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EXTENSIVE COMPILATION OF

CHARACTERIZATIONS OF RECTANGLES

MARTIN JOSEFSSON

Abstract. In this paper we study 84 characterizations of rectangles. A
quarter of these are new sufficient conditions, as far as we know.

1. Introduction

There is no doubt the rectangle is the type of quadrilateral we experience
most in our daily life. Just look around you in your home. You see rectangles
everywhere. They are the shape of most floors, walls, doors, tables, windows,
book shelves, picture frames, books, television screens, and so on. With its
four right angles, it’s one of the simplest quadrilaterals and one of the most
studied in early math classes.

Most basic math books that include a section on rectangles list a few (usu-
ally no more than five) characterizations of rectangles, but that is it. As we
shall see in this paper, there are many more, and about half of them are very
basic, but they have been found scattered in many different sources. This
is the first time, as far as we know, anyone has attempted to collect these
in one place. At the time of writing this paper, even the English Wikipedia
page lists only eight characterizations of rectangles, and the extensive ency-
clopedia MathWorld, to our surprise, lists none.

There are several possible definitions of a rectangle in use in different
textbooks, including that it is a:

• Parallelogram with at least one right angle
• Parallelogram with four right angles
• Quadrilateral with four right angles
• Quadrilateral with four equal angles

All of these are equally valid. Having to choose one as the definition we
will use, we have chosen the fourth of these as it is the most general and
the one that is best suited when studying duality between different types of
quadrilaterals (see [34]).
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Hence, the basis for our study of characterizations of rectangles is the
following:

Definition 1.1. A quadrilateral is a rectangle if and only if it has four equal
angles.

Another way to state this is that a rectangle is the only equiangular
quadrilateral. That this definition is equivalent to the third in the list (the
one with four right angles instead) is a direct consequence of the fact that
the angle sum of a quadrilateral is 360◦.

When proving characterizations, we have to prove they are both necessary
and sufficient conditions. Necessary conditions are the properties that a
certain object have, and these are in most math books studied in greater
detail than sufficient conditions. Just think about the rectangle. How many
properties can you list, and how many of these do you know to also be
sufficient conditions? Chances are big the first category include many more
items than the second.

Since properties of rectangles are so well known, we list the most basic
here that are relevant for this study and expect the reader to be familiar
with these and how they are proved. For that reason, we will mainly focus
on proving the sufficient conditions of rectangles. If any of these are not
known necessary conditions for the reader, we set it as an exercise to prove
them.

Here are some of the basic properties of a rectangle that are well-known
or easy to confirm:

• All vertex angles are right angles
• Opposite sides are parallel
• Opposite sides have equal length
• The diagonals have equal length
• The diagonals divide each other in four equal parts
• It has area K = ab where a and b are two adjacent sides
• The bimedians are axes of symmetry
• It is a parallelogram
• It is an isosceles trapezoid
• It is cyclic
• The diagonals are diameters of the circumcircle
• The diagonals intersect at the circumcenter
• The bimedians intersect at the circumcenter

A bimedian is a line segment connecting the midpoints of two opposite sides.
A circumcircle is a circle that goes through all four vertices; its center is the
circumcenter.

We have recently studied characterizations of two other basic types of
quadrilaterals: the square [37] and the parallelogram [38], [39]. The former
is a special case of the rectangle while the latter is a generalization. For that
reason, it will not be a surprise that many characterizations of rectangles
are formulated as restrictions on parallelograms, which is the subject of the
next section.
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2. Parallelograms

Here we study no less than 19 conditions for when a parallelogram is a
rectangle. The first three of these were stated in the old books [47], [54],
and [63] respectively. (d) is also very fundamental, but we have been unable
to find an old reference for it, while (e) and (f) are from the old books [56]
and [62] respectively. To prove (g), (j) and (k) were exercises in [11, p. 53],
[58, p. 42], and [58, p. 38] respectively. The sufficient condition in (l) was
proved in the old book [19], and (r) was discussed at [45]. Condition (s)
and its proof are cited from a 2004 Regional Mathematics Competition in
Romania for Grade 11 [7, pp. 103–104]; it was proposed by M. Becheanu.

Theorem 2.1. A parallelogram ABCD with adjacent sides a and b, bime-
dians m and n, diagonals p and q, and diagonal intersection P satisfies any
one of:

(a) it has four right angles
(b) it has four equal angles
(c) it has at least one right angle
(d) it has two adjacent equal angles
(e) it is cyclic
(f) it has diagonals of equal length
(g) triangles ABD and DCA are congruent
(h) one bimedian is perpendicular to a side
(i) it has perpendicular bimedians
(j) the midpoints of the sides are the vertices of a rhombus
(k) AM = BM , where M is the midpoint of CD
(l) it has maximum area for a given base and perimeter

(m) it has area K = ab
(n) it has area K = mn
(o) a2 + b2 = pq
(p) m2 + n2 = pq
(q) a2 + b2 = e2, where e is the length of any diagonal
(r)

(
AQ
QS

)2
+

(
BC
QR

)2
= 1, where a line through P intersects AB, CD,

AD at Q, R, S respectively
(s) EF = EG and a ̸= b, where E is the foot of the perpendicular from

D to AC and the line through E perpendicular to BD intersects DC
in F and AD in G

if and only if it’s a rectangle.

Proof. (a), (b), (c) These are trivially equivalent to the definition.
(d) Two adjacent angles in a parallelogram ABCD are supplementary, so

we get {
∠A+ ∠B = 180◦

∠A = ∠B
⇔

{
∠A = 90◦

∠B = 90◦

and ABCD is a rectangle according to (c).
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(e) Two opposite angles in a cyclic quadrilateral ABCD are supplemen-
tary, so in a cyclic parallelogram we get{

∠A+ ∠C = 180◦

∠A = ∠C
⇔

{
∠A = 90◦

∠C = 90◦

meaning that ABCD is a rectangle according to (c).
(f) We directly get that triangles ABD and DCA are congruent (SSS),

which is condition (g), and since vertex angles at A and D are both equal and
supplementary, both (f) and (g) imply that ABCD is a rectangle according
to (d).

(h) The bimedians in a parallelogram divide it into four congruent smaller
parallelograms (see Figure 1), so if one bimedian is perpendicular to a side,
then the parallelogram has a right vertex angle, making it a rectangle ac-
cording to (c).

Figure 1. The two bimedians

(i) The bimedians in a parallelogram are parallel to the sides (see Fig-
ure 1), so this condition is a direct consequence of (c).

(j) It is well-known that the midpoints of the sides in any quadrilateral are
the vertices of Varignon’s parallelogram, with the bimedians as its diagonals.
A parallelogram is a rhombus if and only if its diagonals are perpendicular,
so this condition is a consequence of (i).

(k) When AM = BM , we directly get that triangles ADM and BCM
are congruent (SSS), see Figure 1, so ∠D = ∠C, making ABCD a rectangle
according to (d).

(l) If the perimeter L = 2a+ 2b is a constant, then the area satisfies
K = ab sinA = a

(
L
2 − a

)
sinA ≤ a

(
L
2 − a

)
where we have equality if and only if ∠A = 90◦, so ABCD is a rectangle
according to (c).

(m) We directly get for the area
K = ab sinA ≤ ab

where we have equality if and only if ∠A = 90◦, so ABCD is a rectangle
according to (c).

(n) In a parallelogram, the bimedians satisfy m = a and n = b, so this is
a direct consequence of (m).

(o) We have p2 + q2 = 2(a2 + b2) according to the parallelogram law (see
Figure 2), and applying the algebra rule (p− q)2 = p2 + q2 − 2pq, we get

2(a2 + b2) = (p− q)2 + 2pq ≤ 2pq
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where equality holds if and only if p = q, that is, only when the parallelogram
is a rectangle according to (f).

(p) In a parallelogram, the bimedians satisfy m = a and n = b, so this is
a direct consequence of (o).

(q) By the law of cosines, we have (see Figure 2)
p2 = a2 + b2 − 2ab cosB ⋛ a2 + b2

where equality holds if and only if ∠B = 90◦, so ABCD is a rectangle
according to (c). For the other diagonal we similarly have

q2 = a2 + b2 − 2ab cosA ⋚ a2 + b2

where equality holds if and only if ABCD is a rectangle.

Figure 2. The two diagonals

(r) Since AB is parallel to DC, triangles AQS and DRS are similar (see
Figure 3), so we get

BC

QR
=

AD

QR
=

AS

QS
.

Then (AQ
QS

)2
+

(BC

QR

)2
= 1 ⇔

(AQ
QS

)2
+
(AS
QS

)2
= 1

which in turn is equivalent to
AQ2 +AS2 = QS2

and this holds if and only if AB⊥AD according to the Pythagorean theorem
and its converse, which characterizes a rectangle according to (c).

Figure 3. Intersection points Q, R, S

(s) This is hardly a well-known property, so we prove both directions
of this characterization. When ABCD is a rectangle, DE and DH are
heights in the right triangles ADC and FDG respectively, where H is the
intersection of FG and BD. From similar triangles, we get ∠ADE = ∠ACD
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and ∠DGF = ∠HDC (see Figure 4). But in a rectangle, we also have
∠HDC = ∠ACD, so it follows that ∠GDE = ∠DGF . Then DE = GE
according to the isosceles triangle theorem. We also have ∠EDF = ∠EFD
since they are both complementary angles to GDE and DGF . It follows
that DE = FE, and we get FE = GE.

Figure 4. Parallel line segments AC and GL

Conversely, when ABCD is a parallelogram with FE = GE, let P be
the intersection of the diagonals. Also, let the line FP intersect AB in I,
and the line GI intersect BD in K and DC extended in L respectively (see
Figure 4). A property of parallelograms is that any line segment through
P connecting a pair of opposite sides is bisected by P (see Theorem 2.1 (d)
in [39]), so FP = PI. Together with FE = GE, this means that EP is
parallel to GI according to the intercept theorem applied in triangle FGI.
Hence the quadrilateral GECL is a trapezoid. A property of trapezoids is
that the midpoints of the bases and the intersection point of the legs are
three collinear points. This implies that K is the midpoint of GL.

Next we consider triangle FGL. Here E and K are the midpoints of GF
and GL respectively, so it follows that EK and FL are parallel. In triangle
GDK we know that GH and DE are heights, so E is its orthocenter and
EK is therefor perpendicular to GD and thus to AD. In triangle GFL,
E and K are the midpoints of GF and GL, so EK is parallel to FL and
thus to DC. We can finally conclude that DC and AD are perpendicular,
proving that ABCD is a rectangle according to (c). □

3. Various trapezoids

We use the inclusive definition for all quadrilaterals, so a trapezoid is
defined to be a quadrilateral with at least one pair of opposite parallel sides.
An isosceles trapezoid is defined to be a quadrilateral ABCD with two
pairs of distinct equal angles, for instance ∠A = ∠B and ∠C = ∠D (as
was done in [12, p. 30]). It’s easy to prove that this definition leads to a
symmetric trapezoid, which is called isosceles since it has a pair of equal
opposite sides.1 A rectangle is a special case of an isosceles trapezoid, with

1We can however not define it in terms of this pair of sides being equal, since then
parallelograms would also qualify when using inclusive definitions, and parallelograms are
not a special case of isosceles trapezoids but they are a special case of general trapezoids.
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the property of all four angles being equal. Any trapezoid has two pairs of
adjacent supplementary angles, and if at least one of these pairs is a pair of
right angles (for instance ∠A = ∠D = 90◦), then it’s called a right trapezoid.

In a quadrilateral ABCD with diagonals intersecting at P , we call the
segments AP , BP , CP , DP the semidiagonals as was done in [61] and [16].

Next we consider 11 conditions on isosceles trapezoids or right trapezoids
that characterize a rectangle. A few of these were discovered while preparing
to write this paper. Condition (b) is from [23], where it was formulated
differently. (d) and (g) are from [26, p. 123] and [28] respectively, while (h),
(i), and (j) were stated in [4, p. 162] but not proved there.
Theorem 3.1. A convex quadrilateral is:

(a) an isosceles trapezoid with a right angle
(b) an isosceles trapezoid with two opposite equal angles
(c) an isosceles trapezoid with equal bases
(d) an isosceles trapezoid and a parallelogram
(e) an isosceles trapezoid with two opposite equal semidiagonals
(f) an isosceles trapezoid with area K = ab, where a and b are the lengths

of the longest base and its legs respectively
(g) a trapezoid with two opposite right angles
(h) an isosceles right trapezoid
(i) a cyclic right trapezoid
(j) an equidiagonal right trapezoid
(k) a right trapezoid with perpendicular bimedians

if and only if it’s a rectangle.
Proof. (a) Any angle in an isosceles trapezoid has one adjacent equal angle
and one adjacent supplementary angle, so if one of these three angles is a
right angle, then all three of them are right angles. Hence, by the angle
sum, all four angles are right angles and thus equal, making it a rectangle
according to the definition.

(b) In an isosceles trapezoid, opposite angles are supplementary and since
it by definition has two pairs of adjacent equal angles, we directly get that
all four angles are right angles. Then it is a rectangle according to (a).

(c) Equal bases means that both pairs of opposite sides are equal, so it’s
a parallelogram. Then the angle argument in the proof of Theorem 2.1 (d)
shows that it’s a rectangle.

(d) Two adjacent angles in a parallelogram ABCD are supplementary
and in an isosceles trapezoid they are equal, so we get{

∠A+ ∠B = 180◦

∠A = ∠B
⇔

{
∠A = 90◦

∠B = 90◦

and ABCD is a rectangle according to Theorem 2.1 (c).
(e) In an isosceles trapezoid, the semidiagonals are pairwise equal: AP =

BP and CP = DP , so if also AP = CP , we get BP = AP = CP = DP .
Then it’s also a parallelogram and the conclusion follows from (d).

(f) In an isosceles trapezoid with bases a and c ≤ a, legs b, and height h
we have h ≤ b, so its area satisfies

K = 1
2(a+ c)h ≤ 1

2(a+ c)b ≤ 1
2(a+ a)b = ab
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where equality holds if and only if a⊥ b and a = c. Any one of these
conditions implies that it’s a rectangle according to (a) and (c).

(g) A trapezoid has two pairs of supplementary angles. If one angle from
each pair is a right angle, then all four angles are right angles and thus equal,
making it a rectangle by definition.

(h) In an isosceles right trapezoid, a typical case is
∠A = ∠B
∠C = ∠D
∠A = ∠D = 90◦

which directly yields that all four angles are right angles and thus equal,
making ABCD a rectangle by definition.

(i) In a cyclic right trapezoid, a typical case is
∠A+ ∠C = 180◦

∠B + ∠C = 180◦

∠A = ∠D = 90◦

and it follows that all four angles are equal, so ABCD a rectangle.

Figure 5. An equidiagonal right trapezoid

(j) Suppose ∠A = ∠D = 90◦. Then △ABD ∼= △DCA (RHS), so AB =
DC (see Figure 5). Next we get that △ABC ∼= △DCB (SSS), implying
∠B = ∠C, and since ∠B + ∠C = 180◦, it follows that ∠B = ∠C = 90◦.
Hence all four angles are equal, making ABCD a rectangle.

Figure 6. A right trapezoid with perpendicular bimedians

(k) Suppose ∠A = ∠D = 90◦. Together with the condition of perpendicu-
lar bimedians, we get the situation in Figure 6 with twelve right angles. Let
the bimedians be M1M3 and M2M4, intersecting at M . Then quadrilaterals
AM1MM4 and M1BM2M are congruent (SASAS), as are M4MM3D and
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MM2CM3 (SASAS). Hence all four angles of ABCD are equal, so it’s a rec-
tangle. (For a proof of the SASAS congruence theorem for quadrilaterals,
see [24, pp. 98–100]. An online resource for the relevant chapter is [25].) □

4. Angles and semidiagonals

In this section we will prove 18 sufficient conditions for when a quadri-
lateral ABCD is a rectangle that are expressed as angle relations and/or
in terms of the semidiagonals AP , BP , CP , DP where P is the diagonal
intersection. (a) and (c) are from [60] and [13] respectively according to
[57, pp. 94–95], while (b) was used by Euclid in his famous Elements to
define a rectangle. Conditions (d) and (f) are from [55, p. 123] and [44, p.
195] respectively, while (e) was a problem on the 2019 Iranian Geometry
Olympiad (Intermediate level, Problem 2, proposed by Morteza Saghafian)
according to [14]. Condition (g) is from [26, p. 123], (h) was stated in [27]
and to prove that it is a sufficient condition was given as an exercise in [24,
p. 114]. The rest were stated in [15], but only (r) was proved there.

Theorem 4.1. A convex quadrilateral ABCD with diagonal intersection P
satisfies any one of:

(a) it has four equal angles
(b) it has four right angles
(c) it has three right angles
(d) it has no obtuse angle
(e) triangles ABC, BCD, CDA, DAB are similar to each other
(f) it has two opposite congruent sides perpendicular to a third side
(g) it has equal and bisecting diagonals
(h) AP = BP = CP = DP
(i) AB = CD, AD = BC, AP = BP
(j) ∠A = ∠C, ∠B = ∠D and AP = BP
(k) AB = CD, AP = BP and CP = DP
(l) ∠A = ∠B, ∠C = ∠D and AP = CP

(m) ∠A = ∠C, AP = BP and CP = DP
(n) ∠B = ∠D and AP = BP = CP
(o) ∠A = ∠B and AP = BP = CP
(p) ∠A = ∠D and AP = BP = CP
(q) ∠A = ∠B = ∠C and AP = BP
(r) ∠A = ∠B = ∠C and AB = CD

if and only if it’s a rectangle.

Proof. (a) This is the definition of rectangles that we use.
(b), (c) These are, by applying the angle sum of a quadrilateral, equivalent

to (a).
(d) Without any obtuse angle, the angle sum of a quadrilateral can only

be achieved with four right angles, since three right angles and an acute
angle would not make an angle sum of 360◦, and more acute angles would
make the angle sum even less. Hence it’s a rectangle according to (b).

(e) Suppose without loss of generality that ∠B is the maximum angle
in the quadrilateral. This implies that ∠ABC > ∠DBC and ∠ABC ≥
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∠ADC ≥ ∠BCD. Triangles ABC and BCD are similar, so we get ∠ABC =
∠BCD. Similarly all angles of the quadrilateral must be equal, so it is a
rectangle by definition.

(f) We assume that ∠A = ∠D = 90◦. Then triangles ABD and DCA are
congruent (SAS), so BD = AC. It now follows from Theorem 3.1 (j) that
ABCD is a rectangle.

(g) Since bisecting diagonals is a characterization of parallelograms, this
is just another way of formulating Theorem 2.1 (f).

(h) This is a special case of (g).
(i) AB = CD and AD = BC implies that ABCD is a parallelogram,

and since they have bisecting diagonals, AP = BP implies that AC = BD.
Then it’s a rectangle according to Theorem 2.1 (f).

(j) ∠A = ∠C and ∠B = ∠D implies that ABCD is a parallelogram,
and since they have bisecting diagonals, AP = BP implies that AC = BD.
Hence it’s a rectangle according to Theorem 2.1 (f).

(k) Triangles ABP and CDP are isosceles and congruent (ASA) due to
equal angles at P . Triangles ADP and BCP are also congruent (SAS),
implying that all vertex angles in ABCD are equal. Then it’s a rectangle
according to the definition.

(l) ∠A = ∠B and ∠C = ∠D implies that ABCD is an isosceles trapezoid.
Due to similar triangles ABP and CDP (AA), we have

AP

CP
=

BP

DP

and one diagonal bisected implies that both diagonals are bisected, so it’s
also a parallelogram. Hence it’s a rectangle according to Theorem 3.1 (d).

(m) AP = BP and CP = DP imply that ABCD is an isosceles trapezoid.
Those have two distinct pairs of equal angles, and if also a pair of opposite
angles are equal, then all four angles are equal. Hence it’s a rectangle by
definition.

(n) AP = BP = CP implies that triangle ABC is inscribed in a half circle
with diameter AC and a right angle at B (see Figure 7). Then ∠B = ∠D
confirms that also the fourth vertex lies on that circle, so AP = BP =
CP = DP and ABCD is a rectangle according to (f).

Figure 7. The circumcircle to triangle ABC
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(o) AP = BP = CP implies that triangle ABC is inscribed in a half
circle with diameter AC and a right angle at B. If D is inside the circle
with diameter AC, then ∠A < 90◦ (see Figure 7), and if D is outside the
circle with diameter AC, then ∠A > 90◦. Both of these cases contradict
the assumption ∠A = ∠B, so D must lie on that circle. This confirms that
ABCD is a rectangle according to (f).

(p) AP = BP = CP implies that triangle ABC is inscribed in a half
circle with diameter AC and a right angle at B. If D is inside the circle
with diameter AC, then ∠D > 90◦ but ∠A < 90◦ (see Figure 7); if D is
outside the circle with diameter AC, then ∠D < 90◦ but ∠A > 90◦. Both
of these cases contradict the assumption ∠A = ∠D, so D must lie on that
circle. Then ABCD is a rectangle according to (f).

(q) Since triangle ABP is isosceles (see Figure 8), ∠PAB = ∠PBA which
implies that ∠DAP = ∠CBP . Together with equal vertical angles at P ,
we have that triangles APD and BPC are congruent (ASA), so DP = CP .
Then, since also AP = BP , ABCD is an isosceles trapezoid with three
equal angles, which according to Theorem 3.1 (b) means that it’s actually a
rectangle.

Figure 8. Congruent triangles APD and BPC

(r) There are three possibilities for angle A. If ∠A = 90◦, then ∠A =
∠B = ∠C = ∠D = 90◦ by the angle sum of a quadrilateral, so ABCD is a
rectangle according to (b).

Figure 9. Isosceles triangles EBC and EAD

On the other hand, if ∠A > 90◦ or ∠A < 90◦, then AB and DC intersect
at a point E (see Figure 9). Suppose it is outside of AD, the other case is
similar. Then ∠B = ∠C implies that EB = EC, and since AB = DC, we
get EA = ED. Hence ∠EAD = ∠EDA by the isosceles triangle theorem, so
∠A = ∠D, making all four angles of ABCD equal and thus it’s a rectangle
by definition. □
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5. Symmetry and multitype quadrilaterals

Consider a convex quadrilateral ABCD with sides a = AB, b = BC,
c = CD, d = DA and diagonal intersection P . Let a′ = AP , b′ = BP ,
c′ = CP , d′ = DP be the semidiagonals. In Table 1 we summarize a few of
the different types of quadrilaterals that are studied in this section together
with one useful characterization.

Quadrilateral Definition Characterization Ref.
Bisect-diagonal A bisected diagonal a′ = c′ ∨ b′ = d′ [35]
Cyclic Has a circumcircle a′c′ = b′d′ [36]
Equidiagonal Equal diagonals a′ + c′ = b′ + d′ [32]
Extangential Has an excircle |a− c| = |b− d| [29]
Semidiagonal a′ + b′ = c′ + d′ [16]
Isosceles trapezoid ∠A = ∠B ∧ ∠C = ∠D a′ = b′ ∧ c′ = d′

Table 1. Some quadrilaterals

Semidiagonal quadrilaterals is a new type of quadrilaterals that is defined
this way in [16] (but there is of course the second possibility a′+d′ = b′+c′).
For the isosceles trapezoid, we only stated one of two possibilities, the other
is the definition ∠A = ∠D∧∠B = ∠C and characterization a′ = d′∧b′ = c′.

In the next theorem we study another 12 characterizations of rectangles
that are about symmetry or different types of quadrilaterals at the same
time. The similar first three are taken from [26, p. 123], [57, p. 37], and [17]
respectively, while (d) is due to Schweizer in 1970 according to [59, p. 183].
Conditions (f) and (g) are from the quadrilateral classifications in [42] and
[34] respectively, while (h) to (k) were stated in [16] but not proved there.
The last characterization was Problem B5019 in the Hungarian mathemat-
ical journal KöMaL [43]. We give our proof of it.

Theorem 5.1. A convex quadrilateral ABCD satisfies any one of:
(a) each bimedian is a symmetry axis
(b) the perpendicular bisectors of two adjacent sides are symmetry axes
(c) it has symmetry axes through each pairs of opposite sides
(d) it’s a parallelogram with a line of symmetry parallel to a side
(e) all four angle bisectors form a square
(f) it’s a bisect-diagonal cyclic trapezoid
(g) it’s an extangential cyclic trapezoid
(h) it’s an extangential equidiagonal trapezoid
(i) it’s an extangential equidiagonal semidiagonal quadrilateral
(j) it’s an extangential cyclic equidiagonal quadrilateral
(k) it’s an extangential cyclic semidiagonal quadrilateral
(l) it’s an extangential cyclic quadrilateral where BA+AC = CD+DB

if and only if it’s a rectangle.

Proof. (a) From the definition of a symmetry axis it’s evident that the only
quadrilateral with a bimedian as a symmetry axis is an isosceles trapezoid,
which has a pair of opposite parallel sides. Then the only quadrilateral with
two bimedians as symmetry axes must be both an isosceles trapezoid and a
parallelogram, that is, a rectangle according to Theorem 3.1 (d).
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(b) If the perpendicular bisector of a side is an axis of symmetry, then
the quadrilateral must be an isosceles trapezoid. Then the given condition
implies that the quadrilateral is both an isosceles trapezoid and a parallel-
ogram, that is, a rectangle according to Theorem 3.1 (d).

(c) If a quadrilateral has a symmetry axis through a pair of opposite sides,
then this axis must be the bimedian. Hence this condition is a consequence
of (a).

(d) A symmetry line must coincide with a bimedian. Then the two angles
between a side and this bimedian are equal, implying that two adjacent
vertex angles of the parallelogram are equal. This means it’s a rectangle
according to Theorem 2.1 (d).

(e) When the four angle bisectors form a square, we get
∠A
2 + ∠B

2 = 90◦

∠B
2 + ∠C

2 = 90◦

∠C
2 + ∠D

2 = 90◦

∠D
2 + ∠A

2 = 90◦

⇒


∠A+ ∠B = 180◦

∠B + ∠C = 180◦

∠C + ∠D = 180◦

∠D + ∠A = 180◦

⇒

{
∠A = ∠C
∠B = ∠D

so ABCD is a parallelogram. Using notations as in Figure 10, triangles
AHD and CFB are congruent (ASA), implying that w = y. Triangles
AHD and CGD are similar (AA), so

x+ y

w
=

x+ z

z
⇒ x

w
=

x

z
,

where we used w = y. Hence w = z, and by the isosceles triangle theorem,
we get ∠A

2 = ∠D
2 , so ∠A = ∠D. This proves that ABCD is a rectangle

according to Theorem 2.1 (d).

Figure 10. The angle bisectors form a square

(f) This is just another way of stating Theorem 4.1 (l).
(g) A trapezoid is cyclic if and only if it’s an isosceles trapezoid. It’s

extangential if and only if |a − c| = |b − d|. Since b = d (or a = c) in an
isosceles trapezoid, we get a = c (or b = d), implying that the quadrilateral
is a rectangle according to Theorem 3.1 (c).

(h) A trapezoid is equidiagonal if and only if it’s an isosceles trapezoid
according to Theorem 17 (iii) in [32]. Now the argument is the same as in
(g) for why it’s a rectangle.

(i) In an equidiagonal semidiagonal quadrilateral, we have{
a′ + c′ = b′ + d′

a′ + b′ = c′ + d′
⇔

{
2a′ = 2d′

c′ − b′ = b′ − c′
⇔

{
a′ = d′

b′ = c′
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which implies an isosceles trapezoid. Since it is also extangential, the quadri-
lateral is a rectangle according to (g).

(j) A cyclic quadrilateral is equidiagonal if and only if it’s an isosceles
trapezoid according to Theorem 17 (iv) in [32]. Now the conclusion that it’s
a rectangle follows from (g).

(k) In a cyclic semidiagonal quadrilateral, we have{
a′ + b′ = c′ + d′

a′c′ = b′d′

and by substituting a′ = c′ + d′ − b′ into the intersecting chords theorem
and factoring, we get (c′ − b′)(c′ + d′) = 0. Hence c′ = b′, and thus also
a′ = d′, which implies that the quadrilateral is an isosceles trapezoid. In
these b = d (or a = c) and then the other of these two equalities also hold
according to |a− c| = |b− d|. This proves that an extangential cyclic semi-
diagonal quadrilateral is a cyclic parallelogram, that is, a rectangle according
to Theorem 2.1 (e).

(l) Here we have the three metric conditions
|a− c| = |b− d|
a+ p = c+ q

ac+ bd = pq

where the third is the well-known Ptolemy’s theorem that characterizes
cyclic quadrilaterals. Combining the first two equalities yields

|a− c| = |b− d| = |q − p|.

Next we need Euler’s quadrilateral theorem. It states that the sides of a
convex quadrilateral satisfy

(1) a2 + b2 + c2 + d2 = p2 + q2 + 4v2

where v is the distance between the midpoints of the diagonals p and q (for
a proof, see [4, pp. 9–10]). Together with the simple algebra rule

(q − p)2 = q2 + p2 − 2pq

we get
(b− d)2 = a2 + b2 + c2 + d2 − 4v2 − 2(ac+ bd)

which simplifies into

4v2 = (a− c)2 ⇔ v = 1
2 |a− c|.

Theorem 12 in [31] states that a convex quadrilateral is a trapezoid with
a ∥ c if and only if this formula holds for v. In the same way we derive
the similar formula v = 1

2 |b − d|, and by symmetry, this means that the
quadrilateral is a trapezoid with b ∥ d. Hence both pairs of opposite sides
are parallel, so the quadrilateral is a cyclic parallelogram, that is, a rectangle
according to Theorem 2.1 (e). □
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6. Cyclic quadrilaterals and trigonometric relations

We will need the following trigonometric formula:

Lemma 6.1. In a cyclic quadrilateral ABCD with consecutive sides a =
AB, b = BC, c = CD, d = DA, and semiperimeter s,

tan
A

2
=

√
(s− a)(s− d)

(s− b)(s− c)

and there are similar formulas for the other three vertex angles.

Proof. Applying the law of cosines to triangles ABD and BCD, we get
a2 + d2 − 2ad cosA = BD2 = b2 + c2 − 2bc cosC

and using ∠C = π − ∠A, since opposite angles in a cyclic quadrilateral are
supplementary angles, yields

2(ad+ bc) cosA = a2 + d2 − b2 − c2.

Now we apply the half angle formula for tangent,

tan2
(
A

2

)
=

1− cosA

1 + cosA
=

2(ad+ bc)− 2(ad+ bc) cosA

2(ad+ bc) + 2(ad+ bc) cosA

=
2(ad+ bc)− (a2 + d2 − b2 − c2)

2(ad+ bc) + (a2 + d2 − b2 − c2)

=
(b+ c)2 − (a− d)2

(a+ d)2 − (b− c)2
=

(b+ c+ a− d)(b+ c− a+ d)

(a+ d+ b− c)(a+ d− b+ c)

=
2(s− d) · 2(s− a)

2(s− c) · 2(s− b)
=

(s− a)(s− d)

(s− b)(s− c)

completing the derivation.
The formulas for the other three vertices follow by symmetry from cyclic

permutations. □

Next we have 12 characterizations of rectangles regarding cyclic quadri-
laterals or trigonometric relations. To prove the sufficiency in (b) was Prob-
lem 2 at the 2008 CentroAmerican Math Olympiad [2], proposed by Aarón
Ramírez from El Salvador. Conditions (c) and (d) were proved in [3]. The
corresponding inequality of (e) was Problem 2 on the United States Mathe-
matical Olympiad in 1999 [1], but the equality case was not mentioned; that
was however stated in [51, pp. 2, 6–7]. The corresponding inequalities of
(f) and (g) were proved in [48, pp. 102–106], but the cases of equality were
not stated. Condition (h) was proved at [21] (but we have simplified that
proof), and (l) together with its proof are cited from [22].

An escribed circle is a circle tangent to one side of a quadrilateral and the
extensions of the two adjacent sides.

Theorem 6.1. A convex quadrilateral ABCD with consecutive sides a, b,
c, d, corresponding escribed circles with radii ra, rb, rc, rd, diagonals p, q
and diagonal intersection P satisfies any one of:

(a) it’s a cyclic quadrilateral with diagonals being diameters
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(b) it’s a cyclic quadrilateral with circumcenter O, diameter AC, and
parallelograms DAOE and BCOF such that E and F lie on the
circumference

(c) it’s a cyclic quadrilateral where P coincide with the circumcenter
(d) it’s a cyclic quadrilateral where the vertex centroid coincide with the

circumcenter
(e) it’s a cyclic quadrilateral where |a− c|+ |b− d| = 2|p− q|
(f) it’s a cyclic quadrilateral with area K = 4

√
rarbrcrd

(g) it’s a cyclic quadrilateral with area K = (ra + rc)(rb + rd)
(h) it’s a cyclic quadrilateral where

∑
cyc tan

A
2 tan B

2 = 4

(i) sin A
2 + sin B

2 + sin C
2 + sin D

2 = 2
√
2

(j) cos A
2 + cos B

2 + cos C
2 + cos D

2 = 2
√
2

(k) tan A
2 + tan B

2 + tan C
2 + tan D

2 = 4

(l)
√
2
∑

cyc cos
A+B
4 =

∑
cyc cot

A
2

if and only if it’s a rectangle.

Proof. (a) When the diagonals are diameters, then all vertex angles are
right angles according to the inscribed angle theorem, and the cyclic quadri-
lateral is thus a rectangle according to Theorem 4.1 (b).

(b) When E and F lie on the circumference, BC = FO = OE = AD, so
∠BAC = ∠ACD (see Figure 11). This implies that AB ∥ DC so ABCD is a
parallelogram. But angles B and D are right angles since AC is a diameter,
so ABCD is a rectangle according to Theorem 2.1 (e).

Figure 11. Two parallelograms

(c) If the diagonals intersect at the circumcenter, then they bisect each
other and have equal length, so the cyclic quadrilateral is a rectangle ac-
cording to Theorem 2.1 (f).

(d) It is well known that the vertex centroid in a convex quadrilateral
is the point where the bimedians intersect, and that the circumcenter in a
cyclic quadrilateral is the intersection of the perpendicular bisectors of the
four sides. If these two points coincide, then the two bimedians must be
perpendicular to each side of the cyclic quadrilateral (since there is just one
line through two points). Then opposite sides of the cyclic quadrilateral are
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parallel, making it a cyclic parallelogram, that is, a rectangle according to
Theorem 2.1 (e).

(e) In a convex quadrilateral ABCD, let M , N , E be the midpoints
of AC, BD, BC respectively. Then ME ∥ AB, NE ∥ DC and ME =
1
2AB, NE = 1

2DC (see Figure 12). Applying the triangle inequality yields
MN+NE ≥ ME, so MN ≥ ME−NE. Hence 2v ≥ a−c. There is also the
other possibility to have 2v ≥ c− a, so these two cases can be merged into
2v ≥ |a−c|. Equality holds if and only if AB ∥ ME ∥ MN ∥ NE ∥ DC, that
is, only when a ∥ c. By symmetry, there is the similar inequality 2v ≥ |b−d|
where equality holds if and only if b ∥ d.

Figure 12. Midpoint triangle MNE

Next we add Ptolemy’s theorem ac + bd = pq, which holds in a cyclic
quadrilateral, to Euler’s quadrilateral theorem (1) to get

(a− c)2 + (b− d)2 = (p− q)2 + 4v2.

Inserting 2v ≥ |a− c|, we get |p− q| ≤ |b− d| with equality only when a ∥ c.
Similarly 2v ≥ |b− d| yields |p− q| ≤ |a− c| with equality only when b ∥ d.
By adding, we have proved that in a cyclic quadrilateral,

|a− c|+ |b− d| ≥ 2|p− q|
where equality holds if and only if it is a parallelogram, that is, a rectangle
according to Theorem 2.1 (e).

(f) In a cyclic quadrilateral,

(2) ra =
aK

(s− a)(a+ c)

where K is the area of the quadrilateral, and similar formulas hold for the
other three radii. This formula was partially derived in [37, pp. 28–29].
What was left out was the derivation of the tangent half angle formula,
which we derived as a Lemma here. Forming the product of the four escribed
radii, we get

rarbrcrd =
abcdK4

(s− a)(s− b)(s− c)(s− d)(a+ c)2(b+ d)2

and using Brahmagupta’s formula
(3) K =

√
(s− a)(s− b)(s− c)(s− d)

this is simplified into

rarbrcrd =
abcdK2

(a+ c)2(b+ d)2
.
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Next we apply the following variant of the AM-GM-inequality: (a+c)2 ≥ 4ac
and (b+ d)2 ≥ 4bd to get

rarbrcrd ≤ abcdK2

4ac · 4bd
=

K2

16

and it follows that
K2 ≥ 16rarbrcrd

in a cyclic quadrilateral, where equality holds if and only if a = c and b = d,
that is, only when the quadrilateral is a cyclic parallelogram. According to
Theorem 2.1 (e), this is true if and only if it’s a rectangle.

(g) From (2) and the corresponding formula for rc, we get
ra + rc

K
=

1

a+ c

(
a

s− a
+

c

s− c

)
=

s(a+ c)− 2ac

(a+ c)(s− a)(s− c)

=
s

(s− a)(s− c)
− 2ac

a+ c

1

(s− a)(s− c)

≥ s

(s− a)(s− c)
− a+ c

2

1

(s− a)(s− c)

=
b+ d

2(s− a)(s− c)
=

(s− a) + (s− c)

2(s− a)(s− c)

≥
√
(s− a)(s− c)

(s− a)(s− c)
=

1√
(s− a)(s− c)

where we used 2s = a + b + c + d twice. We also applied the AM-GM-
inequality twice, so we have equality if and only if a = c. Using (3) yields

ra + rc ≥
√

(s− a)(s− b)(s− c)(s− d)√
(s− a)(s− c)

=
√

(s− b)(s− d)

where equality holds if and only if a = c. By symmetry,

rb + rd ≥
√
(s− a)(s− c)

where equality holds if and only if b = d. Hence

(ra + rc)(rb + rd) ≥
√

(s− b)(s− d)
√
(s− a)(s− c) = K

where equality holds if and only if ABCD is a cyclic parallelogram, that is,
a rectangle according to Theorem 2.1 (e).

(h) From the Lemma, we get

tan
A

2
tan

B

2
=

√
(s− a)(s− d)

(s− b)(s− c)

√
(s− a)(s− b)

(s− c)(s− d)
=

s− a

s− c

and similar expressions hold for the other three terms in the sum we consider.
Thus

(4)
∑
cyc

tan
A

2
tan

B

2
=

s− a

s− c
+

s− b

s− d
+

s− c

s− a
+

s− d

s− b
.

Next we use the inequality x + 1
x ≥ 2, which is equivalent to (x − 1)2 ≥ 0,

so equality holds if and only if x = 1. Applying this to the first and third
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term of (4), and also to the second and fourth term, we get∑
cyc

tan
A

2
tan

B

2
≥ 2 + 2

where equality holds if and only if
s− a

s− c
= 1 and s− b

s− d
= 1

that is, if and only if a = c and b = d. Opposite equal sides is a character-
ization of a parallelogram, and the only cyclic parallelogram is a rectangle
according to Theorem 2.1 (e).

(i) The sine function is concave on the interval
(
0, π2

)
. Applying Jensen’s

inequality yields

sin
A

2
+ sin

B

2
+ sin

C

2
+ sin

D

2
≤ 4 sin

A
2 + B

2 + C
2 + D

2

4
= 4 sin

π

4
= 2

√
2

where equality holds if and only if ∠A = ∠B = ∠C = ∠D, that is, only in
a rectangle.

(j) The cosine function is also concave on the interval
(
0, π2

)
, so this proof

is very similar to that of (i). It is left to the reader.
(k) The tangent function is convex on the interval

(
0, π2

)
. Applying

Jensen’s inequality yields

tan
A

2
+ tan

B

2
+ tan

C

2
+ tan

D

2
≥ 4 tan

A
2 + B

2 + C
2 + D

2

4
= 4 tan

π

4
= 4

where equality holds if and only if ∠A = ∠B = ∠C = ∠D, that is, only in
a rectangle.

(l) We note that each cyclic sum has four terms. Applying several times
the trigonometric identity

cosα+ cosβ = 2 cos
α+ β

2
cos

α− β

2

we get that
√
2
∑
cyc

cos A+B
4 =

√
2 · 2 cos A+B+C+D

8

(
cos A+B−C−D

8 cos A−B−C+D
8

)
= 4 cos A−C

8 cos B−D
8 ,

where we also used the angle sum of a quadrilateral, so this implies that

(5)
√
2
∑
cyc

cos
A+B

4
≤ 4

where equality holds if and only if both pairs of opposite angles are equal,
that is, only in a parallelogram.

The cotangent function is convex on the interval
(
0, π2

)
. Applying Jensen’s

inequality yields

(6)
∑
cyc

cot
A

2
≥ 4 cot

A
2 + B

2 + C
2 + D

2

4
= 4 cot

π

4
= 4
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where equality holds if and only if all angles are equal, that is, only in a
rectangle. Combining (5) and (6), we get

√
2
∑
cyc

cos
A+B

4
≤ 4 ≤

∑
cyc

cot
A

2

where equality between the two cyclic sums holds if and only if ABCD is a
rectangle. □

7. Metric relations

We conclude with a theorem about 12 metric characterizations of rectan-
gles. The formula in (a) is a famous approximate formula that was used by
the ancient Egyptians to calculate the area of a general quadrilateral, which
has been studied in many books. It was stated as a characterization in [9]
and proving this was Problem 26 at the 1977 Annual High School Mathe-
matics Examination (in the USA) [5, pp. 32, 113]. Condition (b) was proved
in five different ways in [30] but the proof we give here is from [4, p. 163], (d)
is from [52], while (e) and (f) were proved in [33]. The two related (g) and
(h) appeared in [6] and we cite that proof here. The next two related (i) and
(j) are from the final of the 2008 Russian III Southern Tournament Junior
Math Fights [50] and [53] respectively. The latter of these has, in the special
case when ABCD is a trapezoid, also been a problem on the 1998 Argentina
IberoAmerican Training List [46]. The penultimate characterization was a
problem proposed by Traian Lălescu at a 1986 Romanian math competition
according to [8], but the proof we give is from [20, pp. 298, 301]. The last
condition and its proof are cited from [27].

Theorem 7.1. A convex quadrilateral ABCD with consecutive sides a, b, c,
d, diagonals p, q, and angle θ between the diagonals opposite side a satisfies
any one of:

(a) it has area K = 1
4(a+ c)(b+ d)

(b) it has area K = 1
2

√
(a2 + c2)(b2 + d2)

(c) (a− c)2 + (b− d)2 = (p− q)2

(d) (a+ c)2 + (b+ d)2 = (p+ q)2

(e) a2 + b2 + c2 + d2 = 2pq

(f) cos θ = |a2−b2+c2−d2|
a2+b2+c2+d2

(g) the sum of distances from each vertex to the other three is constant
(h) the distance between any two vertices is equal to the distance between

the other two vertices
(i) the perimeters of the triangles ABC, BCD, CDA, DAB are equal
(j) the inradii of the triangles ABC, BCD, CDA, DAB are equal
(k) AX2 + CX2 = BX2 +DX2 for all points X in space
(l) sin θ = 2

√
KP ·LP ·MP ·NP
AP ·BP ·CP ·DP , where K ∈ AB, L ∈ BC, M ∈ CD,

N ∈ DA such that KM and LN are angle bisectors to the angles
between the diagonals and P is the diagonal intersection

if and only if it’s a rectangle.
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Proof. (a) A diagonal can divide a convex quadrilateral into two triangles
in two different ways. Adding these four triangle areas yields that the area
K of the quadrilateral satisfies

2K = 1
2ab sinB + 1

2bc sinC + 1
2cd sinD + 1

2da sinA

≤ 1
2ab+

1
2bc+

1
2cd+

1
2da = 1

2(a+ c)(b+ d)

where there is equality if and only if ∠A = ∠B = ∠C = ∠D = π
2 , that is,

only in a rectangle according to Theorem 4.1 (b).
(b) From the inequality in (a), we directly get

K ≤ a+ c

2
· b+ d

2
≤

√(
a2 + c2

2

)(
b2 + d2

2

)
where the second inequality is obtained by applying the AM-RMS inequality.
Equality holds if and only if ∠A = ∠B = ∠C = ∠D = 90◦, a = c and b = d,
that is, only when ABCD is a rectangle.

(c) Ptolemy’s inequality ac+ bd ≥ pq can be rewritten as
−2ac− 2bd ≤ −2pq

where equality holds if and only if the quadrilateral is cyclic. Adding this
to (1) yields

(a− c)2 + (b− d)2 ≤ (p− q)2 + 4v2.

Hence (a− c)2 + (b− d)2 = (p− q)2 holds if and only if the quadrilateral is
a cyclic parallelogram, which is a rectangle according to Theorem 2.1 (e).

(d) This proof is almost identical to that of (c), so it is left to the reader.
(e) By adding and subtracting 2pq to the right hand side of (1), we get

(7) a2 + b2 + c2 + d2 = 2pq + (p− q)2 + 4v2 ≥ 2pq,

where there is equality if and only if v = 0 and p = q. The first equality is a
well-known characterization of parallelograms, and the only parallelograms
with equal diagonals are rectangles according to Theorem 2.1 (f).

(f) In all convex quadrilaterals with consecutive sides a, b, c, d, it holds
that
(8)

∣∣a2 − b2 + c2 − d2
∣∣ = 2pq cos θ

where θ is the acute angle between the diagonals p and q (see [4, pp. 17–18]).
Combining (7) and (8), we get

cos θ ≥
∣∣a2 − b2 + c2 − d2

∣∣
a2 + b2 + c2 + d2

where equality holds if and only if the quadrilateral is a rectangle.
(g) Denoting the constant by L, this condition is

a+ p+ d = L

a+ q + b = L

b+ p+ c = L

c+ q + d = L

⇒


p+ d = b+ q

a+ d = b+ c

a+ p = c+ q

⇒


d = b

p = q

a = c

where we simplified the system of equations in the following way. First step:
by subtracting each of the other three equalities from the first. Second step:
by adding two of the equalities at a time and subtracting the third equality.
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The final three equalities describe a parallelogram with equal diagonals, that
is, a rectangle according to Theorem 2.1 (f).

(h) This condition is just the interpretation of the final three equalities
in the proof of (g).

(i) The algebra required to prove this condition is almost the same as in
the proof of (g). Here we get

a+ b+ p = b+ c+ q = c+ d+ p = d+ a+ q

from which it follows that
a+ p = c+ q

a+ b = c+ d

b+ p = d+ q

⇒


a = c

p = q

b = d

and again we have a parallelogram with equal diagonals, that is, a rectangle.
(j) Let us denote the inradii of triangles ABC, BCD, CDA, DAB by

rB, rC , rD, rA respectively. In [39] we proved as Theorem 1.1 (i) that a
quadrilateral is a parallelogram if and only if rA = rC and rB = rD. So
when all these four inradii are equal, we can directly conclude that the
quadrilateral is a parallelogram.

Figure 13. Two of the incircles

Next we consider what rA = rB implies (see Figure 13). According to the
well-known triangle formula T = sr, the area of a triangle is equal to the
product of the semiperimeter and the inradius. Triangles DAB and ABC
not only have equal inradii, but also equal area since they have equal base
and equal height when ABCD is a parallelogram. Hence they also have
equal semiperimeter and consequently equal perimeter. This is to say

AB +BD +DA = AB +BC + CA

which, since DA = BC, implies that the diagonals are equal. A parallelo-
gram with equal diagonals is a rectangle according to Theorem 2.1 (f).

(k) For planar points A, B, C, D and an arbitrary point X in space,
AX2 + CX2 = BX2 +DX2 is equivalent to

(A−X)2 + (C −X)2 = (B −X)2 + (D −X)2

which simplifies to
A2 + C2 −B2 −D2 = 2X(A+ C −B −D).

This is valid for all points X in space if and only if
(9) A+ C = B +D,
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and
(10) A2 + C2 = B2 +D2.

We note that (9) is a characterization of a parallelogram (see Theorem 3.1
(e) in [39]; it was stated for four complex numbers, so it’s also valid when
A, B, C, D are the coordinates of planar points). Squaring (9), we have
(11) A2 + C2 + 2A · C = B2 +D2 + 2B ·D

and subtracting (10) from (11) yields
(12) 2A · C = 2B ·D.

Finally subtracting (12) from (10) and factoring, we get
(A− C)2 = (B −D)2.

This means that the parallelogram ABCD has equal diagonals, so it’s a
rectangle according to Theorem 2.1 (f).

Figure 14. Angle bisectors KM and LN

(l) Let α = ∠APK = ∠BPK = ∠CPM = ∠DPM and β = ∠BPL =
∠CPL = ∠DPN = ∠APN (see Figure 14). Writing twice the area of
triangle ABP in two different ways yields

AP ·BP sin 2α = AP ·KP sinα+BP ·KP sinα

which by using the double angle formula for sine is equivalent to

2AP ·BP cosα = KP (AP +BP ) ≥ 2KP
√
AP ·BP

and this simplifies into
√
AP ·BP cosα ≥ KP

where equality holds if and only if AP = BP according the AM-GM-
inequality. By symmetry, there are the three similar expressions

√
BP · CP cosβ ≥ LP,

√
CP ·DP cosα ≥ MP,

√
DP ·AP cosβ ≥ NP

where equality holds if and only if BP = CP , CP = DP , and DP = AP
respectively. Multiplying the last four inequalities, we get
(13) AP ·BP · CP ·DP cos2 α cos2 β ≥ KP · LP ·MP ·NP
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where equality holds if and only if AP = BP = CP = DP . Since α + β =
90◦, we get cosβ = sinα, and multiplying (13) with 4 and again using the
double angle formula for sine, (13) is equivalent to

AP ·BP · CP ·DP sin2 (2α) ≥ 4KP · LP ·MP ·NP

where equality holds if and only if the quadrilateral is a rectangle according
to Theorem 4.1 (f). Since θ = 2α, solving for sin 2α completes the proof. □

The equation in (k) is well known as the British flag theorem. For it to
be a characterization, we note that it’s important that the equation holds
for all points X (which could be in the same plane as ABCD), otherwise
the conclusion will fail. A counterexample is a point on the bimedian that
lies on the symmetry line of an isosceles trapezoid.

8. Most useful characterizations

Of the 84 characterizations of rectangles we have studied in this paper,
which have been the most useful in the proofs of other characterizations,
and how frequently were they used? This is accounted for in Table 2.

Characterization Number of proofs
Quadrilateral with four equal (= right) angles 20
Parallelogram with equal diagonals 12
Parallelogram with one right angle 11
Parallelogram that is cyclic 10
Parallelogram with two adjacent equal angles 6
Parallelogram and isosceles trapezoid 4
Quadrilateral with four equal semidiagonals 4

Table 2. Most frequently used characterizations

We did not distinguish between four equal and four right angles in this
table since they are so closely related and the primary difference would arise
from the fact that one is stated at the beginning of the paper while the other
is not proved until Theorem 4.1 (b), which would give an unfair skewness.
In the literature, we get the impression that the former is less often used
and when this happens, it is often due to the study of duality in connection
with quadrilateral classifications.

9. Chronological compilation

Here we summarize all 84 characterizations of rectangles we have studied
in this paper. They are given in chronological order with respect to the
oldest source for the sufficient condition that we know of, but some of them
have surely been published earlier.

The abbreviations Q and Quad stand for quadrilateral, P for parallelo-
gram, IT for isosceles trapezoid, P for perimeter, w for with, and RSTJMF
for Russian Southern Tournament Junior Math Fight. Most notations are
not explained here since the purpose of this table is just to get a chronolog-
ical overview. For the meaning of other labels, please see the corresponding
theorems.
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# Year Source Short description Ref.
1 -300 Euclid Quadrilateral with 4 right angles [41]
2 1833 Young Parallelogram with one right angle [63]
3 1848 Duncan P w max area for given base & perimeter [19]
4 1849 Perkins Parallelogram with 4 right angles [47]
5 1868 Wright Parallelogram with equal diagonals [62]
6 1871 Todhunter Parallelogram that is cyclic [56]
7 1879 Henrici Parallelogram and isosceles trapezoid [26]
8 1879 Henrici Quad with equal and bisecting diagonals [26]
9 1879 Henrici Q where each bimedian is a symmetry axis [26]
10 1893 Smith Parallelogram with 4 equal angles [54]
11 1950 Welkowitz Quadrilateral with 4 equal angles [60]
12 1968 Bottema Quad with area K = 1

4
(a+ c)(b+ d) [9]

13 1970 Schweizer P with a line of symmetry parallel to a side [59]
14 1973 Horak Quad with AP = BP = CP = DP [27]
15 1973 Horak Quad with sin θ = 2

√
KP ·LP ·MP ·NP
AP ·BP ·CP ·DP

[27]
16 1975 Coxford Quadrilateral with 3 right angles [13]
17 1981 Garfunkel Quad with

√
2
∑

cyc cos
A+B

4
=

∑
cyc cot

A
2

[22]
18 1986 Lălescu AX2 + CX2 = BX2 +DX2 ∀X in space [8]
19 1988 Sharygin Quad with rABC = rBCD = rCDA = rDAB [53]
20 1992 Seimiya Quad with (a+ c)2 + (b+ d)2 = (p+ q)2 [52]
21 1994 Bech Sum dist. fr. each vertex to other 3 is const. [6]
22 1995 Penning Dist. bw any 2 vert. = dist. bw other 2 vert. [6]
23 1996 De Villiers Q w sym. axes thru each pair of opp. sides [17]
24 2004 Becheanu Parallelogram with EF = EG and a ̸= b [7]
25 ? Jirjahlke Bisect-diagonal cyclic trapezoid [42]
26 2008 [RSTJMF] Quad w PABC = PBCD = PCDA = PDAB [50]
27 2008 Ramírez Cyclic Q w E and F on the circumference [49]
28 2008 Usiskin Q w perp. bis. of 2 adj. sides are sym. lines [57]
29 2009 Al-Sharif Cyclic quadrilateral with C = P [3]
30 2009 Al-Sharif Cyclic quadrilateral with C = G0 [3]
31 2010 Byer Parallelogram with △ABD ∼= △DCA [11]
32 2012 Nicula Parallelogram with

(
AQ
QS

)2
+

(
BC
QR

)2
= 1 [45]

33 2013 Josefsson Quad w area K = 1
2

√
(a2 + c2)(b2 + d2) [30]

34 2013 Lee Quad w 2 opp. cong. sides perp. to 3rd side [44]
35 2014 Solow Quad with no obtuse angle [55]
36 2015 Josefsson Quad with a2 + b2 + c2 + d2 = 2pq [33]
37 2015 Josefsson Quad with cos θ = |a2−b2+c2−d2|

a2+b2+c2+d2
[33]

38 2016 Josefsson Extangential cyclic trapezoid [34]
39 2017 [Brainly] Parallelogram w 2 adjacent equal angles [10]
40 2017 Sedrakyan Cyclic quad w |a− c|+ |b− d| = 2|p− q| [51]
41 2019 Huang Trapezoid with 2 opposite right angles [28]
42 2019 [KöMaL] Extangential cyclic quad w a+ p = c+ q [43]
43 2019 Saghafian △ABC ∼ △BCD ∼ △CDA ∼ △DAB [14]
44 2020 Alsina Isosceles right trapezoid [4]
45 2020 Alsina Cyclic right trapezoid [4]
46 2020 Alsina Equidiagonal right trapezoid [4]
47 2020 [Doubtnut] Cyclic quad w diagonals being diameters [18]
48 2021 Volchkevich Parallelogram with AM = BM [58]
49 2021 Volchkevich Parallelog. w midp. of sides form rhombus [58]
50 2022 Dalcín Quad w AB = CD, AD = BC, AP = BP [15]
51 2022 Dalcín Quad w ∠A = ∠C, ∠B = ∠D, AP = BP [15]
52 2022 Dalcín Quad w AB = CD, AP = BP , CP = DP [15]
53 2022 Dalcín Quad w ∠A = ∠B, ∠C = ∠D, AP = CP [15]
54 2022 Dalcín Quad w ∠A = ∠C, AP = BP , CP = DP [15]
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55 2022 Dalcín Quad with ∠A = ∠D, AP = BP = CP [15]
56 2022 Dalcín Quad with ∠A = ∠B, AP = BP = CP [15]
57 2022 Dalcín Quad with ∠B = ∠D, AP = BP = CP [15]
58 2022 Dalcín Quad with ∠A = ∠B = ∠C, AP = BP [15]
59 2022 Dalcín Quad with ∠A = ∠B = ∠C, AB = CD [15]
60 2022 Garcia Cyclic quad with

∑
cyc tan

A
2
tan B

2
= 4 [21]

61 2023 Dalcín Extangential equidiagonal trapezoid [16]
62 2023 Dalcín Extangential equidiagonal semidiagonal Q [16]
63 2023 Dalcín Extangential cyclic equidiagonal quad [16]
64 2023 Dalcín Extangential cyclic semidiagonal quad [16]
65 2025 Josefsson P w 1 bimedian perpendicular to a side [40]
66 2025 Josefsson Parallelogram w perpendicular bimedians [40]
67 2025 Josefsson Parallelogram with area K = ab [40]
68 2025 Josefsson Parallelogram with area K = mn [40]
69 2025 Josefsson Parallelogram with a2 + b2 = pq [40]
70 2025 Josefsson Parallelogram with m2 + n2 = pq [40]
71 2025 Josefsson P with a2 + b2 = e2, e = any diagonal [40]
72 2025 Josefsson Isosceles trapezoid with a right angle [40]
73 2025 Josefsson IT with 2 opposite equal angles [40]
74 2025 Josefsson IT with 2 opposite equal semidiagonals [40]
75 2025 Josefsson Isosceles trapezoid with equal bases [40]
76 2025 Josefsson IT w K = ab, a = longest base & b = leg [40]
77 2025 Josefsson Right trapezoid with perp. bimedians [40]
78 2025 Josefsson Quad where angle bisectors form a square [40]
79 2025 Josefsson Cyclic quad with K = 4

√
rarbrcrd [40]

80 2025 Josefsson Cyclic quad with K = (ra + rc)(rb + rd) [40]
81 2025 Josefsson Q w sin A

2
+ sin B

2
+ sin C

2
+ sin D

2
= 2

√
2 [40]

82 2025 Josefsson Q w cos A
2
+ cos B

2
+ cos C

2
+ cos D

2
= 2

√
2 [40]

83 2025 Josefsson Q w tan A
2
+ tan B

2
+ tan C

2
+ tan D

2
= 4 [40]

84 2025 Josefsson Quad with (a− c)2 + (b− d)2 = (p− q)2 [40]

Table 3. Characterizations of rectangles
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