INTERNATIONAL JOURNAL OF GEOMETRY Vol. 13 (2024), No. 2, 05 - 16

SYMMEDIAN LOCUS CONFIGURATION PART II

YU CHEN AND R.J. FISHER

ABSTRACT. This paper is a continuation of our paper entitled "Symmedian locus Configuration, Part I". Assume that C is a circle with center O and radius r. Fix a point H with r < OH < 3r. For the (C, H)-locus, there exists a unique $(\overline{C}, \overline{H})$ -locus satisfying the properties: (1) \overrightarrow{OH} and \overrightarrow{OH} are in opposite direction, (2) the (C, H) - and $(\overline{C}, \overline{H})$ -loci have the same symmedian circle, i.e. $C_H = \overline{C}_{\overline{H}}$, and (3) $\mathcal{C} \cap \mathcal{C}_H \cap \overline{\mathcal{C}} = \{P, Q\}$. We also define the concept of a degenerate triangle inscribed in a circle and show that its orthocenter and symmedian point are welldefined. The above intersection points P and Q turn out to be the symmedian points of two pairs of degenerate triangles, one pair from the (\mathcal{C}, H) -locus and the other from the $(\overline{\mathcal{C}}, \overline{H})$ -locus.

1. Introduction

The current paper is a continuation of [7]. Part I established the following results: let \mathcal{C} be a circle with center O and radius r. Fix a point H such that the distance 0 < OH < 3r. Set h = OH. Theorem 2.3 proves that for each $A \in \mathcal{C}$ such that AH < 2r and $2AH^2 \neq h^2 - r^2$, there is a unique $\triangle ABC$ inscribed in \mathcal{C} with orthocenter H. This set \mathcal{T}_H of triangles is called the (\mathcal{C},H) -locus. Theorem 3.1 proves that the locus of symmedian points of the (\mathcal{C}, H) -locus lies on the circle \mathcal{C}_H with radius

$$r_{H} = \frac{2r^{2}h^{2}}{9r^{2} - h^{2}}$$

 $r_{\scriptscriptstyle H} = \tfrac{2r^2h^2}{9r^2-h^2}$ and center the point $\,O_{\scriptscriptstyle H}\,$ defined by the vector equation

$$\overrightarrow{OO_H} = \frac{6r^2}{9r^2 - h^2}\overrightarrow{OH}$$
.

Included in Theorem 3.1 is the following vector description of a symmedian point Kof a triangle $\triangle ABC$ in the (\mathcal{C}, H) -locus for $A \neq H$:

$$\overrightarrow{OK} = \frac{8r^2 - 2AH^2}{9r^2 - h^2} \overrightarrow{OA} + \frac{2r^2(r^2 - h^2 + 2AH^2)}{(9r^2 - h^2)AH^2} \overrightarrow{AH}.$$

As A varies, the vectors \overrightarrow{OA} and \overrightarrow{AH} form a moving frame of the canonical vector space \mathcal{V} of geometric vectors. Part of the strategy in proving Theorem 3.1 uses this moving frame.

Keywords and phrases: Symmedian point, Circumcircle, Locus, Complementary Circle.

(2020) Mathematics Subject Classification: 51M04

Received: 02.09.2022. In revised form: 26.10.2023. Accepted: 31.07.2023.

Next, Theorem 4.1 addresses the inverse problem. Explicitly, given $K \in \mathcal{C}_H$ such that OK < r, we prove that there is a unique cubic polynomial $X^3 + pX + q$ with three real roots that pick out a triangle $\triangle ABC$ in the (\mathcal{C}, H) -locus with symmedian point K. Theorem 4.2 proves that the triangle is unique.

The final result of Part I, Theorem 5.1, addresses the symmedian arc \mathcal{A}_H of a $(\mathcal{C},H)\text{-locus}$. Theorem 5.1 proves that \mathcal{A}_H is the entire symmedian circle \mathcal{C}_H when 0 < OH < r and is the open arc of \mathcal{C}_H lying inside \mathcal{C} when $r \leq OH < 3r$.

Part II focusses on the case where r < h < 3r. In this range, the symmedian locus \mathcal{A}_H is not a circle. The Complementary Circle Theorem, Theorem 2.1, proves that the complementary arc of \mathcal{A}_H has a natural realization as the symmedian locus of a complementary circle with respect to a fixed orthocenter. More explicitly, let Σ denote the set of all circumcircle-orthocenter pairs (\mathcal{C},H) where \mathcal{C} is a circle with center O, radius r, and H is a point such that r < OH < 3r. Theorem 2.1 shows that for each $(\mathcal{C},H) \in \Sigma$, there is a unique $(\overline{\mathcal{C}},\overline{H}) \in \Sigma$ such that the two symmedian circles guaranteed by Theorem 3.1 coincide; the vectors \overrightarrow{OH} and $\overrightarrow{\overline{OH}}$ are opposite in direction; and the three circles $\mathcal{C},\overline{\mathcal{C}}$, and $\mathcal{C}_H = \overline{\mathcal{C}}_{\overline{H}}$ intersect in two points $\{P,Q\}$ and are coaxal. Corollary 2.1 goes on to prove that the common symmedian circle is the disjoint union of the two symmedian arcs along with $\{P,Q\}$:

$$\mathcal{C}_{\scriptscriptstyle H} = \mathcal{A}_{\scriptscriptstyle H} \cup \mathcal{A}_{\scriptscriptstyle \overline{\scriptscriptstyle H}} \cup \{P,Q\}.$$

Section §3 studies the geometric meaning of the endpoints $\{P,Q\}$ of a symmedian arc $\mathcal{A}_{\scriptscriptstyle H}$.

2. Complementary Circle Theorem

2.1. Circumcircle-Orthocenter Pairs. Let \mathcal{C} be a circle with center O and radius r; let H be a point such that r < OH < 3r. We call (\mathcal{C}, H) a circumcircle-orthocenter pair. Let Σ denote the set of all such pairs.

2.2. Main Theorem.

Theorem 2.1. For each $(C, H) \in \Sigma$, there exists a unique $(\overline{C}, \overline{H}) \in \Sigma$ with the following properties:

- (1) The vectors \overrightarrow{OH} and $\overrightarrow{\overline{OH}}$ are opposite in direction.
- (2) The two pairs (C, H) and $(\overline{C}, \overline{H})$ have the same symmetrian circle, i.e. $C_H = \overline{C}_{\overline{H}}$.
- (3) The three circles C, \overline{C} , and C_H intersect at two points. Hence the three circles are coaxal.

Proof. The objective is to produce the points \overline{O} and \overline{H} . Once accomplished, everything is determined. See (2.6) and Lemma 2.1 ahead. The unique complementary pair $(\overline{C}, \overline{H}) \in \Sigma$ is then described by (2.16).

Let h = OH and $\overline{h} = \overline{O}\overline{H}$; let r and \overline{r} be the radii of \mathcal{C} and $\overline{\mathcal{C}}$, resp. If the two circumcircle-orthocenter pairs are to have the same symmedian circle, then $O_{\overline{H}} = O_H$

so that by Theorem 3.1 in [7]

$$\overrightarrow{OO_H} = \frac{6r^2}{9r^2 - h^2}\overrightarrow{OH}, \qquad \overrightarrow{\overline{O}O_H} = \frac{6\overline{r}^2}{9\overline{r}^2 - \overline{h}^2}\overrightarrow{\overline{O}H}$$
 (2.1)

$$\frac{2rh^2}{9r^2-h^2} = \frac{2\overline{r}\overline{h}^2}{9\overline{r}^2-\overline{h}^2} \qquad \text{--the radius of } \overline{\mathcal{C}}_H = \mathcal{C}_{\overline{H}}. \tag{2.2}$$

By (2.1),

$$OO_H = rac{6r^2h}{9r^2-h^2}, \qquad \overline{O}O_H = rac{6\overline{r}^2\overline{h}}{9\overline{r}^2-\overline{h}^2}.$$

The vectors $\overrightarrow{OO_H}$ and $\overrightarrow{\overline{OO}_H}$ are opposite in direction. Since $\overrightarrow{OO_H}$ and \overrightarrow{OH} are in the same direction and since the vectors $\overrightarrow{\overline{OO}_H}$ and \overrightarrow{OH} are also in the same direction, the vectors $\overrightarrow{OO_H}$ and $\overrightarrow{\overline{O}O_H}$ are opposite in direction. Hence,

$$\overrightarrow{\overrightarrow{OH}} = -\frac{\overline{h}}{h}\overrightarrow{OH},\tag{2.3}$$

$$\overrightarrow{\overline{O}O_H} = -\frac{\overline{r}^2 \overline{h} (9r^2 - h^2)}{r^2 h (9\overline{r}^2 - \overline{h}^2)} \overrightarrow{OO_H}. \tag{2.4}$$

Finally, for use ahead in the proof, let

$$\mathbf{u} = \overrightarrow{\overline{OO_H}}, \qquad \overline{\mathbf{u}} = \overrightarrow{\overline{\overline{OO_H}}}.$$

Of course, $\overline{\mathbf{u}} = -\mathbf{u}$. Then for any point P

$$\operatorname{Proj}_{\overline{\mathbf{u}}}(\overrightarrow{O_HP}) = -\operatorname{Proj}_{\mathbf{u}}(\overrightarrow{O_HP}).$$

On the other hand, by definition the vector projections

$$\operatorname{Proj}_{\mathbf{u}}(\overrightarrow{O_HP}) = \left(\frac{\overrightarrow{O_HP} \cdot \overrightarrow{OO_H}}{OO_H}\right) \mathbf{u},$$

$$\operatorname{Proj}_{\mathbf{u}}(\overrightarrow{O_HP}) = \left(\frac{\overrightarrow{O_HP} \cdot \overrightarrow{OO_H}}{OO_H}\right) \mathbf{u}$$

 $\operatorname{Proj}_{\overline{\mathbf{u}}}(\overrightarrow{O_HP}) = \left(\frac{\overrightarrow{O_HP} \cdot \overrightarrow{\overline{O}O_H}}{\overline{\overline{O}O_H}}\right) \overline{\mathbf{u}}.$

Hence

$$\frac{\overrightarrow{O_H}\overrightarrow{P}.\overrightarrow{\overline{O}O_H}}{\overrightarrow{O}O_H} = -\frac{\overrightarrow{O_H}\overrightarrow{P}.\overrightarrow{O}\overrightarrow{O}_H}{\overrightarrow{O}O_H}. \tag{2.5}$$

By Lemma 3.1 ahead in section $\S 3.3$, the circles $\mathcal C$ and $\mathcal C_{\scriptscriptstyle H}$ intersect at two points P and Q that lie on the nine point circle of the (\mathcal{C}, H) -locus. Also, the points P and Q are symmetric about the line l_{OH} . So in order for the circles $\mathcal{C}, \mathcal{C}_H$, and \mathcal{C} to intersect at two points, $\overline{O}P = \overline{r}$ is a necessary condition. To analyze this condition, we compare OP^2 and $\overline{O}P^2$, to wit,

$$\overrightarrow{OP} = \overrightarrow{OO_H} + \overrightarrow{O_HP}, \qquad \overrightarrow{\overline{O}P} = \overrightarrow{\overline{O}O_H} + \overrightarrow{O_HP}.$$

Using the algebraic properties of the dot product together with the distances OP = r, $OO_H = \frac{6r^2h}{9r^2-h^2}$, $\overline{O}O_H = \frac{6\overline{r}^2\overline{h}}{9\overline{r}^2-\overline{h}^2}$, and $O_H P = \frac{2rh^2}{9r^2-h^2}$, we get

$$\begin{split} \overrightarrow{O_HP} \cdot \overrightarrow{OO_H} &= \frac{OP^2 - O_HP^2 - OO_H^2}{2} \\ &= \frac{3r^2(27r^4 - 18r^2h^2 - h^4)}{2(9r^2 - h^2)^2}. \end{split}$$

Similarly,

$$\overrightarrow{O_HP} \cdot \overrightarrow{\overline{OO}_H} = \frac{3\overline{r}^2(27\overline{r}^4 - 18\overline{r}^2\overline{h}^2 - \overline{h}^4)}{2(9\overline{r}^2 - \overline{h}^2)^2}.$$

Hence, equation (2.5) is equivalent to

$$\frac{27r^4 - 18r^2h^2 - h^4}{h(9r^2 - h^2)} = -\frac{27r^4 - 18\overline{r}^2\overline{h}^2 - \overline{h}^4}{\overline{h}(9\overline{r}^2 - \overline{h}^2)}.$$

Conclusion: The two pairs (C, H) and $(\overline{C}, \overline{H})$ satisfy the statement of the theorem iff the system

$$\frac{27r^4 - 18r^2h^2 - h^4}{h(9r^2 - h^2)} = -\frac{27\bar{r}^4 - 18\bar{r}^2\bar{h}^2 - \bar{h}^4}{\bar{h}(9\bar{r}^2 - \bar{h}^2)}
\frac{rh^2}{9r^2 - h^2} = \frac{\bar{r}\bar{h}^2}{9\bar{r}^2 - \bar{h}^2}$$
(2.6)

has a unique solution for $(\overline{r}, \overline{h})$. Lemma 2.1 proves this.

Lemma 2.1. To simplify notation, let $u = \overline{r}$ and $v = \overline{h}$. The system

$$\frac{27r^4 - 18r^2h^2 - h^4}{h(9r^2 - h^2)} = -\frac{27u^4 - 18u^2v^2 - v^4}{v(9u^2 - v^2)}$$

$$\frac{rh^2}{9r^2 - h^2} = \frac{uv^2}{9u^2 - v^2}$$
(2.7)

$$\frac{rh^2}{9r^2 - h^2} = \frac{uv^2}{9u^2 - v^2} \tag{2.8}$$

is equivalent to the cubic equation

$$X^3 + pX + q = 0 (2.9)$$

where

$$p = \frac{2(r^2 - h^2)}{3h^2}, \qquad q = \frac{(7r^2 + h^2)(r^2 - h^2)}{27rh^3},$$
 (2.10)

and

$$X = \frac{u}{v} - \frac{r}{3h}$$
 \iff $\frac{u}{v} = X + \frac{r}{3h}$.

The cubic equation has the unique real solution

$$\frac{u}{v} = X + \frac{r}{3h} = \frac{r\kappa}{3h},$$

where

$$\kappa = \left(1 + \sqrt[3]{\frac{h^2 - r^2}{r^2}}\right)^2. \tag{2.11}$$

Proof. Rewrite (2.8) by $\frac{9u^2-v^2}{uv^2} = \frac{9r^2-h^2}{rh^2}$ to get $\frac{v^4+18u^2v^2-27u^4}{uv^3} = \frac{27r^4-18r^2h^2-h^4}{rh^3}.$

$$\frac{v^4 + 18u^2v^2 - 27u^4}{uv^3} = \frac{27r^4 - 18r^2h^2 - h^4}{rh^3}. (2.12)$$

Rearranging (2.12) leads to

$$27\left[\left(\frac{u}{v}\right)^3 + \left(\frac{r}{h}\right)^3\right] - 18\left(\frac{u}{v} + \frac{r}{h}\right) - \left(\frac{v}{u} + \frac{h}{r}\right) = 0.$$

Factor out $\frac{u}{v} + \frac{r}{h}$ to get

$$27\left[\left(\frac{u}{v}\right)^2 - \frac{r}{h}\left(\frac{u}{v}\right) + \left(\frac{r}{h}\right)^2\right] - 18 - \frac{h}{r} \cdot \frac{v}{u} = 0.$$

Multiply by $\frac{u}{v}$ and divide by 27 to get the cubic equation

$$\left(\frac{u}{v}\right)^3 - \frac{r}{h}\left(\frac{u}{v}\right)^2 + \left[\left(\frac{r}{h}\right)^2 - \frac{2}{3}\right]\left(\frac{u}{v}\right) - \frac{h}{27r} = 0. \tag{2.13}$$

Using the substitution $X = \frac{u}{v} - \frac{r}{3h}$, the cubic equation (2.13) becomes

$$X^{3} + \frac{2(r^{2} - h^{2})}{3h^{2}}X + \frac{(7r^{2} + h^{2})(r^{2} - h^{2})}{27rh^{3}} = 0.$$
 (2.14)

Let p and q be given by (2.10). Then the discriminant of (2.14) is

$$\Delta = -(4p^3 + 27q^2)$$

$$= -\frac{(r^2 - h^2)^2 (9r^2 - h^2)^2}{27r^2h^6}$$

$$< 0.$$

Since the discriminant is negative, (2.14) has exactly one real root. This root is

$$\begin{split} X &= \sqrt[3]{-\frac{q}{2} + \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}} + \sqrt[3]{-\frac{q}{2} - \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}} \\ &= \frac{2}{3h} \sqrt[3]{r(h^2 - r^2)} + \frac{1}{3h} \sqrt[3]{\frac{(h^2 - r^2)^2}{r}}. \end{split}$$

In turn,

$$\begin{split} \frac{u}{v} &= X + \frac{r}{3h} \\ &= \frac{1}{3h} \left(r + 2\sqrt[3]{r(h^2 - r^2)} + \frac{1}{3h}\sqrt[3]{\frac{(h^2 - r^2)^2}{r}} \right) \\ &= \frac{r}{3h} \left(1 + \sqrt[3]{\frac{h^2 - r^2}{r^2}} \right)^2. \end{split}$$

Define

$$\kappa = \left(1 + \sqrt[3]{\frac{h^2 - r^2}{r^2}}\right)^2. \tag{2.15}$$

Then

$$\frac{u}{v} = \frac{\kappa r}{3h} \iff u = \frac{\kappa r}{3h}v.$$

Remark 2.1. Using Lemma 2.1, since $\frac{uv^2}{9u^2-v^2} = \frac{rh^2}{9r^2-h^2}$, see (2.8),

$$u = \frac{r(\kappa^2 r^2 - h^2)}{9r^2 - h^2}, \qquad v = \frac{3h(\kappa^2 r^2 - h^2)}{\kappa(9r^2 - h^2)}.$$

In summary, given $(C, H) \in \Sigma$, the complementary pair $(\overline{C}, \overline{H})$ is described as follows:

$$\kappa = \left(1 + \sqrt[3]{\frac{h^2 - r^2}{r^2}}\right)^2,$$

$$\overline{r} = \frac{r(\kappa^2 r^2 - h^2)}{9r^2 - h^2},$$

$$\overline{h} = \frac{3h(\kappa^2 r^2 - h^2)}{\kappa(9r^2 - h^2)}$$

$$\overrightarrow{\overline{OO}_H} = -\frac{\kappa}{3}\overrightarrow{OO_H},$$

$$\overrightarrow{\overline{OH}} = -\frac{3(\kappa^2 r^2 - h^2)}{\kappa(9r^2 - h^2)}\overrightarrow{OH}.$$
(2.16)

Corollary 2.1. Given $(C, H) \in \Sigma$, let $(\overline{C}, \overline{H})$ be the complementary pair. Let $\{P, Q\} = C \cap \overline{C} \cap C_{rr}$.

Let \mathcal{A}_H and $\mathcal{A}_{\overline{H}}$ be the symmedian arcs of \mathcal{C} and $\overline{\mathcal{C}}$, resp. The endpoints of both arcs are the points P and Q. Finally,

$$\mathcal{C}_{\scriptscriptstyle H} = \mathcal{A}_{\scriptscriptstyle H} \cup \mathcal{A}_{\scriptscriptstyle \overline{\scriptscriptstyle H}} \cup \{P,Q\}$$

is a disjoint union.

Proof. By Corollary 3.1 in section §3.3 ahead, the points P and Q are the endpoints of \mathcal{A}_H and $\mathcal{A}_{\overline{H}}$. On the other hand, by Theorem 3.1 in [7] the arc \mathcal{A}_H lies inside the circle \mathcal{C} , while $\mathcal{A}_{\overline{H}}$ lies inside $\overline{\mathcal{C}}$. By Theorem 4.1 in [7], $\mathcal{C}\setminus(\mathcal{A}_H\cup\{P,Q\})=\mathcal{A}_{\overline{H}}$. \square

Corollary 2.2. Given $(C, H) \in \Sigma$ and the corresponding pair $(\overline{C}, \overline{H})$, let D, \overline{D} , and N, \overline{N} denote the D-loci circles and nine point circles of (C, H) and $(\overline{C}, \overline{H})$, resp. The seven circles

$$\mathcal{C},~\mathcal{N},~\mathcal{D},~\overline{\mathcal{C}},~\overline{\mathcal{N}},~\overline{\mathcal{D}},~\mathcal{C}_{_H}$$

are coaxal of intersecting type. The radical axis of the family is the line through the points P and Q where C and \overline{C} intersect.

Proof. Bt Theorem 3.4 of [7], the circle \mathcal{D} intersects \mathcal{C} at P and Q. Likewise, $\overline{\mathcal{D}}$ intersects $\overline{\mathcal{C}}$ at P and Q. Hence the result. See Chapter 8, pages 194 and 202 (Discussion 445) of [2].

3. The Endpoints of the Symmedian Arc

Assume that \mathcal{C} is a circle with center O and radius r and that H is a point satisfying $r \leq OH < 3r$. The symmedian arc \mathcal{A}_H associated to the (\mathcal{C}, H) -locus \mathcal{T}_H has two endpoints P and Q; namely, $\mathcal{C}_H \cap \mathcal{C} = \{P,Q\}$. Notice that P = Q when H lies on \mathcal{C} . The points $E, F \in \mathcal{C}$ with HE = HF = 2r completely determine P and Q. In this section we study the geometric meaning of the endpoints of the symmedian arc \mathcal{A}_H .

3.1. **Degenerate Triangles.** Given a nondegenerate chord \overline{AB} of a circle $\mathcal C$ with center O and radius r, denote the tangent line to $\mathcal C$ at B by l_{BB} . We will call the pair (\overline{AB}, l_{BB}) a **degenerate triangle** inscribed in $\mathcal C$, written $\triangle ABB$. The point B is called the **double point** of $\triangle ABB$ and the tangent line l_{BB} is regarded as the side opposite to vertex A.

Note: The notation l_{BB} for the tangent line is deliberate. Its use is intended to emphasize that tangency at B determines a unique line.

The centroid G of a degenerate triangle $\triangle ABB$ with double point B inscribed in a circle \mathcal{C} with center O is defined following (2.3) by the vector equation

$$3\overrightarrow{OG} = \overrightarrow{OA} + 2\overrightarrow{OB}.$$

Let H be the point defined by the vector equation

$$\overrightarrow{OH} = 3\overrightarrow{OG} = \overrightarrow{OA} + 2\overrightarrow{OB}.$$

Note that

$$\overrightarrow{AH} = \overrightarrow{OH} - \overrightarrow{OA} = (\overrightarrow{OA} + 2\overrightarrow{OB}) - \overrightarrow{OA} = 2\overrightarrow{OB}.$$

Then \overline{AH} and \overline{OB} are parallel to each other and AH = 2OB = 2r. Since \overline{OB} is perpendicular to l_{BB} , \overline{AH} is also perpendicular to l_{BB} . On the other hand, we have

$$\overrightarrow{BH} \cdot \overrightarrow{AB} = (\overrightarrow{OH} - \overrightarrow{OB}) \cdot (\overrightarrow{OB} - \overrightarrow{OA})$$

$$= [(\overrightarrow{OA} + 2\overrightarrow{OB}) - \overrightarrow{OB}] \cdot (\overrightarrow{OB} - \overrightarrow{OA})$$

$$= (\overrightarrow{OB} + \overrightarrow{OA}) \cdot (\overrightarrow{OB} - \overrightarrow{OA})$$

$$= OB^2 - OA^2$$

$$= 0.$$

Then \overrightarrow{BH} is perpendicular to \overrightarrow{AB} . So H is the orthocenter of $\triangle ABB$.

The orthocenter H satisfies

$$OH^{2} = \overrightarrow{OH} \cdot \overrightarrow{OH}$$

$$= (\overrightarrow{OA} + 2\overrightarrow{OB}) \cdot (\overrightarrow{OA} + 2\overrightarrow{OB})$$

$$= OA^{2} + 4\overrightarrow{OA} \cdot \overrightarrow{OB} + 4OB^{2}$$

$$= 5r^{2} + 4\overrightarrow{OA} \cdot \overrightarrow{OB}$$

$$\geq 5r^{2} - 4OA \cdot OB$$

$$= 5r^{2} - 4r^{2}$$

$$= r^{2}$$

and the equality holds if and only if $\overrightarrow{OA} \cdot \overrightarrow{OB} = -OA \cdot OB$, if and only if $\overrightarrow{OA} = -\overrightarrow{OB}$ by the Cauchy-Schwartz inequality, if and only if \overrightarrow{AB} is a diameter of $\mathcal C$.

A degenerate triangle $\triangle ABB$ of a circle $\mathcal C$ has a well defined symmedian point, namely, the double point B. To justify this definition, the triangle $\triangle ABB$ has two natural angles at B, namely $\angle ABE$ and $\angle ABE'$ as shown in the figure. The median of $\triangle ABB$ at vertex B is the ray \overrightarrow{BA} . The reflection of this ray across the angle bisectors \overrightarrow{BD} of $\angle ABE$ and $\overrightarrow{BD'}$ of $\angle ABE'$ are \overrightarrow{BE} and $\overrightarrow{BE'}$, resp. On the other hand, the angle at vertex A of $\triangle ABB$ is 0 so that the ray \overrightarrow{AB} is the symmedian ray at vertex A. Since the point B is the only point that is common to \overrightarrow{BE} , $\overrightarrow{BE'}$, and \overrightarrow{AB} , B is the symmedian point following the isogonality definition of the symmedian point; see Figure 1.

Finally, the vector form of the midpoint characterization of the symmedian point also extends to $\triangle ABB$. Here, B=M=S=D. Moreover, since AH=2r, $5r^2+AH^2-h^2=9r^2-h^2$. Hence by Theorem 2.4 in [7]

$$\overrightarrow{OK} = \frac{1}{2}\overrightarrow{AH} = \overrightarrow{OB}.$$

3.2. Nine Point Circle of a Degenerate Triangle. The well known properties of the orthocenter of a nondegenerate triangle also hold for degenerate triangles. These properties are summarized in Theorem 3.1 just ahead. Degenerate triangles arise naturally in the description of the symmedian arc. A degenerate triangle $\triangle ABB$ has a nine point circle. If N is the midpoint of O and H, then the nine point circle of $\triangle ABB$ is the circle $\mathcal N$ with center N and radius $\frac{r}{2}$.

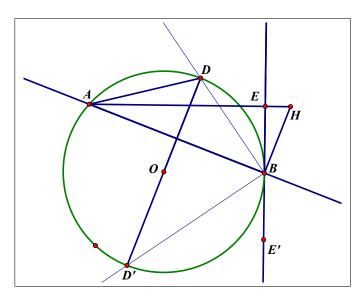


Figure 1

Theorem 3.1. Given a degenerate triangle $\triangle ABB$ inscribed in a circle $\mathcal C$ of radius r with center O and orthocenter H, let A' be the second point where the altitude at vertex A intersects $\mathcal C$; let A_h be the intersection of l_{BB} and l_{AH} . Then A' is the reflection of H across the line l_{BB} . Let A'' be the reflection of H across the line l_{AB} . Then $\overline{AA''}$ is a diameter of the circle $\mathcal C$.

Let N be the midpoint of O and H; let \mathcal{N} be the circle with center N and radius $\frac{r}{2}$. Let E_a (resp. E_b) be the midpoint of A and H (resp. the midpoint of B and H); let M_b be the midpoint of A and B. The circle \mathcal{N} contains the six points A_h , B (counted twice), M_b , E_a , and E_b . The segments $\overline{BE_a}$ and $\overline{M_bE_b}$ are diameters of \mathcal{N} ; see Figure 2.

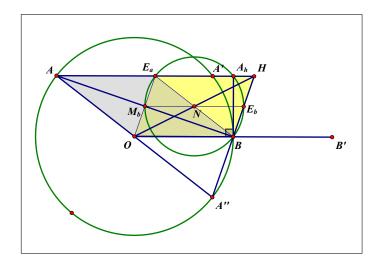


Figure 2

Proof. As observed just above, $\overrightarrow{AB} \perp \overrightarrow{BH}$. On the other hand, let A_h be the intersection of l_{BB} and l_{AH} . Then $\overrightarrow{AH} = 2\overrightarrow{OB}$ implies

$$\overrightarrow{BA_h} \cdot \overrightarrow{AH} = 2\overrightarrow{BA_h} \cdot \overrightarrow{OB} = 0$$

so that $l_{BB} \perp l_{AH}$. So H is the point where the altitudes at vertices A and B meet. Next, let $\overrightarrow{OB'} = 2\overrightarrow{OB}$. Then $\overrightarrow{OB'} = \overrightarrow{AH}$ so that $\Box OAHB'$ is a parallelogram. Hence B'H = OA.

Next, since reflection across a line is an isometry, the reflection of H across l_{BB} , call it A' lies on the circle $\mathcal C$, that is, B' reflects to O so that r=B'H=OA'.

Let A'' denote the reflection of H across the line l_{AB} . Then $A, B \in \mathcal{C}$ and $\angle A''BA = \angle HBA = 90$ imply $A'' \in \mathcal{C}$ so that $\overline{AA''}$ is a diameter of \mathcal{C} .

Finally, the quadrilaterals $\Box OE_aHB$ and $\Box OAE_bB$ are parallelograms. From this, it follows that $A_h, B, M_b, E_a, E_c \in \mathcal{N}$ and also that $\overline{BE_a}$ and $\overline{M_bE_b}$ are diameters.

3.3. The Geometry of the Endpoints of A_H .

Lemma 3.1. Let C be a circle with center O and radius r and let H be a point with $r \leq OH < 3r$. Set h = OH and write N for the nine-point circle associated to the (C, H)-locus.

- (1) If h > r, then $C \cap \mathcal{N} \cap \mathcal{C}_H = \{P,Q\}$, where P and Q are two distinct points on C.
- (2) If h = r, then $C \cap \mathcal{N} \cap C_H = \{H\}$.

Proof. Let N be the center of \mathcal{N} , i.e. the midpoint of O and H. Note that $\mathcal{C}_H \cap \mathcal{C} = \{P,Q\}$ and that \mathcal{N} and \mathcal{C} are coaxal; see page 201 of [2]. It suffices to check that $P \in \mathcal{N}$ and $Q \in \mathcal{N}$.

Suppose first that r < h < 3r. Then the circles \mathcal{N} and \mathcal{C} intersect at two distinct points by the Two-Circles Theorem, see Theorem 13.4 on page 112 of [3]. Note that $\overrightarrow{ON} = \frac{1}{2}\overrightarrow{OH}$, $\overrightarrow{OO}_H = \frac{6r^2}{9r^2-h^2}\overrightarrow{OH}$, and

$$\overrightarrow{NP} = \overrightarrow{OP} - \overrightarrow{ON} = \overrightarrow{OP} - \frac{9r^2 - h^2}{12r^2} \overrightarrow{OO_H}.$$

Also note that $\overrightarrow{OP} \cdot \overrightarrow{OO_H} = \frac{OP^2 + OO_H^2 - O_H P^2}{2}$ by the Law of Cosines. Then

$$\begin{split} NP^2 &= \left(\overrightarrow{OP} - \frac{9r^2 - h^2}{12r^2}\overrightarrow{OO_H}\right) \cdot \left(\overrightarrow{OP} - \frac{9r^2 - h^2}{12r^2}\overrightarrow{OO_H}\right) \\ &= OP^2 - \frac{9r^2 - h^2}{6r^2}\overrightarrow{OP} \cdot \overrightarrow{OO_H} + \left(\frac{9r^2 - h^2}{12r^2}\right)^2OO_H^2 \\ &= OP^2 - \frac{9r^2 - h^2}{6r^2} \cdot \frac{OP^2 + OO_H^2 - O_HP^2}{2} + \left(\frac{9r^2 - h^2}{12r^2}\right)^2OO_H^2 \\ &= r^2 - \frac{9r^2 - h^2}{6r^2} \cdot \frac{r^2 + \left(\frac{6r^2h}{9r^2 - h^2}\right)^2 - \left(\frac{2rh^2}{9r^2 - h^2}\right)^2}{2} + \left(\frac{9r^2 - h^2}{12r^2}\right)^2\left(\frac{6r^2h}{9r^2 - h^2}\right)^2 \\ &= r^2 - \frac{3r^2 + h^2}{4} + \frac{h^2}{4} \\ &= \frac{r^2}{4}. \end{split}$$

Since $NP = \frac{r}{2}$, the point P lies on the circle \mathcal{N} . Similarly, one shows that $Q \in \mathcal{N}$. When h = r, the circles \mathcal{C} and \mathcal{N} are tangent at H. So $\mathcal{C} \cap \mathcal{N} \cap \mathcal{C}_H = \{H\}$. \square

Theorem 3.2. Let C be a circle with center O and radius r and let H be a point with $r \leq OH < 3r$. Set h = OH.

- (1) If h > r, then there are exactly two degenerate triangles △FPP and △EQQ inscribed in C with orthocenter H, where E and F are the intersection points of the circles C and C(H; 2r) such that F,P are on the opposite side of l_{OH} and E,Q are on the opposite side of l_{OH}. In this case, the symmetrian points of △FPP and △EQQ are P and Q, respectively; see Figure 3.
- (2) If h = r, then there is a unique degenerate triangle $\triangle EHH$ inscribed in \mathcal{C} with orthocenter H, where \overline{EH} is the diameter of \mathcal{C} with one endpoint H. In this case, the symmedian point of $\triangle EHH$ is H.

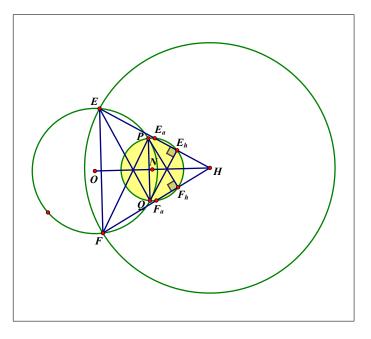


Figure 3

Proof. Define the points P' and Q' by the vector equations

$$2\overrightarrow{OP'} = \overrightarrow{FH}$$
 and $2\overrightarrow{OQ'} = \overrightarrow{EH}$.

Since $OP' = \frac{1}{2}FH = r$ and $OQ' = \frac{1}{2}EH = r$, we get $P', Q' \in \mathcal{C}$. Since $\triangle FP'P'$ and $\triangle EQ'Q'$ are degenerate triangles inscribed in \mathcal{C} with orthocenter H, we get $P', Q' \in \mathcal{N}$, where \mathcal{N} is the nine-point circle associated to the (\mathcal{C}, H) -locus. So $P', Q' \in \mathcal{C} \cap \mathcal{N}$. Note that $\mathcal{C} \cap \mathcal{N} = \{P, Q\}$ by Lemma 3.1. The points F, P' are on the opposite side of l_{OH} , while E and Q' are also on the opposite side of l_{OH} . Hence, P' = P and Q' = Q. So $\triangle FPP$ and $\triangle EQQ$ are degenerate triangles inscribed in \mathcal{C} with orthocenter H.

Next, if $\triangle ABB$ is a degenerate triangle inscribed in C with orthocenter H, then either it is $\triangle FPP$ or $\triangle EQQ$. Indeed, since $\overrightarrow{OA} + 2\overrightarrow{OB} = \overrightarrow{OH}$, we get

$$\overrightarrow{AH} = \overrightarrow{OH} - \overrightarrow{OA} = (\overrightarrow{OA} + 2\overrightarrow{OB}) - \overrightarrow{OA} = 2\overrightarrow{OB}$$

which implies AH = 2OB = 2r and that l_{OB} is parallel to l_{AH} . The first conclusion forces $A \in \{E, F\}$ since two circles cannot intersect in more than two points. On the other hand, $A \in \{E, F\}$ forces $B \in \{P, Q\}$. Note that A and B are on the opposite side of l_{OH} . So the degenerate $\triangle ABB$ is either $\triangle FPP$ or $\triangle EQQ$.

The two circles \mathcal{C} and $\mathcal{C}(H;2r)$ are coaxal as are the circles \mathcal{N} and \mathcal{C} ; see page 201 of [2]. Moreover, the three centers O,N, and H are collinear. Hence the chords \overline{EF} and \overline{PQ} are parallel so that $\Box EFQP$ is an isosceles trapezoid. Consequently, $\triangle EQQ$ is the reflection of $\triangle FPP$ across the line l_{OH} . The above figure illustrates the configuration.

Next, suppose OH = r, that is, $H \in \mathcal{C}$. In this case, $\mathcal{C} \cap \mathcal{C}(H; 2r) = \{E\}$. Indeed, the circles are tangent at the point E and the segment \overline{EH} is a diameter of \mathcal{C} . We will prove that $\triangle EHH$ is a degenerate triangle inscribed in \mathcal{C} with orthocenter H. Since EH is a diameter of \mathcal{C} , we get $\overrightarrow{OE} = -\overrightarrow{OH}$ and then

$$\overrightarrow{OE} + 2\overrightarrow{OH} = -\overrightarrow{OH} + 2\overrightarrow{OH} = \overrightarrow{OH}.$$

So H is the orthocenter of the degenerate triangle $\triangle EHH$.

Next, we prove that if $\triangle ABB$ is a degenerate triangle inscribed in \mathcal{C} with orthocenter H, then it is $\triangle EHH$. Since $\overrightarrow{OA} + 2\overrightarrow{OB} = \overrightarrow{OH}$, we get

$$\overrightarrow{AH} = \overrightarrow{OH} - \overrightarrow{OA} = (\overrightarrow{OA} + 2\overrightarrow{OB}) - \overrightarrow{OA} = 2\overrightarrow{OB}$$

which implies AH = 2OB = 2r. Since both A and H lie on the circle \mathcal{C} , \overline{AH} is a diameter of \mathcal{C} . The equation $2\overrightarrow{OB} = \overrightarrow{AH}$ and the fact $A \neq B$ force B = H. So the degenerate triangle $\triangle ABB$ is $\triangle EHH$.

The following corollary is a consequence of the proof of Theorem 3.2.

Corollary 3.1. The endpoints of the symmedian arc are exactly the double points of the degenerate triangles inscribed in C with orthocenter H, where $r \leq OH < 3r$.

Proof. By Theorem 3.2, each endpoint of the symmedian arc \mathcal{A}_H associated to the (\mathcal{C}, H) -locus is the double point of some degenerate triangle inscribed in \mathcal{C} with orthocenter H and the double point is its symmedian point by definition. This proves the corollary.

References

- [1] Artin, M., Algebra, Prentice Hall, Inc., 1991.
- [2] Altshiller-Court, N., College Geometry, Dover Publications, Inc., 2007.
- [3] Barker, W. and Howe, R., Continuous Symmetry from Euclid to Klein, AMS, 2007.
- [4] Bataille, M., Characterizing A Symmedian, Crux Mathematicorum, 43(4)(2017) 145-150.
- [5] Carr, A., Fisher, J., Roberts, A. and Xu, P., Natural Families of Triangles II: A Locus of Symmedian Points, Rose-Hulman Undergraduate Mathematics Journal, 9(1)(2008) Article 3.
- [6] Chen, Y. and Fisher R.J., N. A. Court's Centroid Locus Problem, International Journal of Geometry, 12(2) (2023) 89-117.
- [7] Chen, Y. and Fisher, R.J., Symmedian Locus Configuration, Part I, International Journal of Geometry, 13(1)(2024) 5-25.
- [8] Dray, T. and Manogue, C.A., *The Geometry of the Dot and Cross Products*, Journal of Online Mathematics and Its Applications, **6(2006)** Article ID 1156.
- [9] Honsberger, R., Episodes in Nineteenth and Twentieth Century Euclidean Geometry, Washington: Mathematical Association of America, 1995.

- [10] Johnson, R.A., Advanced Euclidean Geometry: An Elementary Treatise on the Geometry of the Triangle and Circle, Dover Publications, Inc., New York, 1960.
- [11] Kimberling, C., Central Points and Central Lines in the Plane of a Triangle, Math. Magazine, 67(1994) 163-187.
- [12] Mackay, J.S., Early history of the symmedian point, Proc. Edinburgh Math. soc., Ser. I, 11(1892) 92-103.
- [13] Posamentier, A.S. and Lehmann, I., *The Secrets of Triangles: a mathematical journey*. Prometheus Books, 2012.

DEPARTMENT OF MATHEMATICS AND STATISTICS

Idaho State University, Pocatello, ID 83209-8085, U.S.A.

 $E ext{-}mail\ address: chenyu@isu.edu}$

E-mail address: robertfisher@isu.edu