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GAUSS’ DIVERGENCE THEOREM ON BOUNDED
DOMAINS IN MINKOWSKI SPACES WITH
APPLICATIONS TO HYPERBOLIC SIMPLICES

KENZI SATO

Abstract. For bounded domains of Euclidean spaces with piecewise
smooth boundary, the integral of outward unit normal vectors of the bound-
ary is zero. In this paper we consider a similar theorem on Minkowski spaces
(Minkowski spaces does not mean finite dimensional Banach spaces but fi-
nite dimensional vector spaces with pseudo-inner products). We also con-
sider Gauss’ divergence theorem on Minkowski spaces, which implies above.
Remark that this theorem implies easily the equation to calculate a kind of
centroids of hyperbolic simplices.

1. INTRODUCTION

Let K be a bounded domain of Euclidean space R™ with piecewise smooth
boundary 0K. Then we have the following theorem (it seems to be due to
Minkowski, but the author is not sure).

Theorem 1.1 (The integral of unit normal vectors of bounded domains of
Euclidean space). It holds that

/ d(0K) =0,
oK
where d(0K) is Euclidean (n —1)-vector element of 0K (see (3) and Figure

This theorem is shown by substituting constant vectors ey = (1,0,...,0),...,
——

n—1 times

e,—1=(0,...,0,1) for A in the following theorem.
———

n—1 times
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Theorem 1.2 (Gauss’ divergence theorem on Euclidean space (see e.g. [1,
§4.9], [3, ch. 13, Thm. 3.2], [5, ch. 2, Thm. 5.11], [10, ch. 9, Problems, 13
(d), p. 352], or [11, ch. 7, G, Addendum 1, 57, p. 132])). For a vector field
A :R"™ — R", it holds that

A.d(OK) = / div Ad(R™),

oK K

where d(R™) is the n-volume element of Fuclidean space R™.

Theorem 1.1 implies the following corollary, which is useful to define a
kind of centroids of spherical simplices S C S"~1. Let p§,..., p5_; be
vertices of S; let S be the opposite facet of pj; and let py,..., p,,_; € R"
be such that p;, . py =1, p . P; > 0, Py . p; = 0 for all £ # k (see [6] and
[7]); 1.,

S={xecS" 1 :x.py>0,....x.p,_1 >0}, Sp={xecS:x.p, =0}
Then the following corollary is shown by simple calculations.

Corollary 1.3 (see e.g. [9, Rems. 1.1 & 1.2]). It holds that

n—1
1
sty = —
IR T ISkl

where d(S"1) is the (n — 1)-volume element of the unit sphere S*~! C R™
and |Sk| is the (n — 2)-volume of induced metric on Sy of R™.

Proof. Let

(1) K={tx:xe5,0<t<1}.

Then, 0K consists of S and

(2) Kp={tx:x€8,0<t<1} (for k=0,...,n—1),

whose (n — 1)-volume is |Sk|/(n — 1) from Lemma 3.3 and whose outward
unit normal vector is —p;, (see Figure 1). So, from Theorem 1.1, we have

n—1
n—1 |Sk| . _
/xesxd(S )+Zn_1( p,)=0. O

k=0

Remark 1.1. A kind of centroids of the spherical simplex S can be defined
by the both sides of

Jxes*dS"Y) 30 [Sklps
| fees xdS™ DI 113020 [SkIpyll

Euclidean space R™ (with the inner product) can be considered Minkowski
space R"7! x R (with the pseudo-inner product (x|y) = u(x) .y where
(xoy ..o Tp—2,Tn-1) = (o,...,Tn—2,—Tn—1)). So K can be considered
a bounded domain of Minkowski space R"~! x R with piecewise smooth
boundary 0K. Then we have the following theorem.
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FIGURE 1. Corollary 1.3 for n = 2 (left) and n = 3 (right)

Theorem 1.4 (The integral of pseudo-unit pseudo-normal vectors of bounded
domains of Minkowski space). It holds that

AKJQK):&

where d'(0K) is Minkowski (n—1)-vector element of 0K (see (5), (11), and
Figure 3).

This theorem is shown by substituting constant vectors eg,. .., e,_1 for
A in the following theorem (see Another proof of Theorem 1.4), which is
also shown later.

Theorem 1.5 (Gauss’ divergence theorem on Minkowski space). For a vec-
tor field A : R™ — R", it holds that

/(AW@K»:—/dmeWAny
oK K

where d' (R~ x R) is the n-volume element of Minkowski space R"~! x R
(see (6)).

Theorem 1.4 implies the following corollary, which is useful to define a
kind of centroids of hyperbolic simplices S C H""!. Let pj,..., p5_; be
vertices of S; let Sy be the opposite facet of pj; and let pg,..., p,_1 €
R™™1 x R be such that (p;|py) =1, (Px|P}) > 0, (P |p;) =0 for all £ # k
(see [8]); i.e.,

S={xeH"": (xlpg) > 0,...,(xIp,,_1) >0}, Sp={xe€S: (xp,) =0}.

Then the following corollary was shown by complicated computations in [9],
but in this paper it is shown by simple calculations like Corollary 1.3.
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FIGURE 2. unit normal vectors n (left) and vector elements
d(0K) (right) (the volumes of domains in the right figure are

constant, so the ratio of the lengths of the vectors in the left
and right figures are constant)

Corollary 1.6 ([9, Thm. 1.2]). It holds that

1 n—1
Xd/(Hn—l - - Sk /p ,
/. L

where d' (H"1) is the (n—1)-volume element of the hyperbolic space H" =1 C
R xR and |Sy|" is the (n—2)-volume of induced metric on Sy of R" "1 xR
(notice that Sy’s are Riemannian because S is Riemannian).

Remark 1.2. A kind of centroids of the hyperbolic simplex S can be defined
by the both sides of

Jees Xd (HT) _ — o 1Sk 'y,

V= s X (E )| fcg xd (H)) ) \/— <— >izo ISP~ X020 \Sk\’Pk>.

For prior works of hyperbolic simplices, see, e.g., [12]. For details of
n-dimensional Minkowski spaces and pseudo-Riemannian manifolds, see [4].

2. PRELIMINARIES.

For a bounded domain K of Euclidean space R™ with piecewise smooth
boundary 0K, let n be an outward normal vector at a smooth point x € 0K,
let n = II%H’ and let d(0K) be the vector element of K in Euclidean space
R™, i.e.,

(3) d(0K) = nd(0K),
where d(0K) is the (n — 1)-volume element of induced metric on 9K of
Euclidean space R™, i.e., d(0K) = /det gdtg - - - dt,,—2 with the metric tensor

ox ox o ., Ox  Ox
Otp * Oty Oty * Oty—o
g =
ox ox ., ox - _Ox
Otn—o * Otg Otn_o * Otp_o
of a local coordinate system (tg,...,t,—2) of OK. See Figure 2.

Consider K as a bounded domain of Minkowski space R~ x R. Let n’
be a pseudo-normal vector at x which is outward (resp. inward) if x € 0K
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FIGURE 3. pseudo-unit pseudo-normal vectors i’ (left) and
vector elements d’'(0K) (right) (the pseudo-volumes of do-
mains in the right figure are not constant, so the ratio of the
lengths of the vectors in the left and right figures are not
constant)

is Riemannian (resp. pseudo-Riemannian), i.e., if Tx(0K) is spacelike (resp.
timelike), that is, if detg’ > 0 (resp. detg’ < 0) with the pseudo-metric
tensor

ox | 0 [o) 0
o ) )
ox_ |0 ox | 0
(Gzlane) o (e o)
For x with lightlike T%(0K), i.e., with det ¢’ =0, let n' = (v(,...,v,,_;) be

in Tx(0K) with (n'ln’) = 0 whose direction is determined naturally, i.e., if K
is over (resp. under) 0K, v/, _, is negative (resp. positive). To summarize,

(4) n’ =t-((n) for some t <0,

if T/x(aK ) is spacelike, timelike, or lightlike. Let n’ = \/% (resp.
\/:‘,W), and let d'(0K) be the vector element of 0K in Minkowski space
R x R, ie.,

(5) d'(0K) =1'd (0K),

where d'(0K) is the (n — 1)-volume element of induced metric on 0K of
Minkowski space R" "I xR, i.e., d'(0K) = y/det g/dtg - - - dt,,o (resp. /—det g’dty - - - dt,_2)
if Tx(0K) is spacelike (resp. timelike). See Figure 3.
The n-volume element of Minkowski space R ! x R is equal to the n-
volume element of Euclidean space R", i.e.,

(6)

d'(R"! x R)

—det| : dag- - dwp—y =
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1 0 +ov v-- 0
0o . . :

= |—det|: .. - .. 1 |dxo---drp_1 =dxo---dry_1 = d(R").
: .10
0 ~or - 0 —1

3. MAIN RESULTS.

If Tx(OK) is lightlike, we can define neither n’ nor d’(0K) but d'(0K)
from the following lemma.

Lemma 3.1. For the local coordinate system (To,...,Te—1,Tp41,---,Tn—1)
of a smooth neighborhood U of 0K (¢ = 0,..., n — 1), which means that
x € U is represented by

(x07 sy Lp—1, "ié(x[)a sy L1, LYy - - -, xn_1)7$g+1, ey xn—l)
with a function kg, we have vy # 0, V), # 0,

n

d(0K) = ﬁdfﬁo crdrp1dres - drg o,
Uy
and
/
J@Kﬁjgﬁm~quwﬁy~mwl#ﬂ@Kﬂmmhmmm
v
¢
where n = (vg,...,vp—1) and 0’ = (v, ...,V _4).
Proof. Because (xq,...,T¢—1,T¢41,...,Tn—1) is a local coordinate system,
Tx(0K) does not include the vector e, = (0,...,0,1,0,...,0), so vy # 0 and
—— =
£ times n—1—/ times
vy, # 0 hold. The calculations for £ = 0,..., n—2 are essentially same, so it is
enough to show the equations of d(0K) and d'(8K) for £ =0 and £ = n — 1.
For ¢ = n —1, ie., for x = (z9,...,Tn-2,kn—1(T0,...,Tn—2)), tangent
vectors
ox 8/<;n_1
=(0,...,0,1,0,...,0, —— ;1 =0,...,n—2
i times n—2—1 times
are perpendicular (resp. pseudo-perpendicular) to
Okn—1 Okn—1
7 dkp_1,—-1) = e -1
(7) (grad k1, —1) = ( dzg ' Ong )
Ok Ok
(8) (resp. [’(gradﬁn—lu_l) = ( 62017"-)?;7—’_1))7

which is parallel to n (resp. n’). From

ox  ox . L, ox _0x

Odxg * Oxo 0xo * OTpn_2
In-1) = I ﬁ =

ox ox ... ... ox ox

Oxpn—2 * Oxg O0xp—2 * Oxp_2
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1 + 8'€n71 a”nfl 8/€n71 a”'nfl - a“nfl Bnn,1
Oxg Oxg Oxg ox1 0xrg OTn_2
OKn—1 Okn—1
— ox1 oxg
: Orn—1 Okn—1 ’
8In—3 O%p_2
Okn—1 Okn—_1 . Okn—1 Okn—1 1 + Okn—1 OKkn—1
Oxpn—_o Oxg 8xn 2 OTp—3 OTyp_9 OTyp_o
(|5 (5 | 52%5)
dzo | dzo Jzo aﬂcn 2
/ —_— —
9n-1) = =
<an2‘8:p0> <8xn2’8xn 2>
_ 8Nn—l 8577,—1 _aﬁn—l 8571—1 . _aﬁn—l 8f§n—l
Oxg oxg oxg o1 0xrg OTp_2
_6"‘377,71 a’infl .
— 8%1 8x0
. _a’ﬁn—l OKn—1
: 0Tn—3 0Tpn_2
_Okn—1 Okin_1 . _Okn—10Kn_1 1— Okn—1 Okn—1
OTn_o Oz OTn_9 OTn_3 OTpn_9 OTn_o

and the matrix determinant lemma [2, Cor. 18.1.3],
det g(,—1) = 1 + || grad fn_1||* and det gznfl) =1— ||grad k,_1]?

hold. Hence we have

~ n
d(OK)=n-d(0K) = m -\ /det g(n_l)dxg s dTp_o =

I/O; ey Un—2, anl) . \/H grad ’in—l”Q + 1dl‘0 . dajn—Q
wr Vo vna)|P+ 12,
VO)" yVn—2,Vn— 1)d$0"'d$n72,

V-1
/
d(OK) =& - d'(0K) = ———n -\ [+det g, drg- - dry =
—(n’|n’) "
(Vo -+ Vg Vi)

VAN )2+ v
/=l grad rp_1 | + ldzg - day o =

/ / /
= (v, - |’;”_2" V1) dxo---drp,—o if Tx(0K) is spacelike,
n—1
. n’
d’(aK) = n/ . d/(aK) — m . — det gZTL—l)de - dmn_2 —
(VGa---aV/anyVZq)

I )2 -
v+l grad k1|2 — ldzg - dap_o =
(V{)""’V;’L—Q’V'ln,—l)

= ; dxo - drp—o if Tx(0K) is timelike,
’Vn—l‘
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where the last equalities of 3 calculations above come from parallelisms of
(7) and n, (8) and n’, and (8) and n’, respectively.

For ¢ =0, i.e., for x = (ko(x1,...,Zpn-1),Z1,...,Tn_1), tangent vectors
ox Okg
— (20 0,...,0,1,0,...,0) (i=1,....n—1

1—1 times m—1—1 times
are perpendicular (resp. pseudo-perpendicular) to

Oro Oro

(9) (—1,grad ko) = (-1,

8&0 6/{0 8%0
-1, —... —
( ’ 81171 ’ ’ 81‘,172 ’ 8.%‘”71 ))’

which is parallel to n (resp. n’). From

(10) (resp. ¢(—1, grad ko)

ox ox ., Ox _0x
oxr1 " Ox1 oxr1 " Oxp_1
ox  ox . L. ox Ix
Oxp—1 " Ox1 OTp—1 " OTp—1
Org Org 4 1 Org Ok e ko _Okg
8901 81‘1 8:[1 61‘2 8331 an_l
Ok 9Krg :
— Oxa Ox1
9
. OKg OKg
: ’ O0xp—2 OTp—1
Oko _ OKg . Okg  Okg Okg  Okg +1
OTn_1 Ox1 OTpn_1 O0Tn_o  OTp_1 OTpn_1
ox | Ox ox ox
<Tm Txl> <Tm 8xn_1>
r _
90) = : =
( Ix 87x> cee e | ox | Ix )
OTp_1 ! 0x1 OTp_1 ! 0Tp_1
Oro Oko | 1 Oko Okg e Okg _Okg
o0x1 Ox1 0x1 Ox2 0x1 Oxn_1
Ok 9Kg
_ Oxg Ox1
- 9
: Oko _ Oko Ok Oko
0Tp_2 0Tp—2 + 1 0Tn—2 0Tpn_1
Oko__ Oko . Okg  Okg Okg _Okg 1
a337171 8:c1 8£E'nfl 8527172 8:L'nfl 8£E’,L71

and the matrix determinant lemma ([2, Cor. 18.1.3] and [2, Thm. 18.1.1]
for

1 0 v «-- 0
0
R=1]:"

1 0

0 --v --- 0 —1

and T = 1, respectively),

det g(oy = 1+ || grad kol/? and det 920) = —(1 + (grad ko |grad ko))



100 Kenzi Sato

hold. Hence we have

d(BK) d(aK) det 9(0) dri---dr,_1 =

(V07V17"'7VTL—1) \/
= /14 || grad ko||?dzy - - - dxp—1 =
VG v, va)]?
_ (VO’Vh.”?Vn_l)d.’I}l"'d.’L'n_l,
|vol
rl/
d,(aK) = \/ﬁ -y /+det gEO)dxl cedxp—1 =

(vy, V- V1)
V= (0 DI V)
-v/—1— (grad kg|grad ko)dz - - - dx,_1 =

! / /
= (vo, 1 V”_l)dxl coodrp—q  if Tx(0K) is spacelike,
Vo]
/
' _ n i / -
4(0K) = +(n’|n’) det g(O)dx1 dn-1 =

- (vy, V- V1)
VAR + (W V)W Vo)
- /41 4+ (grad ko |grad ro)dz - - - dx, 1 =

_ (VE)’V/l’"'?V;L—l)

vol
where the last equalities of 3 calculations above come from parallelisms of
(9) and n, (10) and n’, and (10) and n’, respectively. O

dzry---drp—q if Tx(0K) is timelike,

n' = (v,...,v,_;) is non-zero, so, one of v/;’s is non-zero. Hence we can

expand d'(0K) to all smooth points of K,

/

(11) d'(0K) = W ‘ codrg_1dresy - - drp_q,

Yy
where £ = 0,..., n — 1 such that v/}, # 0. The following lemma is essential in
this paper.

Lemma 3.2. It holds that
d' (0K) = —(d(0K)).

Proof. Let ¢ be such that (zo,...,2¢_1,Tei1,...,2Tn—1) is a local coordinate
of 0K around x. Then neither v, nor v/ is zero, so we have

n
d'(0K) = ‘ | o dryg_1droiy - drn,_1 =
Ve
n
= *L(Wdaio cedryp_qdres - - drp_1) = —u(d(0K)),
where n = (vg,...,vp—1), 0 = (V(,...,v),_;), and the first, second, and

last equalities come from (11), (4), and Lemma 3.1. O
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This lemma implies Theorems 1.5 and 1.4.
Proof of Theorem 1.5. We have
/ (A|d'(OK)) / A . d(0K) / div Ad(R") =
oK
= / div Ad' (R"! x R),
K

where the first, second, and last equalities come from Lemma 3.2, Theorem
1.2, and (6), respectively. O

Proof of Theorem 1.4. We have
/ d'(0K) = —L(/ d(0K)) = —1(0) = 0,
oK oK
where the first and second equalities come from Lemma 3.2 and Theorem
1.1, respectively. O

Theorem 1.4 can be also shown by Theorem 1.5 (see Introduction).

Another proof of Theorem 1.4. The conclusion comes from

/8K<eg|d/(3K)> = /Kdivegd’(]R”_l x R) = —/KOd’(R”_I x R) =0,

for £ =0,..., n — 1, where the first equality comes from Theorem 1.5. O

To prove Corollaries 1.3 and 1.6, we need following Lemmas 3.3 and 3.4,
respectively. Let S C S"! be a spherical simplex of Euclidean space R™
with vertices pg,. .., P;,_;; let Si be the opposite facet of p;; and let K and
K}, be as in (1) and (2), respectively. Then we have the following lemma.

Lemma 3.3. It holds that

| Sk|
K| =

‘ k| n— 1)

where | K| is the (n—1)-volume of induced metric on Ky, of Euclidean space
R™.

Proof. Let (sg,...,s,—3) be a local coordinate of Sk, i.e., y € S is repre-
sented by
(12) ()\k,[)(307 ceey Sn_g), ey Ak,nfl(s()a e ,Sn_g))
for some functions Axq,..., Akn—1. Then it induces naturally a local coor-
dinate (sg,...,Sp—3,t) of K, i.e., x € K} is represented by
(13) ty = (tAe,0(505- -5 5n—3), -, tAkn—1(50, ..., 5n—3)).
Metric tensors of Sy and Kj, are

dy Oy Jy oy

dso 850 e % * O08n_3

hi = : :
9 9y ... 9y dy

0sn—3 " 0sg 0Sp—3 " OSp—3
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and
ox ox ., Ox _0x Ox  0Ox
dsg " Osg 0sg " Osp_3 dsg © Ot
9k = ox ox . ox ox ox ox -
0sp—3 " 0sg 0Sp—3 " 0Sp_3 08p—3 * Ot
Ox ox ... Ox _ox Ox” ox
ot * Jso Ot * 0sn—3 ot ot
9y 49y . 9y 4 9y Oy
t@so : taso taso . t88n73 t@so -y
- oy dy dy -
tasn 3" tBSO tasn 3" taasn_g tasn_g -y
y.tasyO Y-to y.y
20y Oy . 2 0y oy
t Oso dsg t 0sg " OSp—3 0
o 2 8y Oy .. 2 Oy Jy 0 ’
O0sn_3 " Osg O0Sp_3 " O8p_3
0 0 1

respectively. So we have

Vdet g, = t"2\/det hy,.

It implies that

|Kk‘ = d(Kk;) = / v/det gpdsg - - - dsp—3dt =
K Kk
1
= / "2t / V/det hydsg - - - dsp_3 =
0 Sy

1 1
B /Sk d(Sk)_ n—l’Sk" 0

n—1

Let S € H"! be a hyperbolic simplex of Minkowski space R~ x R with
vertices pg,. .., Py_1; let S be the opposite facet of p;; and let K and K},
be as in (1) and (2), respectively. Then we have the following lemma, which
implies Corollary 1.6.

Lemma 3.4. It holds that
| Kyl = 1B
1’

where |Ky|" is the (n—1)-volume of induced pseudo-metric on Ky, of Minkowski
space R""'xR. (notice that Sy is Riemannian and K}, is pseudo-Riemannian,
precisely, a timelike hyperplane).

Proof. Let (so,...,s,—3) be a local coordinate of Sg. Then it induces nat-
urally a local coordinate (so, ..., sn—3,t) of Kj (see (12) and (13)). Pseudo-
metric tensors Sy, and K, are

<850’650> <d$0’88n 3>
=

<6Sn 3|630> <83n 3|65n 3>
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and
0 0 0 0
(g laae) - <dso‘asn - (5l
Ik = ox ox ox ox =
(7o 5ac) <asn 3’asn 2 {55150
(Fxoxy .. (x| 0x > (5% |2x)
ot 1 dsg 0Spn_3 ot t
0 0 0
(L |taky o (tPX|t asn ) (tzsly)
= oy (40 ay =
<tasny,3 ‘%T%) T <tas ‘aasny 3> <tasn}:3 ly)
(ylt52) - (yltge) (vly)
2/, 0 2,0
t <a§)\aso> t <3§J!asn =)0
- 2 2 N
<8sn 3|8so> t <65n 3|85n 3> 0
0 -1

respectively. So we have

= detg = -2, faoun,
It implies that
K| = / d(Ky) = / mdso eodsy_sdt =
Ky Ky,

1
= / " 2dt / det hjdsg - - - dsy—3 =
0 Sk

_ oy L gy
_ /Skd(sk)_nﬂsky. 0

n—1

Proof of Corollary 1.6. Let K be as in (1). Then, 0K consists of S and
Ky, (for k =0,...,n—1) as in (2) whose (n — 1)-volume is |Sk|"/(n — 1) from
Lemma 3.4 and whose outward pseudo-unit pseudo-normal vector is —py,
(see Figures 4 and 5). So, from Theorem 1.4 (remark that K} is a timelike
hyperplane), we have

/ xd'(H"™") +n§ S 0. O
xeS k=0 n—1
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FIGURE 4. Corollary 1.6 for n =2 (left) and n = 3 (right)

Awnfl
~p )~
7/ n'0'n’ 5
—n’ —n’
- ’
—0 —0 @0,y T2
—n —n’ -
—n’ —n’
—n’ —n’

i’ n'a/n’ i’
FIGURE 5. outward pseudo-unit pseudo-normal vectors
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