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LIGHTLIKE SUBMERSIONS OF INDEFINITE L.C.A COSYMPLECTIC

MANIFOLDS

Ange Maloko Mavambou, Olivier Mabiala Mikanou and Servais Cyr
Gatsé

Abstract. The purpose of this paper, is the study of the generalized
Cauchy-Riemannian submersions from the indefinite almost locally con-
formal cosymplectic manifold onto semi-Riemannian manifolds. A proper
smallest-dimensional generalized Cauchy-Riemannian indefinite a.l.c cosym-
plectic manifold is thirteen dimensional; a relevant example is reported. The
tangent bundle’s structure has been established using the horizontal lift.

1. Introduction

The non-trivial intersection of the tangent bundle and its normal bundle
is what makes studying lightlike submanifolds challenging ([1], [11]). The
machinery that Bejancu and Duggal so skillfully described in their book [8]
is what makes the transversal bundle exist; without this conception, it would
be difficult to demonstrate its existence. Physics, such as general relativity,
astrophysics, and other fields, are of relevance to this construction. The
screen distribution, the radical distribution, the co-screen distribution, and
the lightlike transversal distribution are the four distributions that roughly
correspond to a given submanifold M . Consequently, a decomposition of
the tangent bundle of M results from their respective bundles, that is,

(1) TM |M = S(TM) ⊥ S(TM⊥) ⊥ (RadTM ⊕ ltr(TM)).

The useful Gauss and Weingartein equations are the focus of this decom-
position, where S(TM), S(TM⊥), RadTM , ltr(TM) are respectively the
screen distribution, Co-screen distribution, radical distribution and lightlike
transversal distribution. Immersions and submersions play a crucial role in
Riemannian geometry, in particular when the related manifolds have addi-
tional structure see [12], [17] and references therein for more details. The
Riemannian submersions are specific tools in differential geometry.
————————————–
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idea of Riemannian submersion dates back to the 1950s, when B. O’Neil [16]
and A. Gray [9], separately created the core of this theory, which has since
undergone significant development. Several unfinished projects are still on-
going today, see [14] for instance. Let M and B be Riemannian manifolds.
A Riemannian submersion f : M → B is a mapping of M onto B satisfying
the following

a. f has maximal rank.
b. f∗ preserves the lengths of horizontal vectors.

For each b ∈ B, f−1(b) is a submanifold of M of dimension dimM − dimB.
The submanifolds f−1(b) are called the fibers and a vector field on M is ver-
tical if it is always tangent to the fibers, horizontal if it’s always orthogonal
to the fibers see [17], [18] and references therein for more details.
We examine the so-called screen lightlike submersions, a lightlike variant
of Riemannian submersion, in this paper [7]. The inheritance nature from
total space to base space was hightlighted with a focus on indefinite al-
most locally conformal cosymplectic structures (see [6], [13]). The concepts
of vertical, horizontal, and complete lift were taken into consideration in
order to emphasize submersions on tangent bundles as one of the applica-
tions of submersions (see [5], [10] and references therein for more details).
The framework of the article is as follows. In Section 2 the definition of
indefinite almost locally conformal cosymplectic manifolds and the equiv-
alent definition in terms of the Levi-Civita connection and the Lee vector
field are given. In Section 3, the Gauss and Weingartein formulas are ap-
plied to the screen, co-screen, radical and transversal distributions, then we
obtain a global decomposition of ambiant manifolds in terms of these dis-
tributions. In Section 4, generalized Cauchy-Riemannian (GCR) lightlike
submanifolds of an almost l.c. cosymplectic are studied, and an example is
given to support the result. Note that the least dimension of a proper GCR
is 13. Lightlike submersions are defined and according to the null dimen-
sion, types of submersions have been defined, that is, r-lightlike, isotropic
and co-isotropic submersion, in Section 5. The last Section revolves around
the notion of lifting. Vertical, horizontal and complete lifts are studied in
order to use horizontal lifts of an indefinite a.l.c. cosymplectic manifold for
obtaining a locally conformal Kählerian structure on the tangent bundle,
which is thought of as an even-dimensional manifold.

2. Preliminaries

Let M be a (2n+1)−dimensional manifold endowed with an almost con-
tact structure (ϕ̄, ξ, η) where ϕ̄ is a tensor field of type (1, 1), ξ is a vector
field called structure vector field or Reeb vector field, and η is a 1-form
satisfying

(2) ϕ
2
= −I+ η ⊗ ξ, η(ξ) = 1, η ◦ ϕ = 0 and ϕξ = 0.

Then (ϕ, ξ, η, g) is called an indefinite almost contact metric structure on M
if (ϕ, ξ, η) is an almost contact structure on M and g is a semi-Riemannian
metric on M such that, for any vector fields X,Y on M

(3) η(X) = g(ξ,X), g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ).
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The fundamental 2-form Φ of M is defined by

(4) Φ(X,Y ) = g(X,ϕY ),

for any X,Y vector fields on M .
M is said to be locally conformal almost cosymplectic if there is an open
covering {Ui} endowed with smooth functions

σi : Ui −→ R

such that over each Ui the almost contact metric structure given by

ϕi = ϕ, ξi = eσiξ, ηi = e−σiη, gi = e−2σig(5)

is cosymplectic that is dΦi = 0, dηi = 0. The Lee form is given by ω = dσi,
its dual ω♯ = B is called the Lee vector field. It is globally defined in M
by ω(X) = g(X,B) and locally on Ui by B = grad σi. The vector field
V = −ϕB is called an anti-Lee vector field, its dual denoted by θ is the
anti-Lee form meanly, θ(X) = g(X,V ). By straightforward calculations one
gets

(6) dΦ = 2ω ∧ Φ, dη = ω ∧ η, dω = 0.

It is also known that the following relation

∇i
XY = ∇XY − ω(X)Y − ω(Y )X + g(X,Y )B(7)

where ∇i
is the restriction of ∇ in Ui and X,Y vector fields on M .

As in the Riemannian case, the relation (6) remains valid also in indefinite
metric. The contact metric structure (ϕ, ξ, η, g) is said to be normal if the
Nijenhuis tensor

N
(1)

ϕ
= [ϕ, ϕ] + dη ⊗ ξ

of ϕ vanishes (see [4]), that is, [ϕ, ϕ](X,Y ) + 2dη(X,Y )ξ = 0, where

(8) [ϕ, ϕ](X,Y ) = [ϕX, ϕY ]− ϕ[ϕX, Y ]− ϕ[X,ϕY ] + ϕ
2
[X,Y ].

And in this case, the locally conformal almost cosymplectic manifold is said
to be the locally conformal cosymplectic manifold.
In terms of the Levi-Civita connection ∇ of the indefinite metric g, we have:

(∇Xϕ)Y = ω(ϕY )X − ω(Y )ϕX − g(X,ϕY )B + g(X,Y )ϕB,(9)

for any vector fields X,Y on M . Without sacrificing generality, ξ is taken
to be unit-spacelike, which means, g(ξ, ξ) = 1.
Let’s say that b = g(B,B) ∈ C∞(M) and Sign(B) = {x ∈ M : Bx = 0},
b and Sing(B) defines the causal character of B, hence, it is possible that
b = 0 and Sing(B) = ∅ when B is lightlike. The second equation of (3)
implies g(V, V ) = b−ω(ξ)2. We can therefore establish the causal nature of
V based on the values of b and ω(ξ). Putting λ = ω(ξ) then V is spacelike
if b ≥ λ2, timelike if b ≤ λ2 and lightlike if b = λ2.
The last case yields to

(10) (∇Xϕ)Y = f{g(ϕX, Y )ξ − η(Y )ϕX}.
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This equation can be found in [15], with ω = fη where f is a function
such that df ∧ η = 0. In (9) and (10), ξ is simply substituted, yielding the
following results

(11) ∇Xξ = ω(ξ)X − η(X)B

and

(12) ∇Xξ = −f(−X + η(X)ξ),

which implies ∇ξξ = 0 for the equation (12). Consequently, if B is colinear
to ξ then B or ξ is a Killing vector field. Let’s introduce a (1,1)-tensor field
h on M taking

(13) hX = ∇Xξ − ω(ξ)X + η(X)B

and on each Ui

(14) exp (−σi)∇
i
Xξi = hX.

We notice that if M is l.c. cosymplectic then h = 0. The (1,1)-tensor h has
the following properties

(15) hϕ+ ϕh = 0, hξ = 0, trh = 0and g(hX, Y ) = g(hY ,X).

3. Submanifold of indefinite l.c. Cosymplectic manifold

Assume that (M, g) is a real (m+n)-dimensional semi-Riemannian man-
ifold, g is a semi-Riemannian metric of constant index q ∈ {1, ...,m+n− 1}
on M , and M is a m-dimensional submanifold. In [8] it is known that for
a lightlike submanifold M there exists smooth distributions, namely, the
radical RadTpM , the screen S(TM), the transversal tr(TM), the lightlike

transversal ltr(TM) and the co-screen S(TM⊥), where

RadTpM = TpM ∩ TpM
⊥ ̸= {0},∀p ∈ M.

Hence, the following decompositions hold:

tr(TM) = ltr(TM)⊕orth S(TM
⊥)(16)

TM |M = TM ⊕ tr(TM)

= S(TM) ⊥ S(TM⊥) ⊥ (RadTM ⊕ ltr(TM)).(17)

We establish four distinct types of submanifolds r-lightlike, co-isotropic,
isotropic, and totally lightlike manifolds—based on the ranks of each of
these distributions. For further information, see [7]. We shall take into
account the local quasi-orthonormal frame of M along M :

{E1, ..., Er, N1, ..., Nr, Xr+1, ..., Xm, Wr+1, ..,Wn}(18)

Let (M, g, S(TM), S(TM⊥)) be a lightlike submanifold of an indefinite
almost contact manifold (M, g). We put

ϕX = PX + FX, ∀X ∈ Γ(TM),(19)

ϕW = BW + CW, ∀W ∈ Γ(ltr(TM),(20)
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where {PX,BW} and {FX,CW} are the tangential and transversal parts,
respectively. Moreover, P is skew-symmetric on S(TM). The Gauss and
the Weingartein formulas lead us to:

∇XY = ∇XY + hl(X,Y ) + hs(X,Y ),(21)

∇XV = −AV X +Dl
XV +Ds

XV, .(22)

We recollect certain relationships indicated in [6, ch 5] using the Otsuki
connections,

(23) ∇XV = −AV X +∇l
X(LV ) +∇s

X(SV ) +Dl
X(LV ) +Ds

X(LV ).

In particular from (23), one has

∇XN = −ANX +∇l
XN +Ds(X,N),(24)

∇XW = −AWX +Dl(X,W ) +∇s
XW,(25)

where l and s are projection morphisms of tr(TM) on ltr(TM) and S(TM⊥)
respectively,Dl(X,W ) andDs(X,N) are the projection of∇t on Γ(ltr(TM))
and Γ(S(TM⊥)), respectively.
By using the inner product, one gets

g(hs(X,Y ),W ) + g(Y,Dl(X,W )) = g(AWX,Y )(26)

g(Ds(X,N),W ) = g(N,AWX).(27)

Let P denote the projection of TM on S(TM) and let ∇∗,∇∗t denote the
linear connections on S(TM) and Rad(TM), respectively. Then from the
decomposition of the tangent bundle of lightlike submanifold, we have

∇XPY = ∇∗
XPY + h∗(X,PY ),(28)

∇XE = −A∗
EX +∇∗t

XE(29)

for X,Y ∈ Γ(TM) and E ∈ Γ(Rad(TM)), where h∗, A∗ are the second fun-
damental form and the shape operator of distributions S(TM) andRad(TM),
respectively. Applying the inner product yields the following:

g(hl(X,PY ), E) = g(A∗
EX,PY ),

g(h∗(X,PY ), N) = g(ANX,PY ),

g(hl(X,E), E) = 0, A∗
EE = 0.(30)

In general the induced connection ∇ on M is not a metric connection. Since
∇ is a metric connection, by using (21), we obtain

(∇Xg)(Y,Z) = g(hl(X,Y ), Z) + g(hs(X,Z), Y ).(31)

Lemma 3.1. Let (M, g, S(TM), S(TM⊥)) be a lightlike submanifold of an
indefinite almost locally conformal cosymplectic manifold (M, g), with ξ tan-
gent to M . If hl and hs are parallel and the Lee vector field B is tangent to
M , then M is totally geodesic if and only if B is colinear to ξ.

Proof. Indeed, from (11), (21) and (23), we obtain∇Xξ = ω(ξ)X−η(X)BT

and hl(X, ξ) + hs(X, ξ) = 0 that implies, hα(X, ξ) = 0 for any α ∈ {l, s},
therefore 0 = (∇Xhα)(Y, ξ) = −ω(ξ)hα(Y,X) + η(X)hα(Y,BT ). This com-
pletes the proof.
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Therefore, using the quasi-orthonormal frame and without assuming that
B is tangent to M , hα(X,xi) may be expressed as

hl(X, ξ) =
r∑

i=1

η(X)ω(Ei)Ni andh
s(X, ξ) =

m∑
i=r+1

η(X)ω(Wi)Wi.(32)

Definition 3.1. A lightlike submanifold (M, g) of a semi-Riemannian man-
ifold (M, g) is totally umbilical in M if there is a smooth transversal vector
field H ∈ Γ(tr(TM)) on M , called the transversal curvature vector field of
M , such that for all X,Y ∈ Γ(TM),

(33) h(X,Y ) = Hg(X,Y ).

It is obvious that there exists H l, Hs ∈ Γ(ltr(TM)) such that

hl(X,Y ) = H lg(X,Y ), hs(X,Y ) = Hsg(X,Y ), Dl(X,W ) = 0(34)

for any X,Y ∈ Γ(TM), W ∈ Γ(S(TM⊥)).

Definition 3.2. A lightlike submanifold (M, g, S(TM)) isometrically im-
mersed in a semi-Riemannian manifold (M, g) is minimal if

(i) hs = 0 on Rad(TM);
(ii) trace h = 0, where trace is with respect to g restricted to S(TM).

Definition 3.3. If Rad(TM) and S(TM) are respectively invariant and
anti-invariant with respect to the tensor ϕ, then the lightlike submanifold
M of the indefinite almost l.c. cosymplectic manifold M is a screen real
submanifold.

4. Generalized Cauchy-Riemannian (GCR) Lightlike
submanifolds

Definition 4.1. [6] With ξ tangent to M , let (M, g, S(TM), S(TM⊥)) be
a lightlike submanifold of an indefinite almost l.c. cosymplectic manifold
(M, g). If the following criteria are met, M is referred to as a generalized
Cauchy-Riemannian lightlike submanifold of M :

(I) There exists two subbundles D1 and D2 of Rad(TM) on M such
that

RadTM = D1 ⊕D2, ϕD1 = D1, ϕ(D2) ⊂ S(TM).(35)

(II) There exists two vector subbundles D0 and D′ of S(TM) such that
over M

S(TM) = {ϕ(D2)⊕D′} ⊥ D0 ⊥ {ξ}, ϕD0 = D0, ϕ(D
′) = L1 ⊥ L2(36)

where D0 is the nondegenerate, L1 and L2 are vector subbundles of
S(TM⊥) and ltr(TM), respectively.

The result is the decomposition shown below:

TM = D ⊕D′ ⊥ {ξ}, D = RadTM ⊥ ϕ(D2) ⊥ D0(37)

A contact GCR-lightlike is said to be proper if D0 ̸= {0}, D1 ̸= {0},
D2 ̸= {0}, L1 ̸= {0}. Thus, from the Definition 4.1, we have:

(i) Condition (I) implies that dim(Rad(TM)) ≥ 3.
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(ii) Condition (II) implies that dim(D) ≥ 2s ≥ 6 and dim(D2) =
dim(L2). Thus dim(M) ≥ 9 and dimM ≥ 13.

(iii) Any proper 9-dimensional contact GCR-lightlike submanifold is 3-
lightlike.

(iv) (i) and contact distribution (η = 0) imply that index(M) ≥ 4.

Example 4.1. Let M = (R13
4 , g) be a semi-euclidian space, where g is of

signature (−,−,+,+,+,+,−−,+,+,+,+,+) with respect to the canonical
basis

(38) (∂x1, ∂x2, ∂x3, ∂x4, ∂x5, ∂x6, ∂y1, ∂y2, ∂y3, ∂y4, ∂y5, ∂y6, ∂z)

and x1z ≥ 0.

Consider the case when σ(p) = lnx1z, where ω =
1

x1
dx1 +

1

z
dz implies

dη = ω∧η. Since Φ = e2σdx1∧dy1 is the only non-zero component of the 2-
fundamental form, one can obtain dΦ = 2ω∧Φ by employing differentiation
on both sides. Take into account the submanifold M of R13

4 , defined by

x4 = x1 cos θ − y1 sin θ, y4 = x1 sin θ + y1 cos θ, x2 = y3, (x5)2 = 1 + (y5)2, y5 ̸= 1.

(39)

Then a local frame of TM is given by

Z1 = e−2σ(∂x1 + cos θ∂x4 + sin θ∂y4), Z2 = e−2σ(− sin θ∂x4 + ∂y1 + cos θ∂y4),

Z3 = e−2σ(∂x2 + ∂x3), Z4 = e−2σ(∂x3 − ∂y2), Z5 = e−2σ(∂x6, Z6 = ∂y6),

Z7 = e−2σ(y5∂x5 + x5∂y5), Z8 = e−2σ(∂x3 + ∂y2), Z9 = ξ =
1

x1z
∂z.

(40)

Hence, RadTM = span{Z1, Z2, Z3}. Moreover ϕZ1 = e2σZ2 and ϕZ3 =
e−2σZ4 ∈ Γ(S(TM)). Thus D1 = span{Z1, Z2}, D2 = span{Z3}. Hence,
(I) holds. Next, ϕZ5 = −e2σZ6, which implies that D0 = span{Z5, Z6} is
invariant with respect to ϕ. By direct calculations, we get

S(TM⊥) = span{W = x5∂x5 − y5∂y5}
such that ϕ(W ) = −e2σZ7. Hence L1 = S(TM⊥) and

ltr(TM) = span{N1, N2, N3}
where N1 = e−2z(−∂x1+cos θ∂x4+sin θ∂y4), N2 = e−2z(− sin θ∂x4−∂y1+
cos θ∂y4), N3 = e−4z(−∂x2 + ∂y3) such that ϕN1 = −e−2σN2 and ϕN3 =
−e2σZ8 .

5. Lightlike submersions

Further details for this section see [17]. Let (M1, g1) be a semi-Riemannian
manifold and (M2, g2) a r-lightlike manifold, i.e., (M2, g2) the nullity degree
of g2 which is the rank of the radical subspace RadTxM of TxM defined by

RadTpM = {V ∈ TpM : g(V,X) = 0, X ∈ TpM}.(41)

We think about a smooth submersion. If f : M1 −→ M2, it is known that
f−1(p) is a submanifold of dimension dimM1 − dimM2 for any p ∈ M2.
Given that M1 is a semi-Riemannian manifold, we will then express the
differential of f by f∗. According to the notion of submersion, the sum
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TpM1 = Vp ⊕Hp is not orthogonal because we can have (or not) a non-zero

intersection between kerf∗ and (kerf∗)
⊥. We may find four occurrences of

submersions by comparing the dimension r with regard to one of the kernels
of f∗ and (kerf∗)

⊥. Denote the intersection by ∆ = kerf∗ ∩ (kerf∗)
⊥

(1) r = dim∆ < min{dim(kerf∗),dim(kerf∗)
⊥}, then V = kerf∗ and

H = tr(kerf∗) = ltr(kerf∗) ⊥ S(kerf∗)
⊥. And f is said to be r-

lightlike submersion.
(2) r = dim(kerf∗) < dim(kerf∗)

⊥. Then V = ∆ and H = S(kerf∗)
⊥ ⊥

ltr(kerf∗). And f is an isotropic submersion.
(3) r = dim(kerf∗)

⊥ < dim(kerf∗). Then V = S(kerf∗) ⊥ ∆ and H =
ltr(kerf∗). And f is a co-isotropic submersion.

(4) r = dim(kerf∗)
⊥ = dim(kerf∗). Then V = ∆ and H = ltr(kerf∗).

We call f a totally lightlike submersion.

Let’s assume now that M and M ′ are endowed with contact structures, re-
spectively (ϕ, ξ, η, g) and (ϕ′, ξ′, η′, g′). Define the submersion f that satisfies

(a) f∗ξ = ξ′,(42)

(b) f∗ ◦ ϕ = ϕ′ ◦ f∗.(43)

Theorem 5.1. Define f : M1 −→ M2 to be a smooth submersion that
satisfies (43), (M1, ϕ, ξ, η, g) to be an indefinite almost contact manifold, and
M2 to be a lightlike submanifold of an indefinite almost contact manifold.
Then, we have

(a) If f is a r-lightlike (or isotropic) submersion then, either ξ ∈ V and
M2 is of even dimensional or ξ has no component along ltr(kerf∗)
and M2 is of odd dimensional.

(b) If f is a co-isotropic submersion then, either ξ ∈ V and M2 is of even
dimensional or ξ is transversal (i.e., it belongs to ∆⊕ltr(kerf∗)) and
M2 is of odd dimensional.

(c) If f is a totally lightlike submersion then, ξ is transversal and M2 is
of odd dimensional.

Lemma 5.1. Let f : M1 −→ M2 be a smooth submersion, (M1, ϕ, ξ, η, g) an
indefinite almost contact manifold and M2 a lightlike submanifold endowed
with an indefinite almost contact structure (ϕ′, ξ′, η′, g2), f satisfying (43) if
M1 is a locally conformal cosymplectic manifold, then the Lee vector field B
is a horizontal vector field.

Proof. Indeed, for any U a vertical vector field, we have

0 = dη(U, ξ) = η ∧ ω(U, ξ) = −1

2
ω(U)

which completes the proof.

Theorem 5.2. Let f : M1 −→ M2 be a smooth submersion, (M1, ϕ, ξ, η, g)
an indefinite almost contact manifold and M2 a lightlike submanifold of an
indefinite almost contact manifold (M ′, ϕ′, ξ′, η′, g′), f satisfying (43). Then

(i) If the structure vector field ξ is vertical and M1 is endowed with a
locally conformal cosymplectic structure then the base space is indef-
inite locally conformal Kählerian manifold.
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(ii) If the structure vector field ξ is horizontal and M1 is locally confor-
mal cosymplectic manifold then, the base space is locally conformal
cosymplectic.

Proof. Form lemma 5.1, the Lee vector field B is horizontal then it is f -
related toB′, i.e., df(B) = B′. Then for anyX horizontal vector field and us-
ing the definition of submersions, one has ω(X) = g1(X,B) = g2(dfX, dfB) =
g2(X

′, B′) ◦ f = ω′(X ′) ◦ f . Since dΦ = 2ω ∧ Φ, then by using (43) we may
have Φ1(X,Y ) = g1(X,ϕY ) = g2(dfX, dfϕY ) ◦ f = g2(dfX, ϕ′dfY ) ◦ f =
g2(X

′, ϕ′Y ′)◦f = g2(X
′, Y ′)◦f = Φ2(X

′, Y ′)◦f that implies dΦ2 = 2ω′∧Φ2

for X and Y horizontal vector fields. This is the proof of the assertion (i).
Let us suppose that ξ is a horizontal vector field, since B is horizontal
vector field then for any E,F horizontal vector fields f -related to E′, F ′ re-
spectively, we have 2dη1(E,F ) = ω(E)η1(F )−ω(F )η1(E) = (ω′(E′)η2(F

′)−
ω′(F ′)η2(E

′))◦f = 2dη2(E
′, F ′)◦f that implies dη2 = ω2∧η2 and by follow-

ing the calculations above we have dΦ2 = 2ω2∧Φ2 where ω2(X
′) = g2(X,B′).

This proves (ii).

Remark 5.1. It is known that a basic vector field is an horizontal vector that
is projectable, and when M2 is odd-dimensional, the horizontal lift of ξ′ is
lying in the co-screen S(ker f∗)

⊥ for (a), in lightlike transversal distribution
for (b) and (c), hence we may have

(44) f∗ξ = ξ′.

And when M2 is even-dimensional, ξ′ is lying in the distribution S(TM2)
⊥ ⊥

ltr(TM2).

It is obvious that the horizontal distribution has the same structure as
the base space. In the next section, we are going to consider the locally
conformal cosymplectic structure on the ambiant manifold of M2, and ac-
cording to each type of submersion, the vertical distribution might inherit
the almost contact structure of M1.

Definition 5.1. Let f : (M1, ϕ, ξ, η, g1) −→ (M2, ϕ
′, ξ′, η′, g2) be a smooth

submersion, from a contact semi-Riemannian manifold M1 onto a lightlike
almost contact manifold M2, we call f a CR-submersion if the vertical space
V splits into two subbundles V1 and V2 such that

ϕV1 ⊂ V,
ϕV2 ⊂ H.(45)

It is easy to see that if V2 = {0}, then the verical and horizontal distri-
butions are invariant with respect to ϕ and if V1 = {0}, then f is said to be
anti-invariant submersion with respect to ϕ.

6. Vertical, horizontal and complete lifts

Let M be a semi-Riemannian manifold endowed with an almost contact
structure (ϕ, ξ, η, g). It is known that in the triplet (TM, π,M), the map
π : TM −→ M is a submersion, and its differential is the smooth map
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dπ : TTM −→ TM . For any (p, u) ∈ TM , the vertical and horizontal
subspaces are given, respectively, by the following equations:

(46) V(p,u) = Ker(dπ|(p,u)),

(47) H(p,u) = Ker(K(p,u)),

where K(p,u) : T(p,u)TM −→ TpM is the connection map, (for more details
see [10]). Hence we may express the following sum

(48) T(p,u)TM = H(p,u) ⊕ V(p,u).

Now, we define a natural metric denoted by ḡ in TM with respect to the
metric g of M . The natural metrics are the ones that make π a Riemannian
submersion while preserving the natural splitting on TTM .
We call natural metric with respect to g, the metric in TM denoted ḡ and
satisfying

(49) ḡ(Xh, Y h) = g(X,Y ), ḡ(Xh, Y v) = 0.

A natural metric is said Sasaki metric and denoted by ĝ or gS if it satisfies
the following relations

(50) ĝ(Xv, Y v) = g(X,Y ) = ĝ(Xh, Y h), ĝ(Xh, Y v) = 0.

A natural metric is called Cheeger-Gromol if it satisfies

(51) ḡ(p,u)(X
v, Y v) =

1

1 + r2
(gp(X,Y ) + gp(X,u) · gp(Y, u))

where X,Y ∈ Γ(TM) and r : TM → R, (p, u) 7→ r(p, u) =
√
gp(u, u).

Suppose that M is a lightlike manifold, then it is known that it has a radical
subspace defined by

(52) RadTxM = {Y ∈ TxM : g(Y,X) = 0, ∀X ∈ TxM}.
If TM is equipped with a Sasaki metric ĝ, then it is obvious that the causal
character of a vector field on M induces the one on TM in another world,
the horizontal or vertical lift of a vector field has the same causal character
as their basic vector field. Hence, in the same way, we may define the radical
subspace of TM as
(53)

RadT(p,u)TM = {Y = Y v+Y h ∈ T(p,u)TM : g(Y,X) = 0, ∀X ∈ T(p,u)TM}.
Therefore, there exists a screen distribution in TM denoted by S(TTM)
such that TTM may be written as

TTM = S(TTM) ⊥ RadTTM.

Hence, in view of the decomposition (48) we have

S(TTM) = SV(TTM)⊕ SH(TTM)

and
RadTTM = RadVTTM ⊕ RadHTTM.

Suppose TM is equipped with the natural metric ḡ, the kernel of π∗ at (p, u)
is the vertical subspace of TTM defined by

(54) Kerπ∗ = {X ∈ T(p,u)TM : π∗(X) = 0}
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and its orthogonal is defined as follows:

(55) (Kerπ∗)
⊥ = {Y ∈ T(p,u)TM : ḡ(Y,X) = 0, ∀X ∈ Kerπ∗}.

Since TM is a semi-Riemannian vector space, then by taking into account
the relation (49) it follows that TM is a lightlike manifold of radical distribu-
tion the vertical subspace (Kerπ∗)

⊥. Suppose ∆ = Kerπ∗∩(Kerπ∗)
⊥ ̸= 0. In

[8], it is well known that there exists a lightlike transversal bundle ltr(Kerπ∗)
spanned by lightlike transversal vectors {Ni}i∈I such that for any Wi and
Vi vector fields in horizontal and vertical subspaces, respectively, we have:

ḡ(Ni, Vj) = δij , ḡ(Ni, Nj) = 0, ḡ(Ni,Wj) = 0

Lemma 6.1. Let (M, g) be a lightlike manifold and TM equipped with the
natural metric ḡ then the submersion π : TM → M is a lightlike submersion
in which the vertical subspace is the orthogonal decomposition sum

V = S(Kerπ∗) ⊥ ∆

and the horizontal subspace

H = ltr(Kerπ∗) ⊥ S(Kerπ∗)
⊥.

Vertical lifts
If f is a function in M , we write fV for the function in TM obtained, by
forming the composition of π : TM → M and f : M → R, so that

(56) fV = f ◦ π,

any point p̃ ∈ π−1(U) has induced coordinates (xh, yh), then

(57) fV (p̃) = fV (x, y) = f ◦ π(p̃) = f(p) = f(x).

We call fV the vertical lift of the function f . Thus the vertical lift X̃ ∈
C∞(TM) of X ∈ Γ(TM) is such that X̃(fV ) = 0. Therefore, X̃ is vertical

if and only if its components (X̃h, X̃ h̄) in π−1(U) satisfy[
X̃h

X̃ h̄

]
=

[
0

X̃ h̄

]
and if ω is a 1-form on M and ω̃ the 1-form on TM the vertical lift is

such that ω̃(XV ) = 0 defined by

(58) ωV = (ωi)
V (dxi)V .

In local expression, we may write ω = ωidx
i, then the component of ωV is

given as

(59) ωV = (ωi, 0)

and if F is a tensor of type (1, 1) in M its vertical lift is given by

F V =

[
0 0
F h
i 0

]
.

Complete lifts
If f is a smooth function on M , the complete lift fC of the function on TM
is defined by

(60) fC = ιdf,
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its local expression is

(61) fC = yi∂if = ∂f.

For any vector field X the complete lift XC on TM is given such that

(62) XC(fC) = (Xf)C .

In terms of local components, we might conclude

XC =

[
Xh

∂Xh

]
.

For any 1-form ω on M the complete lift is defined by

(63) ωC(XC) = (ω(X))C ,

then the following is its local formulation given with respect to the induced
coordinates in TM :

(64) ωC : (∂ωi, ωi).

For any tensor F of type (1, 1), the complete lift is given by

F V =

[
F h
i 0

∂F h
i F h

i

]
.

Horizontal lifts
The horizontal lift for a function f of M is given by

(65) fH = fC −∇γf,

the horizontal lift of a vector field X of M is given by

(66) XH = XC −∇γX,

in terms of local components induced in TM ,

XH =

[
xh

−Γh
i x

i

]
where Γh

i = yiΓh
ji.

For any 1-form ω on M , the horizontal lift ωH is given by

(67) ωH = ωC −∇γω

using the induced coordinates in TM the component of ωH is given by

(68) ωH : (Γh
i ωh, ωi).

6.1. Horizontal lifts of an indefinite a.l.c Cosymplectic manifold. It
is generally known from Theorems 2.1 and 3.1 in [5] that if M has a contact
structure, then TM has an almost complex structure. The following lemma
follows:

Lemma 6.2. Let M be a lightlike manifold endowed with an almost contact
metric structure (ϕ, ξ, g). The (1, 1) tensor metric J̄ in TM defined by

(69) J̄ = ϕH + ηV ⊗ ξV − ηH ⊗ ξH

is an almost complex structure. Moreover, the natural metric ḡ given in (49)
is an Hermitian metric on TM .
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Proof. Indeed, it is clear to see that ϕH(XH) = ϕ(X). From (49) we may
have

ḡ(ϕH(XH), Y H) = ḡ(ϕ(X)H , Y H) = g(ϕX, Y ) = −g(X,ϕY )

= −ḡ((XH), ϕ(Y )H) = −ḡ((XH), ϕH(Y H))(70)

and using (69) together with the observation

(71) ηH(ξH) = 0, ηH(ξV ) = ηV (ξH) = 1, ηH(XH) = ηV (XH) = 0

then we obtain

ḡ(J̄XH , J̄Y H) = g(X,Y ) and J̄2 = −I,

as required.

Theorem 6.1. If M is an indefinite almost l.c. cosymplectic manifold,
then TM is an almost locally conformal Kählerian manifold by virtue of the
structure (ϕH , J̄ , ḡ).

Proof. From the equations (69) and (71), we may have

g(XH , J̄Y H) = g(XH , ϕHY H + ηV (Y H)ξV − ηH(Y H)ξH)

= g(XH , ϕHY H) = g(XH , ϕ(Y )H) = g(X,ϕY )

= Φ(X,Y ).(72)

It follows then ΦH(XH , Y H) = Φ(X,Y ), since dΦ = 2ω ∧ Φ. Thus we have

dΦH = 2ωH ∧ ΦH ,

as desired.
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