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THE DELTOID CURVE
AND TRIANGLE TRANSFORMATIONS

MICHAEL Q. RIECK

Abstract. Deltoid curves appear as consequences of certain procedures
in triangle geometry. The best known of these is the construction based on
Simson lines, described by Steiner. This is carefully related, in this article,
to a less known construction. The standard deltoid in the complex plane
and its tangent lines are principle objects of study in this report. It is known
that each point in the interior of this curve is the orthocenter of a triangle
with distinct vertices on the unit circle, whose product is one. (If instead the
point is on the deltoid, then at least two of the vertices coalesce, resulting
in a degenerate triangle.)

When the vertices are all raised to some specified integer power, a new
(possibly degenerate) triangle results. By varying the triangle, one may thus
consider the map taking the original triangle’s orthocenter to the resulting
triangle’s orthocenter. Such maps are the other principle objects of study
here. The points that are mapped to the deltoid lie on easily described
curves. By varying the power involved in the map, a pleasing family of
curves results, which includes a trifolium curve. The points that are mapped
instead to the origin are described as the points of intersection of certain
tangents to the deltoid.

1. Introduction

Deltoid curves, also called tricuspids/tricuspoids, are easily described by
rolling a circle inside a circle whose radius is three times bigger than that
of the rolled circle. A point fixed relative to the rolled circle travels along
a deltoid curve in the plane for which the larger circle is fixed (See [2], [6],
and [7]). All deltoids in a plane are of course equivalent in the sense that
any one of them can be transformed into any other one by a combination of
scaling, rotating and translating. It is convenient and sufficient throughout
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this paper to focus solely on the “standard” deltoid in the Cartesian plane,
which satisfies the equation

(1) (x2 + y2)2 + 18(x2 + y2)− 8x3 + 24xy2 − 27 = 0.

When the plane is regarded as the complex plane, as will be the case through-
out, the equation can be rewritten as

(2) z2 z̄2 − 4(z3 + z̄3) + 18zz̄ − 27 = 0.

This deltoid can also be expressed as the curve traced out by

(3) z = 2eiθ + e−2iθ

as the real parameter θ ranges from say −π to π (See [3]).

Lemma 1.1. For fixed θ, the line segment connecting the two points ±2eiθ+
e−2iθ on the deltoid is tangent to the deltoid at the point e4iθ + 2e−2iθ. Also,
this segment has slope tan θ and length 4.

Proof. First we must establish that the points −2eiθ+e−2iθ and e4iθ+e−2iθ

are indeed on the deltoid; 2eiθ + e−2iθ certainly is. Replacing θ by θ + π in
2eiθ+e−2iθ yields −2eiθ+e−2iθ, so −2eiθ+e−2iθ is on the deltoid. Replacing
θ by −2θ in 2eiθ+e−2iθ yields e4iθ+2e−2iθ, so e4iθ+2e−2iθ is on the deltoid.

Next, we need to know that the points ±2eiθ + e−2iθ and e4iθ + 2e−2iθ

are collinear. (e4iθ + 2e−2iθ) − (±2eiθ + e−2iθ) = e4iθ + e−2iθ ∓ 2eiθ =
eiθ(e3iθ + e−3iθ ∓ 2) = 2 eiθ(cos 3θ ∓ 1). The tangent of the argument of
this is just tan θ, regardless of which sign we use for “±.” So it is clear that
the three points are collinear and lie on a line with slope tan θ.

Now consider the tangent line to the deltoid at z = x+ iy = 2eiθ + e−2iθ.
This has slope

dy

dx
=

dy
dθ
dx
dθ

=
d
dθ [2 sin θ − sin 2θ]
d
dθ [2 cos θ + cos 2θ]

=
2 cos θ − 2 cos 2θ

−2 sin θ − 2 sin 2θ
=

cos 2θ − cos θ

sin 2θ + sin θ

=
2 cos2 θ − cos θ − 1

sin θ (2 cos θ + 1)
=

(cos θ − 1)(2 cos θ + 1)

sin θ (2 cos θ + 1)
=

cos θ − 1

sin θ
= − tan

θ

2 .

By replacing θ with −2θ, we see that the slope of the tangent line at e4iθ +
2e−2iθ is just tan θ, and therefore this must be the line connecting the two
points ±2eiθ + e−2iθ.

Of course, the segment has length 4 since (2eiθ+e−2iθ)−(−2eiθ+e−2iθ) =
4eiθ. All that remains is to show that the point e4iθ + 2e−2iθ lies between
the points ±2eiθ + e−2iθ. But we can write 2 (e4iθ + 2e−2iθ) = (1 +λ)(2eiθ +
e−2iθ) + (1 − λ)(−2eiθ + e−2iθ) = 4λeiθ + 2e−2iθ. Solving for λ, we get
λ = 1

2(e3iθ+e−3iθ) = cos 3θ. Since |λ| ≤ 1, it is now evident that e4iθ+2e−2iθ

lies between ±2eiθ + e−2iθ (not necessarily strictly).

The line segments described in the lemma are of particular importance.
Because of their well-known connection with the Kakeya needle problem,
they might be called needle positions, though they will just be referred to
as needles here. With the above foundation, we will now present a few in-
teresting and related phenomena, some of which are already known, but
most of which appears to be new. All of it is concerned with the geometry
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of a triangle, and very likely there are additional possible connections with
the subject of triangle geometry that could yet be discovered. Actually, an
already known connection involves rectangular circum-hyperbolas, though
this will not be explored in this paper (See [1]). It would also be desirable to
better relate these topics to a certain three-dimensional geometry problem
(See [8]).

2. Deltoids produced by triangle-related constructions

Figure 1. Three triangles and a deltoid

Two of the better known deltoid constructions that result from studying
triangle geometry are the Steiner deltoid and a deltoid that Kimberling
describes in Chapter 6 of his book [5]. Being unaware of any published
proof of the existence of the latter, nor any published connection of it to
the Steiner deltoid, such a connection will now be presented and proved.
However, we will approach these constructions in reverse, by starting with
the deltoid. Nevertheless, in this way we are able to establish the correctness
of the two constructions.

Beginning with the standard deltoid, and for any given real number θ, let
us identify the following points for discussion: α = eiθ, α′ = −α = −eiθ,
β = e−2iθ, β′ = −β = −e−2iθ, γ = e−2iθ + 2eiθ, γ′ = e−2iθ − 2eiθ, δ =
e4iθ + 2e−2iθ. As we know from Lemma 1.1, γ, γ′ and δ are collinear and
lie on the deltoid, with δ between γ and γ′, and this line is tangent to the
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deltoid at δ with slope tan θ. Referring to the segment of this line connecting
γ and γ′ as the needle N , its midpoint is β, which lies on the unit circle, as
well as on N . Now look at two other lines. Let L be the line connecting γ
and β′, and let L′ be the line connecting γ′ and β′. So L and L′ intersect at
β′. The midpoint between γ (γ′) and β′ is α (α′), and so α (α′) is on the
line L (L′). See Figure 1.

Lemma 2.1. The lines L and L′ are perpendicular. Moreover, L (L′) is
tangent to the deltoid at γ (γ′). Thus, as θ varies, the pencil of lines L (L′)
has the deltoid as its envelope.

Proof. The slope of L is the tangent of the argument of (e−2iθ + 2eiθ) −
(−e−2iθ), which is the tangent of the argument of e−2iθ + eiθ, which is

− sin 2θ + sin θ

cos 2θ + cos θ
=
−2 cos θ sin θ + sin θ

2 cos2 θ − 1 + cos θ
=

sin θ(1− 2 cos θ)

−(1 + cos θ)(1− 2 cos θ)

= − tan(θ/2). But in the proof of Lemma 1.1, it was shown that the tangent
line to the deltoid at γ has slope − tan(θ/2), and so must be L. Similarly,
it is straightforward to show that L′ and the tangent line to the deltoid at
γ′ both have slope cot(θ/2), and so must be the same line. Based on their
slopes, it is clear that L and L′ are perpendicular. There is a line L (L′)
for each γ (γ′) on the deltoid, and in fact, the deltoid is the envelope of this
pencil of lines.

Next fix three distinct complex numbers z1 = x1 + iy1, z2 = x2 + iy2
and z3 = x3 + iy3 with |z1| = |z2| = |z3| = z1z2z3 = 1, and regard these
as the vertices of a triangle with the unit circle as its circumcircle. We will
henceforth refer to such a triangle as being “amenable.” Of course it will be
a degenerate triangle if any two of z1, z2 and z3 are equal, which is allowed.
It will sometimes be helpful to select φ1, φ2 and φ1 so that z1 = eiφ1 ,
z2 = eiφ2 , z3 = eiφ3 , and φ1 + φ2 + φ3 = 0. Let zH = z1 + z2 + z3. It is
straightforward (See [6]) to see that zH is the orthocenter of the triangle,
and that z2z3 + z3z1 + z1z2 = zH .

Because two other (non-amenable) triangles need to be considered, the
triangle with vertices z1, z2 and z3 will be called the “reference triangle.”
One of the other two triangles has −z1, −z2 and −z3 as vertices, and so is
the reflection of the reference triangle about its circumcenter. Let us call
this the “reflected triangle.” We also need the triangle that has z1− z2− z3,
−z1 + z2 − z3 and −z1 − z2 + z3 as its vertices, which is the antimedial (an-
ticomplementary) triangle of the reflected triangle. It can also be obtained
via a homothetic transformation of the reference triangle, scaling by a factor
of two, and using zH as the homothetic center. Thus, its orthocenter is also
zH . Let us call this triangle the “large triangle.” See Figure 1.

We are now ready to prove the claim about the deltoid construction in
Chapter 6 of [5].

Theorem 2.1. With respect to the reflected triangle, the point β is on its
circumcircle, and the isogonal complement of β is the point at infinity in the
direction of the needle N that passes through β, γ and γ′. Consider the line
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on which N lies. As θ varies, the result is a pencil of lines whose envelope
is the deltoid.

Proof. With respect to the reflected triangle, the interior angle bisector at
the vertex −z3 goes through a point of the unit circle midway between −z1
and −z2, which can be checked using the Inscribed Angle Theorem. This
point is either ±ei(φ1+φ2)/2, which equals either ±e−iφ3/2. If +e−iφ3/2 then
when the line through −z3 and β is reflected about this interior angle bisec-
tor, the resulting line passes through −z3 and ei[2(−φ3/2)−(−2θ)] = ei(2θ−φ3).
But if −e−iφ3/2 then in the previous computation, φ3/2 can be replaced with

π+ φ3/2 to yield the same answer, ei(2θ−φ3). Let us now compute the slope

of this resulting line through −z3 and ei(2θ−φ3). This slope is the tangent of
the argument of ei(2θ−φ3) + eiφ3 , which equals

sin(2θ − φ3) + sinφ3
cos(2θ − φ3) + cosφ3

=
− cos 2θ sinφ3 + sin 2θ cosφ3 + sinφ3
cos 2θ cosφ3 + sin 2θ sinφ3 + cosφ3

=

sinφ3 (1− cos 2θ) + cosφ3 sin 2θ

cosφ3 (1 + cos 2θ) + sinφ3 sin 2θ
=

sin θ (sinφ3 sin θ + cosφ3 cos θ)

cos θ (sinφ3 sin θ + cosφ3 cos θ)

= tan θ. This is the same as the slope of the needle N , and so N is on the
line that we just constructed. Now, since β is on the circumcircle of the
reflected triangle (the unit circle), this line is aimed in the direction of the
point at infinity that is the isogonal conjugate of β. Allowing θ to vary now,
the constructed lines form a pencil of tangent lines to the deltoid, and the
deltoid is its envelope.

We next turn our attention to the construction of a deltoid based on
Simson lines, as developed by Steiner and discussed in [2]. This will here
be seen to be related to the above construction. Our primary focus now is
on the “large triangle”, i.e. the large dashed triangle in Figure 1, whose
vertices are not labeled. First note that the nine-point circle of this triangle
is the same as the circumcircle of the reference triangle (and the reflected
triangle).

Theorem 2.2. With respect to the large triangle, let ε and ε′ (= −ε) be the
opposite ends of the diameter of the circumcircle of the large triangle that is
parallel to the diameter of its nine-point circle, connecting α and α′ (= −α).
Assume that when moving along these two diameters in the same direction,
ε and ε′ occur in the same order as do α and α′. Then the Simson lines
for ε and ε′ are L and L′, respectively. As θ varies, the lines L (L′) form a
pencil of lines whose envelope is the deltoid.

Proof. The large triangle is obtained from the reference triangle by a homo-
thetic transformation, centered at zH , using a scale factor of two. Its vertices
are therefore 2z1 − zH = z1 − z2 − z3, etc. Since this transformation maps
the reference triangle to the large triangle, it maps the reference triangle’s
circumcircle to the large triangle’s circumcircle. It is also clear that ε and
ε′ are the images of α and α′, respectively. Thus, ε = 2α− zH = 2eiθ − zH
and ε′ = 2α′ − zH = −2eiθ − zH . Consider the orthogonal projection of ε
onto the sideline through the vertices −z1 + z2 − z3 and −z1 − z2 + z3. Let
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us denote this point as w = u+ iv (u and v real), for the moment. Letting
zj = xj + iyj (xj and yj real; j = 1, 2, 3), it is required that

v − (−y1 + y2 − y3)
u− (−x1 + x2 − x3)

=
y2 − y3
x2 − x3

,

so that (y3−y2)u+(x2−x3)v = (x3−x2)y1+x1(y2−y3). The orthogonality
means that it is further required that (x3 − x2)(u − 2 cos θ + xH) + (y3 −
y2)(v − 2 sin θ + yH) = 0. Solving these two equations for u and v yields

u =
(x2 − x3)2

1− x2x3 − y2y3
cos θ +

(x2 − x3)(y2 − y3)
1− x2x3 − y2y3

sin θ − x1 =

(1−x2x3+y2y3) cos θ−(x2y3+x3y2) sin θ−x1 = (1−x1) cos θ+y1 sin θ−x1
and

v =
(x2 − x3)(y2 − y3)
1− x2x3 − y2y3

cos θ +
(y2 − y3)2

1− x2x3 − y2y3
sin θ − y1 =

−(x2y3+x3y2) cos θ+(1+x2x3−y2y3) sin θ+y1 = y1 cos θ+(1+x1) sin θ−y1.
Now we will show that w is on the line L. α is on L, and w−α = w− eiθ,

so the slope of the line containing w and α is

v − sin θ

u− cos θ
=

y1 cos θ + x1 sin θ − y1
−x1 cos θ + y1 sin θ − x1

=
− sin θ

1 + cos θ
= − tan

θ

2 .

But in the proof of Lemma 2.1, it was shown that this is the slope of L.
Therefore w is on the line L. By symmetric reasoning, the orthogonal pro-
jection of ε onto each of the other two sidelines of the large triangle are also
on the line L. Thus, L is the Simson line for ε. Similarly, L′ is the Simson
line for ε′. By Lemma 2.1, L and L′ are tangent to the deltoid, and so as θ
varies, L (L′) sweeps out a pencil of lines whose envelope is the deltoid.

3. Deltoid interior points as triangle orthocenters

We begin this section by exploring needles and tangent lines for the del-
toid. It is evident from its graph that the deltoid separates the rest of the
plane into two (connected) regions, an “inside” and an “outside.” Except at
the three cusps of the deltoid, that a tangent line does not cut from one side
to the other side at the point of tangency.

One could observe here that if x and y in (1) are replaced respectively
with tx and ty, the discriminant of the resulting quartic polynomial in t is
a negative constant times y4 (3x2− y2)4. So, generally, the quartic has only
two (distinct) real roots. Assuming that x and y satisfy (1), then one of
these roots is 1, and with a little effort, it can be established that the other
root is negative. It is then safe to describe the inside (outside) of the deltoid
as the totality of points (tx, ty) for which (x, y) satisfies (1) and 0 ≤ t < 1
(1 < t).

One way to establish the claim about the tangent lines would be to con-
sider the evolute of the deltoid. This is the curve whose points are curvature
centers for the deltoid. It is well known that the evolute of a deltoid is also
a deltoid, three times bigger (in a linear sense) than the original deltoid,
and oriented in the opposite direction. So the curvature centers are outside
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the circle of radius 3 and inside the circle of radius 9, while the original
deltoid is inside the circle of radius 3, except at its cusps. This eliminates
the possibility of any non-cusp inflection points on the original deltoid.

Lemma 3.1. Consider any point on the deltoid, and its tangent line. This
tangent line contains a unique needle, which in turn contains the point, and
which stays inside the deltoid, except at the points that are on the deltoid.

Proof. The point can clearly be written as e4iθ + 2e−2iθ for some real θ.
Lemma 1.1 makes it clear that this point is on a needle, which is on the tan-
gent line to the deltoid at the point. The tangent line can be parameterized
as 2λeiθ + e−2iθ with λ ranging over the real numbers. We know that the
points for which λ = ±1 are on the deltoid. A direct computations reveals
that e4iθ + 2e−2iθ = 2λeiθ + e−2iθ when λ = cos 3θ.

If we now set z = 2λeiθ + e−2iθ in (2), we obtain the equation

4(1− λ2)(1− 2λe3iθ + e6iθ) = 0.

The only three solutions for λ are the three that we have already identified,
so the tangent line only intersects the deltoid at the corresponding three
points. If e4iθ + 2e−2iθ is not a cusp of the deltoid, then the tangent line
does not cut the deltoid at this point. The line can be seen to be non-tangent
at ±2eiθ + e−2iθ, and so it cuts the deltoid at these two points. The point
e−2iθ is on the line and also inside the deltoid, except in the three special
cases where it is on the deltoid.

So, except in a few special cases, we are able to say that 2λeiθ + e−2iθ is
inside (outside) the deltoid when |λ| < 1 (|λ| > 1). It is then very clear that
the tangent line contains a unique needle, the one connecting ±2eiθ + e−2iθ,
which of course contains e4iθ + 2e−2iθ. In the special cases, e4iθ + 2e−2iθ can
be seen to coalesce with one of the ends of the needle. These cases can be
handled as limiting cases.

Lemma 3.2. Two lines that are tangent to the deltoid intersect at a point
on the deltoid or in its interior.

Proof. Let’s consider two tangent lines, 2λ1e
iθ1 +e−2iθ1 and 2λ2e

iθ2 +e−2iθ2 ,
where θ1 and θ2 are fixed real numbers, but λ1 and λ2 ranges over all real
numbers. By solving 2λ1e

iθ1 + e−2iθ1 = 2λ2e
iθ2 + e−2iθ2 for λ1 and λ2, we

will of course locate the point of intersection of the two lines. This amounts
to solving the following matrix equation:

2

�
cos θ1 − cos θ2
sin θ1 sin θ2

� �
λ1
λ2

�
=

�
cos 2θ2 − cos 2θ1
sin 2θ1 − sin 2θ2

�
.

The solution to this is as follows:�
λ1
λ2

�
=

�
cos(θ1 + 2θ2)
cos(2θ1 + θ2)

�
.

In particular we see that |λ1| ≤ 1 and |λ2| ≤ 1, indicating that the two
tangent lines intersect at a point on the deltoid or in its interior.

Lemma 3.3. Each of the three altitude lines for the reference (amenable)
triangle are tangent lines of the deltoid.
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Proof.
When θ = φ1, we have α = z1, and will now show that the line L (which

passes through α) is the altitude line, for the reference triangle, through the
vertex z1. In the proof of Lemma 2.1, the slope of L was shown to equal
− tan(θ/2), which here equals − tan(φ1/2). The slope of the sideline through
the vertices z2 and z3 is [sinφ2− sinφ3]/[cosφ2− cosφ3] = [sinφ2 + sin(φ1 +
φ2)]/[cosφ2− cos(φ1 + φ2)] = [sinφ2 + cosφ1 sinφ2 + sinφ1 cosφ2]/[cosφ2−
cosφ1 cosφ2 + sinφ1 sinφ2] = [(1 + cosφ1) tanφ2 + sinφ1]/[(1 − cosφ1) +
sinφ1 tanφ2] = [(1+cosφ1)(tanφ2+tan(φ1/2))]/[sinφ1(tanφ2+tan(φ1/2))]
= cot(φ1/2). So L is clearly the altitude line through z1, and it is tangent
to the deltoid curve. Similarly for the other two altitude lines.

Theorem 3.1. With z1, z2 and z3 as the vertices of an amenable triangle,
its orthocenter zH satisfies zH = z1 +z2 +z3, and this point is on the deltoid
or in its interior.

Proof.
The fact that zH = z1 + z2 + z3 follows from [(x1 + x2 + x3) − x1](x2 −

x3)+[(y1+y2+y3)−y1](y2−y3) = (x2+x3)(x2−x3)+(y2+y3)(y2−y3) =
(x22 + y22)− (x23 + y23) = 0, and symmetric reasoning. Now, by Lemma 3.3,
each altitude line is a tangent line for the deltoid. By Lemma 3.2, these
lines must intersect on the deltoid or in its interior. But, of course, zH is by
definition this intersection point.

Corollary 3.1. Fix a real number θ. Consider the needle whose slope is
tan θ, that is, the needle parameterized by 2λeiθ + e−2iθ (−1 ≤ λ ≤ 1).
If the orthocenter zH of the triangle with vertices z1, z2 and z3 is on the
needle, then zH = 2λ0e

iθ + e−2iθ for some λ0 with −1 ≤ λ0 ≤ 1, and

{ z1, z2, z3 } = { e−2iθ, (λ0 ± i
È

1− λ20) eiθ }

Proof.
Just check that for these choices of z1, z2 and z3, |z1| = |z2| = |z3| =

z1z2z3 = 1 and z1 + z2 + z3 = 2λ0e
iθ + e−2iθ.

4. A family of transformations of triangles

Here and throughout the remainder of this paper, we continue to let z1,
z2 and z3 be complex numbers satisfying |z1| = |z2| = |z3| = z1z2z3 = 1. We
continue to regard these as the vertices of an amenable triangle, though this
would be a degenerate triangle if any two of the vertices are the same, which
is allowed. We continue to let zH denote the orthocenter of the triangle,
noting again that zH = z1 + z2 + z3 and that it is guaranteed to be on or
inside the deltoid.

Fix an integer n. A function pn will be defined and investigated in this
and in the next section of this paper. The domain and codomain of pn are
the set of complex numbers z on or inside the deltoid, that is, the set of
complex numbers z satisfying

(4) z2 z̄2 − 4(z3 + z̄3) + 18zz̄ − 27 ≤ 0.
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We will need the following fact before defining pn.

Lemma 4.1. If zH satisfies (4) when zH is substituted for z, then there
exists a unique multi-set of numbers {z1, z2, z3} such that |z1| = |z2| =
|z3| = z1z2z3 = 1 and z1 + z2 + z3 = zH .

Proof. As indicated previously, such numbers would necessarily also satisfy
z2z3 + z3z1 + z1z2 = zH , and so these numbers would be the roots of the
following cubic equation:

(5) z3 − zH z
2 + zH z − 1 = 0.

Of course, the multi-set of roots of this is equation is unique, establish-
ing the uniqueness of {z1, z2, z3}. To establish the existence of a suitable
{z1, z2, z3}, we will cite Theorem 4 in [6], which uses the fact that the dis-
criminant of the cubic polynomial here is the familiar z2H zH

2 − 4(z 3
H +

zH
3) + 18zH zH − 27, and which transforms the cubic, by substituting

(iw + 1)/(iw − 1) for z, to obtain a cubic in w whose real roots are then
investigated. The theorem asserts that for any complex number zH , the
discriminant is real, that at least one of the polynomial roots is on the unit
circle, and that all three roots are on the unit circle if and only if the dis-
criminant is negative. It is actually more accurate to say “non-positive”
here instead of “negative” because the case when the discriminant is zero
also results in all of the roots lying on the unit circle though now there will
be a repeated root.

We are now prepared to define the function pn. Given a number zH on
or inside the deltoid, let {z1, z2, z3} be the multi-set of solutions to (5).
These numbers can be regarded as the vertices of an amenable triangle.
The set of numbers {zn1 , zn2 , zn3 } also satisfies the same properties as the
{z1, z2, z3}, namely, |zn1 | = |zn2 | = |zn2 | = zn1 z

n
2 z

n
3 = 1. Regarding {zn1 , zn2 , zn3 }

as the vertex set for another amenable triangle, its orthocenter is simply
zn1 + zn2 + zn3 , and of course, this is on or inside the deltoid. pn(zH) is now
defined to equal zn1 + zn2 + zn3 .

Lemma 4.2. A few examples of pn(z) are as follows

p0(z) = 3
p1(z) = z
p2(z) = z2 − 2z̄
p3(z) = z3 − 3zz̄ + 3
p4(z) = z4 − 4z2z̄ + 2z̄2 + 4z
p5(z) = z5 − 5z3z̄ + 5zz̄2 + 5z2 − 5z̄

Additionally, the functions pn satisfy the following recurrence relation for
n ≥ 4:

(6) pn(z) = z pn−1(z) − z̄ pn−2(z) + pn−3(z)

Proof. The elementary symmetric polynomials in z1, z2, z3 have the fol-
lowing values: σ0 = 1, σ1 = zH , σ2 = zH , σ3 = 1. Well-known identities
of A. Girard and I. Newton relate the elementary symmetric polynomials
and the power-sum elementary polynomials, conventionally denoted pn. For



The Deltoid Curve and Triangle Transformations 87

instance, p2 = σ1p1 − 2σ2 and p3 = σ1p2 − σ2p1 + 3σ3. Also, one of the
formulas states that if n exceeds the number of indeterminates N used in
the polynomials, then

pn =

n−1∑
j=n−N

(−1)n−1+j en−j pj

For our situation, N = 3 and pn = e3 pn−3 − e2 pn−2 + e1 pn−1 = pn−3 −
z̄ pn−2 + z pn−1.

Lemma 4.3. For n ≥ 1:

(7) pn(z) = n ·
∑

α,β,γ≥0
(α+2β+3γ=n)

(α+ β + γ − 1)!

α!β! γ!
zα (−z̄)β

Additionally, pn(e±2πi/3z) = e±2πin/3 pn(z).

Proof. The summation formula is straightforward to check, by induction,
using Lemma 4.2. Now, if z is replaced with e±2πi/3z, then the general
term in the summation will be multiplied by (e±2πi/3)α−β. But α − β +
2n = 3α + 3β + 6γ ≡ 0 (mod 3). So α − β ≡ n (mod 3). Thus,

(e±2πi/3)α−β = e±2πin/3.

5. Triangles with special “powers”

In this section, the functions pn introduced in the previous section will be
investigated with an eye towards identifying points whose image is in some
way special, and thereby also understand something about amenable trian-
gles whose “powers” are in some way special. We begin by looking at points
z inside the deltoid that are mapped by pn to points on the deltoid. Since
only degenerate amenable triangles have an orthocenter on the deltoid, the
points identified here will be the orthocenters of triangles with the property
that at least two of the vertices have the same n-th power. This may not be
a particularly interesting question to ask about the triangles, but the curves
of points z for which pn(z) is on the deltoid are rather interesting, as is the
method for obtaining them.

Lemma 5.1. When w−nB+w2n is substituted for z in z2 z̄2− 4(z3 + z̄3) +
18zz̄−27, assuming that |w| = 1, the result factors as (B−2)(B+2)w−6n(1−
Bw3n + w6n)2.

Proof.

zz̄ = (w−nB + w2n)(wnB + w−2n) = Bw−3n + (1 +B2) +Bw3n,
z2z̄2 = B2w−6n + 2B(1 +B2)w−3n + (1 + 4B2 +B4)

+ 2B(1 +B2)w3n +B2w6n,
z3 + z̄3 = w−6n +B(3 +B2)w−3n + 6B2 +B(3 +B2)w3n + w6n.

Here are the coefficients of powers of w in the expansion of z2 z̄2 − 4(z3 +
z̄3) + 18zz̄ − 27.
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w−6 : (B − 2)(B + 2)
w−3 : 2B(2−B)(B + 2)
w0 : (B − 2)(B + 2)(B2 + 2)
w3 : 2B(2−B)(B + 2)
w6 : (B − 2)(B + 2)

The same coefficients occur in the expansion of (B − 2)(B + 2)w−6n(1 −
Bw3n + w6n)2.

Lemma 5.2. Assuming that n ≥ 1, that A is real and that |w| = 1,
wn pn(w2 + A/w) − w3n is independent of w, and is a polynomial qn(A)
in A only. Moreover, qn(A) = Aqn−1(A) − qn−2(A) for all n ≥ 3. In fact,
qn(A) = (−i)nLn(iA) where Ln is the n-th Lucas polynomial. Conse-
quently, pn(w2 +A/w) = w−nqn(A) + w2n = (−i)nw−nLn(iA) + w2n.

Proof. A direct check reveals that the claim is correct for n = 1, 2 and
3. We now argue by induction for n > 3. Assume now that for a given
positive n > 3, the claims are true for smaller values of n. Using the
recurrence formula (Lemma 4.2), together with the induction hypothesis,
we see wn pn(w2 + A/w) − w3n = wn [ (w2 + A/w) pn−1(w

2 + A/w) −
(w−2 + Aw) pn−2(w

2 + A/w) + pn−3(w
2 + A/w) ] − w3n = wn [ (w2 +

A/w)(w1−nqn−1(A) + w2(n−1)) − (w−2 + Aw)(w2−nqn−2(A) + w2(n−2)) +

(w3−nqn−3(A) + w2(n−3)) ] − w3n = Aqn−1(A) − qn−2(A) + [ qn−1(A) −
Aqn−2(A)+qn−3(A) ]w3 = Aqn−1(A)−qn−2(A) = A (−i)n−1 Ln−1(iA)−
(−i)n−2Ln−2(iA) = (−i)n [ (iA)Ln−1(iA) + Ln−2(iA) ] = (−i)nLn(iA).
Thus the claims are true for this particular value of n. By induction, the
lemma is true.

Lemma 5.3. Still assuming that A is real, we have 4 − qn(A)2 = (−1)n

·(A2 − 4)Fn(iA)2, where Fn is the n− th Fibonacci polynomial.

Proof. It is known that

Fn(x) =
(x+

√
x2 + 4)n − (x−

√
x2 + 4)n

2n
√
x2 + 4

and

Ln(x) =
(x+

√
x2 + 4)n + (x−

√
x2 + 4)n

2n .
From these formulas, it is straightforward to deduce that Ln(x)2 − (x2 +
4)Fn(x)2 = 4 (−1)n. Therefore, 4 − qn(A)2 = 4 − (−1)n Ln(iA)2 =
4− (−1)n [ (−A2 + 4)Fn(iA)2 + 4(−1)n ] = (−1)n (A2 − 4)Fn(iA)2.

Lemma 5.4. When pn(z) is used in place of z in z2 z̄2−4(z3 + z̄3)+18zz̄−
27, and then w2 + A/w is substituted for z, where A is real and |w| = 1,
the resulting expression is divisible by (A2 − 4)Fn(iA)2. So the resulting
expression is identically zero when A = ±2 as well as when iA is a root of
Fn.

Proof. pn(z) = pn(w2+A/w) = w−nqn(A)+w2n, by Lemma 5.2, and when
this is substituted for z in z2 z̄2 − 4(z3 + z̄3) + 18zz̄ − 27, the result equals
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(qn(A)2−4)w−6n(1−qn(A)w3n+w6n)2, by Lemma 5.1. By Lemma 5.3, this
is divisible by (A2 − 4)Fn(iA)2. The rest is then evident.

Figure 2. Curves mapped to the deltoid via p12.

Theorem 5.1. Fix a positive integer n. If n is even, let A be one of the
numbers 2 sin(jπ/n) (j = 0, 1, 2, ..., (n− 2)/2). But if n is odd, let A be one
of the numbers 2 sin((2j + 1)π/2n) (j = 0, 1, 2, ..., (n − 3)/2). The points
on the curve that is parameterized by Aeiθ + e−2iθ are mapped, under the
mapping z → pn(z), to the deltoid. The deltoid is also mapped to the deltoid.

Proof. From the results in [4], iA is a root of the Fibonacci polynomial
Fn. This claim about the curve Aeiθ + e−2iθ now follows immediately from
Lemma 5.4, upon setting w = e−iθ. The deltoid is or course mapped to
itself. z1, z2 and z3 are not distinct when zH is on the deltoid, and so zn1 ,
zn2 and zn3 are not distinct, and so pn(zH) is also on the deltoid.

It is worth noting that Aeiθ+e−2iθ with A = 1 describes a trifolium curve.
Figure 2 illustrates Theorem 5.1 for the case when n = 12. We will next see
that the function pn maps needles to needles.

Theorem 5.2. Fix a real number θ. Consider the needle whose slope is
tan θ, that is, the needle parameterized by 2λeiθ + e−2iθ (−1 ≤ λ ≤ 1). Fix
also an integer n. The function pn maps the needle with slope tan θ to the
needle with slope tannθ.

Proof.
By Corollary 3.1, we know that a point 2λeiθ + e−2iθ on the needle is the

orthocenter for the triangle having the vertex set { e−2iθ, (λ±i
√

1− λ2) eiθ }.
Write λ = cosψ for some real ψ. So the vertex set can be written as
{ e−2iθ, ei(θ±ψ) }. Raising these numbers to the n-th power, yields the vertex

set { e−2inθ, ein(θ±ψ) } for another triangle. This triangle has orthocenter
e−2inθ + 2 einθ cosnψ. This is evidently a point on the needle with slope nθ.
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Figure 3. Crossings of certain needles for n = 8.

We will close by considering the points that are mapped to zero by pn.
If zH = z1 + z2 + z3 = 0, then it can be reasoned that the triangle is
equilateral, and in fact that {z1, z2, z3} = {1, e2πi/3, e−2πi/3}. So at the
level of the triangles, we are here asking about triangles whose “n-th power”
is this equilateral triangle. The following describes the orthocenters for these
amenable triangles, i.e. all of the complex numbers z for which pn(z) = 0.
Figure 3 illustrates this result when n = 8.

Theorem 5.3. Fix a positive integer n. For j1, j2 ∈ {0, 1, 2, · · · 3n − 1}
with j1 6≡ j2 (mod 3), let j3 ∈ {0, 1, 2, · · · 3n − 1} be such that 3n divides
j1 + j2 + j3. The three needles with slopes tan(−πj1/3n), tan(−πj2/3n) and

tan(−πj3/3n) are coincident, and meet at the point e2πij1/3n + e2πij2/3n +

e2πij3/3n. Moreover, pn(e2πij1/3n + e2πij2/3n + e2πij3/3n) = 0. In fact, the
equation pn(z) = 0 has n2 solutions, all of which can be obtained in this
manner.

Proof.
The three needles are described parametrically as 2λeiθ1 +e−2iθ1 , 2λeiθ2 +

e−2iθ2 and 2λeiθ3 + e−2iθ3 , where θk = −πjk/3n (k = 1, 2, 3). The point
e−2iθ1 + e−2iθ2 + e−2iθ3 is the intersection of these three needles. It is on
the first needle because e−2iθ1 + e−2iθ2 + e−2iθ3 = e−2iθ1 + ei[θ1−(θ1+2θ2)] +
ei[θ1+(θ1+2θ2)] = e−2iθ1 + 2 eiθ1 cos(θ1 + 2θ2). Similarly for the second and
third needles.

Now consider the triple {z1, z2, z3} satisfying |z1| = |z2| = |z3| = z1z2z3 =
1 and zH = z1 + z2 + z3 = e−2iθ1 + e−2iθ2 + e−2iθ3 . Since zH is on the
first needle, by Corollary 3.1, one of the numbers z1, z2, z3 must be e−2iθ1 .
Similarly, one must be e−2iθ2 , and one must be e−2iθ3 . But these must
be distinct because of the restictions on j1, j2 and j3. So, {z1, z2, z3} =

{e−2iθ1 , e−2iθ2 , e−2iθ3} = {e2πij1/3n, e2πij2/3n, e2πij3/3n}. So, {zn1 , zn2 , zn3 } =

{e2πij1/3, e2πij2/3, e2πij3/3} = {1, e2πi/3, e−2πi/3}. So, pn(zH) = 0.
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By varying j1 and j2 (and so also j3) we obtain in this way n2 distinct
solutions to the equation pn(z) = 0. Of course, because of the complex
conjugate of z appearing in (7), pn(z) is not a polynomial function of z.
However, it is easy to see that there is a degree-n polynomial function Pn
of two variables such that pn(z) = Pn(z, z̄), and that pn(z) = pn(z̄) =
Pn(z̄, z). So if pn(z) = 0 then Pn(z, z̄) = Pn(z̄, z) = 0. Using w as
a variable that is independent of z, the condition pn(z) = 0 (for some z)
implies that the system of equations Pn(z, w) = 0 and Pn(w, z) = 0
has a common solution for w. The resultant polynomial in z, obtained by
eliminating w from the system of equations must then vanish too. However,
by the theory of resultants, this polynomial in z can have degree at most
n2, and so have at most n2 roots. So there are at most n2 solutions to the
equation pn(z) = 0. Since we have already identified n2 solutions, these
must be all of the solutions.

References

[1] Carver, W. B., The rectangular hyperbola, Amer. Math. Monthly, 63(9)(1956) 77–84.
[2] Fettis, H. E., Geometric properties of the deltroid, National Math. Mag., 19(7)(1845)

227–335.
[3] Gongopadhyay, K., Parker, J. R., Parsad, S., On the classification of unary matrices,

Osaka J. Math., 52(4)(2015) 959–991.
[4] Hoggett, V. E., Bicknell, M., Roots of Fibonacci polynomials, Fibonacci Quarterly,

11(3)(1973) 271–274.
[5] Kimberling, C., Geometry in Action: A Discovery Approach Using The Geometer’s

Sketchpad, Key College Publishing, Emeryville, CA, USA (2003).
[6] MacKenzie, D. N., What is the shape of a triangle?, Note di Matematica, 13(2)(1993)

237–250.
[7] Patterson, B. C., The triangle: its deltoids and foliates, The Amer. Math. Monthly,

47(1)(1940) 11–18.
[8] Rieck, M. Q., Related solutions to the perspective three-point pose problem, J. Math.

Imaging and Vision, 53(2)(2015) 225–232.

MATHEMATICS AND COMPUTER SCIENCE DEPARTMENT
DRAKE UNIVERSITY
DES MOINES, 50311 IA, US
E-mail address: michael.rieck@drake.edu


