
−0.335% from φ—one of the best rational approximations ever reported.
The writers of the song have not declared that the timing was influenced
by the golden ratio φ, so this match may be a coincidence.

In musical compositions, the golden ratio has been professed to appear (either
“naturally” or by deliberate design) when counting and timing bars, notes within
bars, and systemic tones and semitones [1, 10, 12, 19, 26]. Such investigations have
unavoidably considered fundamentally different sets or groups of physical intervals
(i.e., continuous lengths) or acoustic frequencies (i.e., discrete values) without ever
making a distinction between the groups. This state of numerological confusion
occurred for two reasons: (1) an underlying assumption (logarithmic arrangement
of values) common to all studied groups; and (2) the naive belief that the resulting
geometric sequencies are beautiful only if they exhibit the golden ratio φ (or φ⋆).

The root cause of this problem can be traced to the Euclidean mean-extreme
theorems [8, 11] that produced φ in the first place; but to be fair, our ancestors bare
no responsibility for the contemporary fascination regarding φ that has transformed
its searches to purely numerological endeavors. It is beyond belief that mathemati-
cians did not realize that the theorems of Euclid dealt with the simplest asymmetric
section of a line segment, the one described by a geometric sequence of only two
terms, viz.{1, φ} or, equivalently, {1−φ⋆, φ⋆}; and more so, that they did not extend
the Euclidean problem to more than two sections, not even after they witnessed the
emergence and widespread adoption of the 12 tone equal temperament (12 TET)
tuning system in western music (e.g., [3, 6, 18, 20, 21, 26, 28]).

The popular 12 TET system divides the octave into n = 12 frequencies, but there
have been other scales with up to n = 96 logarithmic intervals and down to just two
intervals (the ditonic scale, generally confined to prehistoric music) [14, 20, 28];
whereas the analogous Euclidean program of subdividing a given length scale was
never advanced past its original inception of n = 2 logarithmic intervals. For the
reasons that have just become apparent, we proceed as follows:

• In Section 2, we use geometric sequences with rn > 1 to consolidate the
mathematical properties of n TET sound tuning frequencies spread over a
harmonic interval of one or more octaves, where n ≥ 2 is a positive integer.

• In Section 3, we solve the analogous Euclidean problem with rn < 1, where
n ≥ 2 is the number of logarithmically-spaced lengths of the partitions of
a given line segment of unit length.

In our view, the common ratios rn of the geometric progressions are golden in both
cases. In particular, the controversial Euclidean ratio r2 = φ

⋆ assumes its proper
place in the world as the upper limit of golden ratios rn of lengths in flat space,
where rn ∈ (1/2, φ⋆] for integers n ∈ (+∞, 2].
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2. Musical Frequencies in an Octave

One octave is the frequency interval between a note and its nearest harmonic
(e.g., [6, 19, 20, 26]). In musical TET theory, the octave is generally divided into
n frequencies whose consecutive ratios are equal. The equal ratios across such a
sequence pn dictate that it is geometric in nature [23], thus it can be represented by

(2) pn = f ·
{
(rn)i
} i=n

i=0
,

where f is the fundamental frequency and rn > 1 is the common ratio of a sequence
with n + 1 members. The octave terminates at the first harmonic of frequency 2 f ,
thus f (rn)n = 2 f , and the common ratio then is

(3) rn = 21/n ,

a result that is very well-known in musical theory as well as in mathematical theory.
In western musical practice, the chromatic scale of n = 12 semitones has been
widely adopted, so that r12 = 21/12 ≃ 1.059463 [20]. This is the golden ratio of
the chosen frequencies in the immensely popular 12 TET chromatic scale of our
times, although the system dates back to Johann Sebastian Bach (1685–1750) and
his contemporaries [2, 5].

Taking a step further, a number of probing musicians have experimented with
musical intervals across two octaves, in which case the terminal frequency becomes
3 f and the golden ratios then are rn = 31/n. Thus, we establish the well-known
property of n logarithmically-spaced frequencies spread out over V octaves that
determine a generalized golden ratio of rn = V1/n.

For n = 2 frequencies, equation (3) gives r2=
√

2 and the geometric progression
is p2 = f ·

{
1,
√

2, 2
}
. This modern ditonic scale [14, 20, 28] may be taken as

an indication that primitive musicians may have been empirically aware of the
effect of

√
2 on sounds, but, at the same time, they were certainly unaware of φ

as a number [9, 13]. Over the past 200 years, geometers were also unaware of the
simple n = 2 musical scale and its specious disagreement with mean-extreme ratios
and φ. This is most unfortunate; realizing this superficial discrepancy would have
revealed earlier the obvious fundamental difference between mean-extreme ratios
of Euclidean lengths versus the ratios of physical quantities such as frequencies or
times (i.e., continuous spatial intervals versus discrete temporal stamps).

3. Partitions of a Euclidean Line Segment

In trying to catch up with musical n TET theory, we solve now the long overdue
Euclidean problem of partitioning a given segment to n ≥ 2 asymmetric sections,
such that the ratios of adjacent lengths are the same. Sidestepping tradition [8, 11],
we set to 1 the length of the given segment, which implies that the Euclidean n = 2
case produces a partition of the golden ratio conjugate length φ⋆ ≡ φ−1 ≃ 0.618034
[25] and the smaller length 1 − φ⋆ ≃ 0.381966. The golden ratio conjugate φ⋆ can
be obtained from equation (1) above by the transformation φ→ 1/φ⋆, and then φ⋆

turns out to be the positive root of the unitless equation

(4)
1
φ⋆
= φ⋆ + 1 .
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In the general case of n logarithmic sections of a unit length, the lengths of the
partitions establish a geometric progression of the form pn =

{
x, x2, x3, · · · , xn

}
or

(5) pn =
{
xi
} i=n

i=1
(where x < 1) ,

with sum

(6) Sn =

n∑
i=1

xi = x + x2 + x3 + · · · + xn ≡ 1 .

This is a geometric series of n terms with leading term x and common ratio also x.
The resulting polynomial equation can be solved analytically by Mathematica [27]
for n = 2, 3, and 4. The positive real roots x ≃ 0.6180, 0.5437, 0.5188, 0.5087, · · ·
show a rapid decline with increasing n toward the lower limiting value of x = 1/2.

Alternatively, applying the summation property of geometric sequences ([23],
§ 10.2) to the last equality of equation (6), we obtain the proportion

(7)
1
x
=

1 − xn

1 − x
.

In the Euclidean case of n = 2 partitions, we recover equation (4) for x = φ⋆.
Since the common ratio x , 1, then equation (7) also represents a polynomial

equation of degree n + 1, viz.

(8) xn+1 − 2x + 1 = 0 ,

in which the additional real root x = 1 is rejected. We recognize now that, for
n = 2, the golden ratio conjugate φ⋆ is also a root of the depressed cubic equation
x3 − 2x + 1 = 0 that can be solved analytically (roots x = φ⋆,−φ, 1).

Another interesting property of all sections with n ≥ 2 partitions is derived as
follows: It is a well-known property of equation (4) that the golden ratio φ = 1/φ⋆

can be obtained by adding 1 to the root φ⋆, i.e., φ = φ⋆ + 1 [13]. Much less known
(if at all) is the property implied by equations (8) for the reciprocal ratios 1/x that

(9)
1
x
= 2 − xn .

In the particular case of n = 2, the Euclidean golden ratio φ can then be obtained
from the identity

(10) φ = 2 −
(
φ⋆
)2
.

For comparison purposes, the converse relation reads φ⋆ = 1/(φ2 − 1).
Finally, we note that equation (8) with n = 2 produces slightly different cubic

polynomial equations for φ and φ⋆: as written above, it shows that

(11)
(
φ⋆
)3
− 2φ⋆ + 1 = 0 ,

whereas its transformation shows that

(12) φ3 − 2φ2 + 1 = 0 .
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