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PROJECTIVITIES AND CIRCUMCONICS

OF A TRIANGLE

PARIS PAMFILOS

Abstract. In this article we study some conics defined by a projectivity
of the plane, which has precisely three ordinary fixed points. We discuss the
mutual relations between these conics and the defining them projectivity
and prove a characterization of these projectivities reducing their definition
to a circle and five distinct points on it. The subject represents a link
between projective geometry of the plane and Euclidean geometry, showing
in particular an intimate relation between conics circumscribing a triangle
and generic projectivities.

1. Introduction

“Projectivities” or “Projective transformations” of the real plane are con-
tinuous invertible transformations of the plane into itself preserving collinear-
ity ([6, p.52]). The aim of this article is to study the relations between
“generic” projectivities and “circumconics” of triangles, i.e. conics passing
through the vertices of the triangle ([9, p.332], [24, p.109]).

By saying “generic” we exclude the subgroup of affinities, studied in an
earlier article [15] and consider projectivities of the real plane which have
precisely three real fixed points, none of them lying at infinity. The three
fixed points of the projectivity f define the triangle ABC and its circumcir-
cle κ and we’ll see that f defines also a unique pair of points {D,E = f(D)}
on κ, which, together with the fixed points suffice to completely determine
f (see Figure 1).

By the “fundamental theorem of projectivities of the plane” ([23, I, p.96]),
according to which “a projectivity is uniquely defined by giving four points
and their images”, the above configuration certainly defines a projectivity
fixing the three vertices of the triangle ABC and mapping D to E. The
discussion expanded below shows that the converse is also true, i.e. given a
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Figure 1. The basic configuration defining a “generic” projectivity

generic projectivity f, possessing three ordinary fixed points forming a tri-
angle ABC, we can find on the circumcircle, and more general on a circum-
conic κ of the triangle, a unique pair of points {D,E} with the property
f(D) = E.

Representing the given projectivity f with a matrix, its fixed points
correspond to the eigenvectors of the matrix and are readily determined
using elementary linear algebra. This defines the triangle ABC and its
circumcircle. In the configuration of figure 1 the circle could be replaced
by an arbitrary circumconic of the triangle ABC of fixed points of f. The
detection of the other two points {D,E} for a given projectivity f by our
method, involves the consideration of the so-called “conic of intersections
CoIf (P ) ” of f relative to a non-fixed point P ̸= f(P ) of the projectivity.
Figure 2 suggests their definition: As the line ε revolves about a point P,
the image-line ε′ = f(ε) revolves about the image point P ′ = f(P ) and the
intersection of the two lines Q = ε ∩ f(ε) describes a conic µP = CoIf (P )
circumscribing the triangle ABC.
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Figure 2. A conic of intersections µP = CoIf (P )

The shape of the conic µP depends on the selected point P, and vary-
ing the location of P we obtain all kinds of conics, genuine, as well as
degenerate.

More precisely, it turns out and will be proved below, that the kind of
the conic µP depends on the relative location of P w.r.t. to a parabola
κf associated with the projectivity. This parabola is the tangent to the
three side-lines of the triangle and the line εf , which maps to infinity by
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f (see Figure 3). For ordinary points P of the plane, not lying on a side-
line of the triangle ABC, the conic µP is an ellipse/parabola/hyperbola
when P is respectively inside/on/outside the parabola. Given the generic
projectivity f, the precious point D on the circumcircle κ, establishing the
configuration of figure 1, is the focus of the parabola κf , the circumcircle
κ coinciding then with µD = CoIf (D).
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Figure 3. The parabola κf of the projectivity f

Because of the facts: (i) that every conic of intersections CoIf (P ) passes
through the vertices of the triangle ABC, and (ii) that given a generic
projectivity f and a particular circumconic κ, every other circumconic can
be represented in the form of a CoIf (E) for an appropriate point E ∈ κ,
the whole subject represents a link between the projective geometry of the
plane and the advanced Euclidean geometry involving “circumconics”.

Regarding the organization of the material, we start in section 2 with a
short review of projectivities of the projective plane, later in the form of the
extended Euclidean plane. In section 3 we take a closer look at the conics
of intersection, discussing their basic properties. In section 4 we make a
digression in an other non-generic kind of projectivities, the “homologies”,
and justify why we exclude them in connection with pairs of circumconics.

In section 5 we study the parabola κf of a generic projectivity control-
ling the shape of the various {µP = CoIf (P )}. In section 6 we study the
particular case in which we consider the circumcircle κ as the fundamental
circumconic and relate any other circumconic to a projectivity and vice-
versa. In section 7 we fix a generic projectivity f and study the shape of
the various circumconics µP = CoIf (P ) of the triangle ABC of its fixed
points, in dependence of the location of the point P relative to the hyper-
bola κf associated with f.

In section 8 we throw a glance at projectivities different from affinities,
having again precisely three fixed points, but one of them lying at infinity.
Two fixed points at infinity, would imply that the line at infinity is invariant
and the projectivity reduces to an affinity, which we have excluded. With
one fixed point at infinity the triangle ABC becomes infinite and all conics
µP = CoIf (P ) become hyperbolas and in some cases also parabolas.
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The remaining sections 9, 10, 11 and 12 are devoted to applications of the
discussion in some concrete examples, which are respectively the “Steiner
ellipse”, some formulas in computing with “barycentrics”, the “Jerabek hy-
perbola” and the general parabolas circumscribing a triangle.

2. Projective plane and generic projectivities

When one considers relations between Euclidean and projective geom-
etry it is natural to use the model of the projective plane resulting from
the extension of the Euclidean one through the addition of the “line at in-
finity” ℓ∞. In this model, the “ordinary” points of the Euclidean plane
are represented w.r.t. a Cartesian coordinate system by constant multi-
ples of triples of real numbers of the form (x : y : 1) and we denote them
by capital letters {A,B, . . .}. The “points at infinity” making up the “line
at infinity” ℓ∞ and extending the Euclidean plane to the projective one
are represented by triples of the form (x : y : 0) and, if we want to em-
phasize their special location, we denote them by {[A], [B], . . .}. Triples
(x′ : y′ : z′) = k(x : y : z) = (kx : ky : kz) differing by a non-zero multiplica-
tive constant represent the same point. Equation z = 0 represents the line
ℓ∞ and its points (x : y : 0) can be identified with pairs (x : y) defining “di-
rection” vectors of lines of the Euclidean plane. Thus, for a point at infinity
[A] we may speak of the “direction” of [A] or the point at infinity where
two parallel lines meet. Analogously, the line B[A], i.e. the line through
B and [A] is meant to be the line through B in the direction determined
by the point at infinity [A].

In this model of the projective plane, a projectivity is represented by
an invertible 3× 3 real matrix M. Two quadruples of points “in general
position”, i.e. no three of them collinear, define such a matrix up to a non-
zero multiplicative constant, representing a projectivity mapping the ordered
points of the first quadruple to corresponding points of the second. In fact,
denoting the points by Pi(xi : yi : zi) and their images by Qi(x

′
i : y

′
i : z

′
i)

for i = 1..4, the matrix M of the corresponding projectivity is defined by
the matrix equations MP = QK and MP4 = k4Q4 with

M =

a1 b1 c1
a2 b2 c2
a3 b3 c3

 , P =

x1 x2 x3
y1 y2 y3
z1 z2 z3

 ,

Q =

x′1 x′2 x′3
y′1 y′2 y′3
z′1 z′2 z′3

 , K =

k1 0 0
0 k2 0
0 0 k3

 , P4 =

x4
y4
z4

 , Q4 =

x′4
y′4
z′4

 .

The matrices {M,K,P} are by assumption invertible, this leading to equa-
tions

M = QKP−1 and (QKP−1)P4 − k4Q4 = 0 .

Last equation defines a homogeneous linear system of three equations and
four unknowns: the numbers {k1, k2, k3, k4}. Its solutions are constant mul-
tiples of one particular solution: {(k1, k2, k3, k4) = k(a, b, c, d), k ∈ R}. This
determines the matrix M up to a multiplicative constant, which is compat-
ible with the determination of the projectivity, since points of the projec-
tive plane, as we noticed, are represented by coordinate triples (x : y : z)
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defined up to a multiplicative constant. We denote the projectivity deter-
mined through such a matrix by f and also by fM , if we aim to stress
its dependence from the matrix. The line εf , sent to infinity by fM , is
determined by the linear equation of the last row of M :

εf : a3x+ b3y + c3z = 0 .

By saying “generic”, we assume that the matrix M has three distinct real
eigenvalues {k1, k2, k3} and corresponding eigenvectors {e1, e3, e3} with cor-
responding triples of coordinates {(xi : yi : zi), zi ̸= 0, i = 1, 2, 3}, i.e. defin-
ing “ordinary” points of the plane, which are fixed by the projectivity. Next
lemma guarantees that such a projectivity f never reduces to an “affinity”,
later characterized by the fact, that the line at infinity remains invariant
under f, equivalently εf = ℓ∞ ([5, p.191], [6, p.98]).

Lemma 2.1. If the invertible matrix M has three distinct independent
eigenvectors corresponding to ordinary points of the plane, i.e.

Pi(xi : yi : zi) with zi ̸= 0 and MPi = kiPi for i = 1, 2, 3 ,

then the corresponding projectivity fM is an affinity (ε∞ = ℓ∞) , if and only
if the three corresponding eigenvalues {k1, k2, k3} of M are equal.

Proof. We may pass to the eigenvectors {Qi(si : ti : 1) = (xi/zi : yi/zi : 1)}.
Denoting by Q the matrix with columns {Qi} and the diagonal matrix of
the {ki} with K, the matrix M, satisfies

MQ = QK ⇒ M = QKQ−1 .

Doing the matrix multiplications, the third row of the matrix M is found
to be

(0, 0, 1)M = ((0, 0, 1)Q)KQ−1 = (1, 1, 1)KQ−1 = (k1, k2, k3)Q
−1 = V .

Should V coincide with (0, 0, k) (the coefficients of the line z = 0 ), then
we would have (k1, k2, k3) = (0, 0, k)Q = (k, k, k), which proves the lemma.

3. The conics of intersection

As we noticed in the introduction, given a generic projectivity f of the
plane, a conic of intersection µP = CoIf (P ) for a non-fixed by f point P,
is defined by considering the lines λ through the point P and their images
λ′ = f(λ) through P ′ = f(P ). This correspondence of lines f : λ 7→ λ′ is
a “homography” between the pencils {P ∗, P ′∗} of lines through P and of
lines through P ′. By the Chasles-Steiner principle of generation of conics ([4,
p.5], [2, p.72], [10, p. 259]), this implies that the intersections {Q = λ ∩ λ′}
describe a conic passing through {P, P ′}. Obviously if λ passes through a
fixed point X of f, then its image λ′ = f(λ) passes also through X. Thus
all conics CoIf (P ) pass also through all the fixed points of f. We formulate
these simple facts in the form of a theorem (see Figure 4).

Theorem 3.1. Given a generic projectivity f with fixed points {A,B,C}
and a non-fixed point P, the conic of intersections µ = CoIf (P ) passes
through the fixed points and also through the points {P, P ′ = f(P )}.

The following propositions formulate basic properties of the conics of in-
tersections.
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Figure 4. The conic µP = CoIf (P ) passing through {P, P ′}

Lemma 3.1. Given four points {A,B,C,D} in general position, every pro-
jectivity f fixing the points {A,B,C} corresponds bijectively to one point E
with the property E = f(D). For such a projectivity f, the conic µ passing
through the five points {A,B,C,D,E} coincides with CoIf (D).

Proof. These are trivial consequences, the first resulting from the “fun-
damental theorem of projectivities” alluded to in the introduction, and the
second from the fact, that five points in general position determine a unique
conic passing through them.

Lemma 3.2. Given the generic projectivity f with fixed points {A,B,C},
a conic µ can be represented as µ = CoIf (P ) for at most a unique point
P.

Proof. This follows immediately from the property of cross ratio of a pencil
P (UV ;WZ) of four lines {PU,PV, PW,PZ} passing through these five
points {P,U, V,W,Z} of the conic ([1, p.352]): “ for fixed positions of the
points {U, V,W,Z} on the conic, the cross ratio P (UV ;WZ) is independent
of the position of P on the conic”. Having that, assume that two points
{P, P ′} produce the same conic CoIf (P ) = CoIf (P

′) = µ with image points
{f(P ) = Q, f(P ′) = Q′ ∈ µ}. Then, since projectivities preserve the cross
ratio, we have

P ′(AB;CP ) = Q′(AB;CQ) = P ′(AB;CQ) ⇒ P = Q

and the projectivity fixes four points, hence is the identity and fixes all
points of the plane, contradicting the hypothesis.

Corollary 3.1. A conic CoIf (P ) of a generic projectivity f cannot be
invariant under f.

Proof. In fact, if µP = CoIf (P ) is invariant with P ′ = f(P ) ∈ µP = f(µP ),
then for two lines {λ ∋ P, λ′ = f(λ) ∋ P ′} generating by their intersection
Q = λ ∩ λ′ the conic µP , we’ll have

µP ∋ f(Q) = f(λ) ∩ f(λ′) ⇒ CoIf (P ) = f(CoIf (P )) = CoIf (P
′).

Thus µP is represented as CoIf (P ) for two different points P and P ′,
which by the preceding lemma is not possible, for P ′ ̸= P. Thus it must be
P ′ = P, implying that f fixes {A,B,C, P}, hence is the identity which is
impossible for a conic of intersections.

Lemma 3.3. The conic µ = CoIf (D) passing through the three fixed points
{A,B,C} of the projectivity f and the points {D,E = f(D)} has the fol-
lowing properties (see Figure 5).
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Figure 5. Tangents of µ = CoIf (D) and µ′ = f(µ)

(1) µ = CoIf (D) maps via f to a conic µ′ passing through the four
points {A,B,C,E} and it is µ′ = CoIf (E), i.e. the “operators”
commute: f(CoIf (D)) = CoIf (f(D)).

(2) If P ∈ µ is the intersection P = α ∩ β of the line α through D and
the line β = f(α) through E, then the second intersection point Q
of µ′ with β is the image Q = f(P ) of P and the tangent of µ′

at Q is the image via f of the tangent of µ at P.
(3) The tangent of µ′ at E coincides with ED and is the image of the

tangent to µ at D.
(4) The image point E′ = f(E) = f2(D) is on the tangent to µ at E.

Proof. Nr-1 is obvious, since the lines {α, β} respectively through points
{D,E = f(D)}, generating through their intersection Q = α ∩ β the conic
µ , map via f correspondingly to lines {α′ = f(α), β′ = f(β)} respectively
through {f(D) = E, f(E) = E′} also generating through their intersection
Q′ = f(Q) = α′ ∩ β′ the conic µ′ = CoIf (E).

Nr-2 is also obvious, since for P ∈ α ⇒ Q = f(P ) ∈ β and Q ∈ µ′ ⇒
Q ∈ µ′ ∩ β, and the tangent at P maps to the tangent at Q.

Nr-3 is a consequence of nr-2, since, when P tents to D, then line
α = PD tends to coincide with the tangent to µ at D, consequently its
image β = f(α) tends to coincide with the tangent of µ′ at E.

Nr-4 is analogous to nr-3. As P tends to coincide with E the line EP
carrying Q = f(P ) tends to the tangent of µ at E and Q tends to E′.

Remark 3.1. The preceding lemma shows that the projectivity f restricted
to the points of µ coincides with a kind of projection P 7→ Q along lines
β through E. Nr-4 of the lemma shows also that this map does not fix E,
but maps it to another point E′, hence is not a “perspectivity” ([5, p.242]).

It is well known ([23, I, p.213]), that having two conics {µ, µ′} and se-
lecting three points {A,B,C} and {A′, B′, C ′} on each, there is a unique
projectivity mapping µ to µ′ and {A,B,C} respectively to {A′, B′, C ′}. In
particular, we have the following corollary.

Corollary 3.2. Two conics {µ, µ′} passing through the same three points
{A,B,C} in general position define a unique projectivity f mapping µ to
µ′ and fixing these three points.
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Next lemma formulates a method to find this projectivity f and to ex-
press the two given conics in the form of CoIf (X) for appropriate points
X ∈ µ.

Lemma 3.4. Given two circumconics {µ, µ′} of the triangle ABC inter-
secting also at a fourth point E, different from {A,B,C}, there is a unique
projectivity f fixing the vertices of the triangle, mapping µ onto µ′. The
point D = f−1(E) ∈ µ is the second intersection with µ of the tangent to
µ′ at E, and the two conics can be represented in the form µ = CoIf (D)
and µ′ = CoIf (E).
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Figure 6. Projectivity which maps µ onto µ′

Proof. We define f by the properties (i) to fix {A,B,C} and (ii) to
map D to E. The conic µ coincides with CoIf (D) since both conics pass
through the same five points {A,B,C,D,E}. Also the conic µ′ coincides
with CoIf (E) since both pass through the four points {A,B,C,E} and, by
the preceding lemma, have at E the same tangent.

Theorem 3.2. Let µ be a circumconic of the triangle ABC. Then, every
projectivity f fixing no other point than {A,B,C}, defines a unique pair
{D,E} of points of µ, such that E = f(D) and µ = CoIf (D).

Proof. Consider the conic µ′ = f(µ), and its fourth intersection E with
µ (in section 4 we show that E is different from {A,B,C}, and the conics
{µ, µ′} have no common tangent at E ). Let also D be the second intersec-
tion point of µ with the tangent tE of µ′ at E (see Figure 6). Define the
projectivity f ′ fixing the points {A,B,C} and mapping D to E. As in the
proof of the preceding lemma, f ′(µ) and µ′ have the points {A,B,C,E}
in common and their tangents at E coincide, hence the conics coincide and
f ′(µ) = f(µ) = µ′. It follows that g = f−1 ◦ f ′ is a projectivity mapping
the conic µ onto itself and leaving fixed the three points {A,B,C}. This
implies that g is the identity on µ, hence the identity on the whole plane.
This is easily seen by considering again the invariance of the cross ratio
on µ by g. For a point X ∈ µ and its image X ′ = g(X) we have for the
cross ratio on µ : (AB;CX) = (AB;CX ′) ⇒ X ′ = X. Thus, f and f ′

coincide everywhere and f(D) = f ′(D) = E.

4. Digression on homologies

In our discussion in the preceding section we assumed that circumconics of
the triangle ABC intersect each other, besides the vertices {A,B,C,} also



72 Paris Pamfilos

at a fourth point E, different from these three. There are though cases, like
the one of figure 7, in which the two circumconics of ABC are tangent at
one of the three vertices.

X
Y
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B C

Z
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U
V

H

εκκ'ζ

η

Figure 7. Two circumconics of triangle ABC tangent at C

Certainly, two different conics {κ, κ′} cannot pass through {A,B,C} and
also through a fourth point E, different from these three points, and have
at E a common tangent. This because of the fact, that “through four
distinct points in general position and a line through one of them, passes a
unique conic tangent to this line” ([16, § 8.1]), which would imply that the
conics coincide. Thus, tangency of circumconics may appear only as in the
above configuration, where the contact of the conics occurs at a vertex of
the triangle.

In this case we can again prove that there is a projectivity f mapping κ
to κ′, but this is not “generic” with only three distinct fixed points. It has
instead infinite many fixed points, in figure 7 their set coinciding with the
line ζ = AB and the isolated point C. This kind of projectivity is called
“homology” ([7, p.53], [8, p.17]). It is characterized by a line, like ζ, of fixed
points, called “axis of the homology” and an additional fixed point like the
point C, called “center of the homology”. In addition hold the properties:
(i) every line through the center remains invariant by the homology, and (ii)
every point X maps to Y, later lying on the line CX, which intersects the
axis at Z and the cross ratio (XY ;ZC) = k is constant, independent of
the position of X. The constant k is called “coefficient or parameter” of
the homology ([8, p.63]). Next theorem establishes the kind of projectivity
relating the conics κ and κ′ of figure 7.

Theorem 4.1. Two circumconics of the triangle ABC, tangent at the ver-
tex C, are related by a homology κ′ = f(κ) with axis the side-line AB and
center the vertex C of the triangle.

Proof. By corollary 3.2 we have a projectivity f mapping κ onto κ′ and
fixing the points {A,B,C}. Since {A,B} are fixed the side-line ζ = AB
remains invariant under f. Also the tangent ε, by assumption maps via
f onto itself. It follows that the intersection point H = ε ∩ ζ is also fixed,
implying that every point of the line ζ is a fixed point for f.

Let the line η through C intersect the conics {κ, κ′} and the line ζ
respectively at the points {X,Y, Z}. Since {C,Z} are fixed by f, the line
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η = CZ is invariant by f and Y = f(X). To accomplish the proof that f
is a homology, we show that (XY ;ZC) = k is a constant independent of
the position of X ∈ κ.

For this we show first, that the tangents at {X,Y } intersect at a point
E of ζ using the invariance of the cross ratio by projectivities. In fact,
(AB;CX) on κ maps to (AB;CY ) on κ′, hence the two cross ratios
are equal. But using the tangent at X and measuring the cross ratio on
κ through the pencil X(AB;CE) we see that this is equal to (AB;DE).
Analogously using the tangent at Y and measuring the cross ratio (AB;CY )
on κ′ through the pencil Y we find this equal to (AB;DE′) for a point E′

on ζ. Since (AB;CX) = (AB;CY ) we conclude that E′ = E, as claimed.
Now, the pencil of lines through E relates the cross ratios (XY ;ZC) =

(UV ;HC). But U is the pole of line η w.r.t. κ and the map η 7→ U
and U = f1(η) is a homography of the pencil C∗ of lines through C to
the line ε ([20, § 9]). Analogously V is the pole of η w.r.t. κ′ and the
map V = f2(η) is also a homography of C∗ onto the line ε. It follows that
the composition V = g(U) = f2(f

−1
1 (U)) is a homography mapping the line

ε onto itself. Besides, we see easily that for U = H i.e. when X is the
contact of the other than ε tangent from H to κ, then V = U = H and
when X = C, then U = V = C. This means that {H,C} are fixed points
of the homography V = g(U) and ([20, § 3]) (UV ;HC) = k is constant,
thereby completing the proof that f is a homology.

Remark 4.1. We notice that in the case of homologies all the CoIf (P ) for
P non fixed by f are generated by intersections of lines α through P and
β = f(α) through P ′ = f(P ) intersecting at the axis of the the homology,
consequently all these conics contain the homology axis and consist of the
union of it and the line PP ′.

Taking into account the discussion in this section, lemma 3.4 and theorem
3.2 we deduce the following corollary.

Corollary 4.1. Fixing a circumconic µ of the triangle ABC, there is a
bijective correspondence of the set C of conics µ′ circumscribing the triangle
ABC and intersecting µ at a point E different from {A,B,C}, and the
set P of projectivities fixing no other point than {A,B,C}. The set P of
these projectivities in turn is in bijective correspondence with the set S of
pairs (D,E) of points of µ different from {A,B,C}.

5. The parabola of the generic projectivity

The parabola associated to a given generic projectivity f, as we noticed
in the introduction, can be defined by its property to be tangent to the side-
lines of the triangle ABC of fixed points and also tangent to the line εf
sent to infinity by f. In this section we proceed however to an alternative
definition, more appropriate for immediate deduction of the properties to
be discussed below.

Theorem 5.1. Given the generic projectivity f, we consider the line εf
sent to infinity by f. For each point P ∈ εf let λP be the line joining P
with f(P ) = [P ′] ∈ ℓ∞. The envelope of all these lines {λP } is a parabola
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Figure 8. Parabola κf enveloping λP for P ∈ εf

κf , tangent to εf , tangent to ℓ∞ and tangent to the side-lines of the triangle
of the fixed points ABC.

Proof. The proof is a direct application of the theorem of Chasles-Steiner
([4, p.6]), according to which “the lines joining points on two fixed lines
{P ∈ α, h(P ) ∈ β}, corresponding under an homography h : α → β, enve-
lope a conic tangent to {α, β}”. The two lines here are εf and ℓ∞. The
homography, mapping the first line to the second, is the restriction of f on
εf . Since a fundamental property of f is that it preserves the cross ratio of
points on a line, the restriction of f on εf has the same preservation prop-
erty between the points of εf and ℓ∞. This implies [3, I, p.130] that the
restriction of f on εf defines a homography h : εf → ℓ∞ and the theorem
of Chasles-Steiner applies, proving that the envelope of lines {λP , P ∈ εf} is
a conic. Since the conic is tangent to the line at infinity ℓ∞, it is a parabola
([21, p.235]).

To see that this parabola is tangent also to the sides of the triangle ABC
of fixed points of the projectivity f, consider one side-line, AB say. This
intersects εf at a point Q. Since {A,B} are fixed points of f, the line
maps to itself under f. Thus Q ∈ AB maps to [Q′] = f(Q) ∈ AB too,
which implies that AB coincides with line Q[Q′] and is one of the tangents
of the parabola. Analogously is proved the tangency of the other side-lines
of the triangle ABC.

Theorem 5.2. The image-conic κ′f = f(κf ) of the parabola κf is also a
parabola tangent to the sides of the triangle ABC of the fixed points of f
and tangent also to the image-line δf = f(ℓ∞) of the line at infinity. Further
κ′f coincides with the parabola κg of the inverse projectivity g = f−1 (see

Figure 9).

Proof. Since projectivities preserve conics, κ′f = f(κf ) is a conic. Since
the line εf , tangent to κf at the point G maps to the line at infinity ℓ∞,
later is tangent to κ′f at [G′] = f(G), hence it is a parabola. Since ℓ∞
is tangent to κf its image δf = f(ℓ∞) is tangent to κ′f . Finally, since the
side-lines of the triangle ABC pass, each through two fixed points of f,
they are invariant under f hence tangent also to κ′f .

The coincidence of κg with κ′f = f(κf ) follows from the fact that both
are tangent to the three side-lines of the triangle and the line δf , and the
fact that there is a unique parabola with these properties ([16, p.324]).

Corollary 5.1. With the notation and conventions adopted so far, the fol-
lowing properties are valid.
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Figure 9. The parabolas κf and κ′f = f(κf )

(1) The contact point G with the parabola κf , of the line εf sent to
infinity by f, maps via f to the point at infinity of the line εf
which is [G′] = f(G) = εf ∩ ℓ∞.

(2) The image point [G′′] = f([G′]) = f(f(G)) = f2(G) is also a point
of ℓ∞.

(3) The parallels {λt} to a tangent λ = Qf(Q) for Q ∈ εf of the parabola
κf map via f to lines {λ′

t} passing through the fixed point Q′′ =
f(f(Q)) = f2(Q) ∈ δf .

(4) The parallels {εt} to εf map via f to lines {ε′t} which pass through
the point [G′′] ∈ ℓ∞, hence are pairwise parallel.

(5) The focal points F and F ′ of the parabolas κf and κ′f are points

of the circumcircle κ of the triangle ABC of fixed points of f (see
Figure 9).

(6) The axis of the parabola κf is parallel to δf , whose direction is
determined by the point at infinity [G′′] = f2(G) and the axis of the
parabola κ′f is parallel to εf , whose direction is determined by the

point at infinity [G′] = f(G).

Proof. Nr-1 follows directly from the definition of the parabola κf and the
fact that εf is tangent to the parabola. The image point [G′] = f(G) ∈ ℓ∞
must be such that G[G′] is tangent κf . But the tangent to κf at G is
already this line εf , hence [G′] ∈ εf and [G′] = εf ∩ ℓ∞.

Nr-2 follows from the definition of the line εf and the fact that ℓ∞ is
also a tangent to the parabola κf . Since [G′] ∈ εf , by the definition of εf ,
its image [G′]′ = f([G′]) will be a point at infinity.

Nr-3 follows from the fact that the parallels {λt} to λ = Qf(Q) pass
through the point at infinity of λ which is [Q′] = f(Q). Hence their images
via f pass all through the point Q′′ = f(f(Q)) ∈ δf .

Nr-4 is a direct consequence of nr-2 and nr-3.
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Nr-5 is a well-known result of the triangle geometry, according to which
([21, p.130]) “the circumcircle of a triangle circumscribing a parabola passes
through the focus of the parabola”. For this, related material and references
see [16, p.324].

Nr-6 For κ′f this follows from the fact, mentioned in theorem 5.2, that

κ′f is tangent to the line at infinity ℓ∞ at [G′] = f(G), which defines the

direction of the axis of this parabola and is also the direction of εf = G[G′] .
For κf consider the contact point J of δf with the parabola κ′f = f(κf ).

Again f−1(J) = δf ∩ ℓ∞ = f(ℓ∞) ∩ f(εf ) = f(ℓ∞ ∩ εf ) = f(f(G)) = [G′′]
is the contact point of f−1(κ′f ) = κf with the line at infinity determining
the direction of the axis of κf .

Corollary 5.2. The parallels to εf , whose direction is determined by the
point [G′] = f(G) map via f to parallels to the axis (diameters) of the
parabola κf , whose direction is determined by [G′′] = f2(G). The lines
through G map via f to parallels to the axis of κ′f , whose direction is

determined by [G′] = f(G).

Remark 5.1. Notice that J = f(κf ) ∩ f(ℓ∞) = f(κf ∩ ℓ∞) = f([G′′]) =
f(f2(G)) = f3(G).

Lemma 5.1. With the notation and the conventions adopted so far, a line α
through the point P maps via the generic projectivity f to a line β = f(α)
parallel to α, if and only if P belongs to a tangent of κf .

Proof. The tangents to κf are characterized by two points {Q ∈ εf , [Q′]}
= f(Q) ∈ ℓ∞ . If P is in such a line P ∈ α = Q[Q′], then β = f(α) ∋ [f(Q)]
∈ ℓ∞ shares the same point at infinity with α hence is parallel to it.

Conversely if β = f(α) is parallel to α ∋ [f(Q)] for some Q ∈ εf , then
β will pass through the same point at infinity β ∋ [f(Q)] of α. Hence
Q ∈ f−1(β) = α, and α will contain both Q and f(Q), consequently will
coincide with a tangent to εf .

Remark 5.2. Referring to section 4 and figure 7, we notice that the line
εf sent to infinity by a homology is parallel to its axis. Also, for a homology
coefficient k = (XY ;ZC) this parallel is at distance k · d from the center
of the homology, where d is the distance of the axis from the center. In
this case all the lines {Xf(X), X ∈ εf} pass through the center C, their
envelope reducing to this point.

6. A circular conic of intersections

In the preceding section we defined the parabolas κf of the generic pro-
jectivity f and κ′f of f−1 and showed that they are tangent to the triangle
ABC with vertices the fixed points of f. In addition, κf is tangent to the
line εf sent to infinity by f and κ′f is tangent to the line δf sent to in-

finity by f−1. The aim in this section is to find the relation between the
focal points {F, F ′} of the two parabolas shown in corollary 5.1 to lie on the
circumcircle κ of the triangle ABC (see Figure 10), and show that they
define the unique circular CoIf (P ) of the projectivity f.
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To start with, we consider the “focal chord” (passing through the focus)
GV of κf , which by corollary 5.2 maps to a parallel to the axis of κ′f . By a

well known property of parabolas [1, p.137] “the tangents at the extremities
of a focal chord intersect orthogonally at a point of the directrix”. Thus, the
tangent t = VW at the extremity V of the focal chord is orthogonal to the
tangent εf at G. From lemma 5.1 we have also that the image t′ = V ′W ′

via f of this tangent is parallel to t, hence also orthogonal to εf . Thus,
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Figure 10. Focus F of κf maps to the focus F ′ of κ′f

at V ′ = f(V ) the two image lines {f(V G) , V ′W ′} are, the first parallel to
the axis of κ′f and the second is tangent to κ′f at V ′ and orthogonal to

the axis of κ′f . This implies that V ′ is the vertex of the parabola κ′f and

the line f(V G) coincides with the axis of κ′f consequently passes through

the focus F ′ of this parabola.
Applying the same arguments to the focal chord of κ′f contained in the

line JF ′, we see that this maps via f−1 to the axis FI of κf . Hence,
conversely f maps the axis of κf to the focal chord along the line F ′J. In
total, the projectivity maps the lines {FG,F [G′′]} correspondingly to the
lines {F ′[G′], F ′J} consequently the intersection F of the first pair of lines
to the intersection F ′ of the second pair. This proves next theorem.

Theorem 6.1. With the notation and conventions adopted so far, the generic
projectivity f maps the focus F of the parabola κf to the focus F ′ of the
parabola κ′f .

Since two projectivities coinciding at four points coincide everywhere we
have also

Corollary 6.1. The given generic projectivity f coincides with the one
fixing the vertices of the triangle ABC and mapping the focus F of the
parabola κf to the focus F ′ of the parabola κ′f .

Corollary 6.2. The CoIf (F ) of the generic projectivity f w.r.t. the focus
F of the parabola κf coincides with the circumcircle κ of the triangle ABC
of fixed points of F.
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Proof. Obviously, since both the circumcircle κ of the triangle ABC and
CoIf (F ) pass through the five points {A,B,C, F, F ′}.

Corollary 6.3. The circumcircle κ of the triangle ABC of the fixed points
of the generic projectivity f is the unique circular conic of intersections of
f and for every point P different from the focus F of the parabola κf , the
CoIf (P ) is a circumconic of ABC different from κ.

Proof. This is a direct consequence of lemma 3.2.

7. The shape of the conic of intersections

As we noticed already, the shape of the CoIf (P ), for the generic projec-
tivity f and a non-fixed point P ̸= f(P ), depends on the location of the
point P :

Theorem 7.1. The shape of the CoIf (P ) depends on the location of P
relative to the parabola κf of the projectivity f and is:

(1) an ellipse/parabola/hyperbola if P is a generic ordinary point re-
spectively inside/on/outside the parabola κf .

(2) a degenerate conic consisting of two lines, if P is an ordinary generic
point on a side-line of the triangle ABC.

(3) a hyperbola and in one case a parabola if the point P is at infinity
and not on the side-lines of the triangle ABC.

Proof. Nr-1 follows directly from lemma 5.1. If the generic ordinary point
P of the plane is inside/on/outside the parabola κf , then there are re-
spectively none/one/two tangents passing through P. Consequently there
are correspondingly none/one/two lines through P that have corresponding
parallel image-lines through P ′ = f(P ). This implies that the correspond-
ing CoIf (P ) has respectively none/one/two points at infinity and proves
the claim.

Nr-2 comprises two cases. The first concerning ordinary points of the side-
lines of ABC and the second concerning a point at infinity: the intersection
point of a side-line with the line at infinity.
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Figure 11. Degenerate conic CoIf (P ) = AB ∪ η for P ∈ AB

In the first case shown in figure 11 the conic is degenerate. Point P ∈ AB
is outside the parabola κf and there is, besides AB a second tangent ζ
to κf through P. By lemma 5.1 the image line ζ ′ = f(ζ) is then paral-
lel to ζ. The direction of the two parallels is determined by the point at
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infinity f(S), where S = ζ ∩ εf . The conic consists of the union of lines
CoIf (P ) = AB ∪ η, where η the parallel to ζ through the third vertex C
of the triangle. The line η takes the position of the parallel to AB through
C when P coincides with the contact point of AB with the parabola κf .

In the second case of nr-2 [P ] is the point at infinity of the side-line AB.
Then the lines through [P ] are parallels {σ} to AB and their images {σ′}
are lines through the image point P ′ = f([P ]) lying on AB (see Figure 12).
If the line σ intersects εf at S, then [σ′] = f(σ) contains [S′] = f(S) ∈ ℓ∞
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Figure 12. Degenerate conic CoIf ([P ]) = AB ∪ η for [P ] = AB ∩ ℓ∞

hence points in the direction of [S′], which is the direction of the other than
εf tangent to κf from S. When S takes the position of [G′] = εf ∩ ℓ∞,
then [S′] = f([G′]) = [G′′] ∈ ℓ∞ is the direction of the axis ζ of κf . Thus,
the conic CoIf ([P ]) consists in this case of the union of lines AB ∪ η, where
η = CG′′ is the parallel to the axis of the parabola κf through C.
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Figure 13. Hyperbola CoIf (P ) for a generic point P ∈ ℓ∞

Nr-3 comprises three cases. Generic points on the line at infinity and the
special cases of [G′] and [G′′].

In the first case [P ] is a generic point at infinity and P ′ = f([P ]) ∈ δf .
The conic CoIf ([P ]) passes also through δf ∩ ℓ∞ = [G′′], which determines
the direction of the axis of the parabola κf . Thus, the conic has two points
at infinity {[P ], [G′′]} and is a hyperbola through the points {A,B,C} with
asymptotes parallel to the directions determined by its points at infinity
{[P ], [G′′]}. This conic can be constructed by standard methods described in
[16, p.303]. Figure 13 shows such a hyperbola suggesting also the directions
of the two asymptotes {η, η′,} which are parallel respectively to the tangent
[P ]P ′ to the parabola κ′f and to line δf .
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In the second case of nr-3 the conic CoIf ([G
′]) passes through two points

at infinity [G′] = f(G) and f([G′]) = f2(G) = [G′′], which are the direc-
tions of the axes respectively of the parabolas {κ′f , κf}. Their construction
can be carried out using the same procedure referred to in the previous case.
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Figure 14. CoIf (G
′) with asymptotes the lines {εf , δf}

Figure 14 shows the hyperbola which has asymptotes the lines {δf , εf}. It
is generated through the intersections of lines λ parallel to εf and their
images λ′ = f(λ) which are parallel to δf passing all through [G′′] ∈ ℓ∞.

In the third case of nr-3 the conic CoIf ([G
′′]) is generated by the inter-

sections of lines λ parallel to δf , all of them passing through [G′′] ∈ ℓ∞
and their images λ′ = f(λ), which pass through J = f([G′′]) (see Figure
15). The fact that the conic is a parabola follows from the special case
of λ = ℓ∞ and λ′ = δf ∋ [G′′], which implies that the conic is tangent
to ℓ∞ at [G′′]. Alternatively, this can be seen by taking into account
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Figure 15. CoIf ([G
′′]) is a parabola with axis parallel to δf

that CoIf ([G
′′]) = f(CoIf ([G

′])). Since CoIf ([G
′]) is tangent to εf at

[G′] we have that f(CoIf ([G
′])) = CoIf ([G

′′]) is tangent to f(εf ) = ℓ∞
at [G′′] = f([G′]), hence a parabola.

8. One fixed point at infinity

Considering a projectivity f with two ordinary fixed points {A,B} and
one fixed point at infinity [C] ∈ ℓ∞, we have an “infinite triangle” AB[C]
of fixed points, consequently all the conics of intersections CoIf (P ) in this
case are unbounded, passing through [C]. In this section we examine such
projectivities and notice the differences from the generic kind.
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Figure 16. {D1, D2, D3, D4} map respectively to {E1, E2, E3, E4}

Knowing the direction represented by [C], one ordinary point D1 and
its image E1 = f(D1), assumed to be also an ordinary point, we can easily
find three other points, non-collinear by three, and their images and through
them identify the projectivity with one mapping a quadruple of ordinary
points to another quadruple. Figure 16 suggests a simple recipe to find from
the known pair {D1, E1} three additional pairs corresponding under the
projectivity f fixing {A,B, [C]} and mapping D1 to E1. The recipe uses
the fact, that lines {AB,A[C], B[C]} are invariant under f and a line in the
direction of [C] maps via f to a parallel to it. We have the correspondences
of lines

AD1
f7−→ AE1 , BD1

f7−→ BE1 , D1[C]
f7−→ E1[C] , ⇒

on B[C] : D2
f7−→ E2 , on A[C] : D3

f7−→ E3 , on AB : D4
f7−→ E4 .

Figure 17 shows the invariant lines {ε = AB,A[C], B[C]}. It shows also the
lines {εf , δf}, the first sent to infinity by f and the second coming from
infinity δf = f(ℓf ). Next lemma is trivially verified.

Lemma 8.1. The lines {δf , εf} are parallel to the direction determined by
[C] ∈ ℓ∞.

Proof. In fact, δf = f(ℓ∞) ∋ [C] since [C] is fixed by f. Thus, point [C]
is the point at infinity of δf and determines the direction of δf as claimed.
From this follows that εf is also parallel to the direction determined by
[C], since εf = δf−1 and f−1 shares the same fixed points with f.

In this case there is no parabola enveloping the lines {Uf(U)} for U ∈ εf ,
as was the case when all three fixed points were ordinary points of the plane.
Next theorem shows what is going on.

Theorem 8.1. If the projectivity f has two ordinary fixed points {A,B}
and one fixed point [C] at infinity, then all lines Uf(U) for U ∈ εf pass
through the same point W ∈ AB.

Proof. Consider for each point U ∈ εf the line εU parallel to ε = AB and
its image ζU = f(εU ) (see Figure 17). Since U ∈ εU ⇒ f(U) ∈ f(εU ) = ζU ,
line ζU is parallel to Uf(U) and intersects εf at a point V. Denoting by [ε]
the point at infinity of ε, we have [ε] ∈ εU consequently f([ε]) = J ∈ ζU .
The fact that J = AB ∩ δf , as seen in the figure, follows immediately from
the invariance of AB under f, which implies f([ε]) ∈ ε.
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Figure 17. Lines {Uf(U) , U ∈ εf} pass through W

The correspondence of lines f∗ : εU 7−→ ζU is a homography induced
by f between the pencil [ε]∗ of lines parallel to ε, and J∗ the pencil
of lines passing through J. This induces a homography g : U 7−→ V on
line εf , which taking I = εf ∩AB as origin of coordinates on εf , is repre-
sented by a rational function of the form y = g(x) = (ax+ b)/(cx+ d) with
ad− bc ̸= 0 ([23, I, p.154]). It is readily seen that g(∞) = ∞ and g(0) = 0,
which implies that actually g is a similarity g(x) = kx for a constant k ̸= 0.
This implies that IV

IU = k and by the similar triangles {IV J, IUW} we ob-

tain IJ
IW = k, independent of the position of U ∈ εf , thereby proving the

theorem.
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Figure 18. Constant cross ratio (A′B′;XY ) = (AB;X ′Y ′) = k

Lemma 8.2. If the projectivity f has two ordinary fixed points {A,B} and
one fixed point [C] at infinity, then for every point X of the plane, its image
Y = f(X) and the projections {X ′, Y ′} of these points parallel to [C] on the
invariant line AB, the cross ratio (AB;X ′Y ′) = k is constant (see Figure
18).

Proof. The proof follows from the corresponding property for points on the
invariant line AB. In fact if X ′ ∈ AB then also Y ′ = f(X ′) ∈ AB, and the
map X ′ 7→ Y ′ between points of the line AB is a line homography with two
fixed points {A,B}. By a well known elementary property of homographies
the cross ratio (AB;X ′Y ′) = k is constant ([20]). This implies the proof,
since the line XX ′ maps via f to Y Y ′ and the cross ratio is preserved by
the parallel projection in the direction of [C].

Next we examine the shape of the conic CoIf (D) for a projectivity
with fixed points {A,B, [C]}. Figure 19 shows the case of CoIf (D) for a
generic point of the plane with E = f(D). It is a hyperbola passing through
{A,B, [C]}, hence having an asymptote parallel to the direction of [C]. The
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Figure 19. The hyperbola CoIf (D) for a generic point

second point at infinity is determined by the line WD, where W is the point
contained in all lines {Uf(U) , U ∈ εf} (theorem 8.1). If U = DW ∩ εf ,
then f(DW ) ∋ f(U) and the lines {UD = UW, f(U)E} intersect at the
point at infinity f(U) defining the direction of the second asymptote.

We notice, that in this case the conic can be identified with the one passing
through five points {A,B,D,E,K}, where the last point is the intersection
K = ε′ ∩ ε′′, line ε′ being the parallel to AB through D and ε′′ = f(ε′),
later passing through two known points {D′, J}.

The conics CoIf (D) of non-generic points D occur when later is on one of
the remarkable lines or points of the configuration, such as AB,AC,BC, εf ,
δf , ℓ∞, . . . . I proceed here to short account, leaving the details to the reader.
For points D on the side-lines of the (infinite) triangle AB[C] it is easily
seen that the conic CoIf (D) degenerates to a product of lines, one of them
being the side containing D. In the other cases the conic is again a hy-
perbola, with the exception of points D ∈ η = W [C] i.e. points contained
in the parallel to [C] from W (see Figure 20). In this case one verifies
easily that [C] is a contact point of the conic with the line at infinity, hence
CoIf (D) is a parabola.
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Figure 20. For D ∈ η = W [C] the conic CoIf (D) is a parabola

9. The Steiner ellipse

In this and the subsequent sections we discuss a few of well known ex-
amples of circumconics from the view point of the conics of intersections
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{CoIf (D)} and apply in each case the results of the preceding discussion.
The concepts referred to below belong mostly to the “triangle geometry”
([22], [13], [24], [12]) and the “triangle centers” [14].

We start with the “Steiner ellipse” κ′ of the triangle ABC ([24, p.109])
which is well known to be the circumconic with center at the centroid G
of the triangle and fourth intersection point E with the circumcircle κ the
triangle center (Steiner point of the triangle) E = X(99). It is known also
that the tangent to κ′ at E intersects a second time the circumcircle at the
triangle center D = X(110), known to be the focus of the so called “Kiepert
parabola”, tangent to the side-lines and the “Lemoine line” of ABC ([11]),
which is also the “tripolar” of the “Symmedian point” K = X(6) of the
triangle. The directrix of this parabola is the Euler line of the triangle.

According to our discussion the Steiner ellipse is the image κ′ = f(κ) of
the circumcircle via the projectivity f fixing the vertices of the triangle and
mapping D to E (see Figure 21).
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Figure 21. The Steiner ellipse in the form of CoIf (E)

Theorem 9.1. With the notation and conventions adopted so far, the pro-
jectivity f fixing the vertices of the triangle ABC and mapping D = X(110)
to E = X(99) has the following properties.

(1) It represents the Steiner ellipse as a conic of the form κ′ = CoIf (E)
generated by the intersections Q = λ ∩ λ′ of lines λ ∋ E and λ′

= f(λ) ∋ E′ = f(E).
(2) Restricted on the circumcircle κ the projectivity f coincides with

the radial projection P 7→ Q along the radii EP trough the point
E.

(3) The line εf sent to infinity by f coincides with the Lemoine line of
the triangle.

(4) The parabola κf of f coincides with the Kiepert parabola of the
triangle.

Proof. Nrs 1-2 result from theorem 3.2 and the known facts identifying
E = X(99) and D = X(110).

Nrs 3-4 result by showing that the line εf coincides with the Lemoine
line and the known fact that the Kiepert parabola is tangent to the line-sides
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and the Lemoine line of the triangle ABC ([11]). To show this coincidence
of lines we work with barycentric coordinates (barycentrics) w.r.t. the tri-
angle ABC ([17]). In these coordinates the work needed for the matrix
representation of f can be transferred verbatim from that done for Carte-
sian coordinates in section 2. The corresponding matrices are P = Q = I
the identity matrix, and M = K the diagonal matrix, whose non-zero diag-
onal entries are up to constant multiple, equal to F (e1/d1 : e2/d2 : e3/d3).
In these {di} and {ei} are correspondingly the barycentrics of D and E
([14]):

D

(
a2

b2 − c2
:

b2

c2 − a2
:

c2

a2 − b2

)
, E

(
1

b2 − c2
:

1

c2 − a2
:

1

a2 − b2

)
,

where {a = |BC|, b = |CA|, c = |AB|} are the side-lengths of the triangle.
Thus, the projectivity f is in these coordinates represented by a diagonal
matrix with non-zero diagonal entries F (1/a2 : 1/b2 : 1/c2). and since the
line at infinity in these coordinates is represented by λ : x+ y + z = 0, the
line εf has coefficients satisfying

(p : q : r)F−1 = G(1 : 1 : 1) ⇒ (p : q : r) = GF =

(
1

a2
:
1

b2
:
1

c2

)
,

which are the coefficients of the Lemoine line.

10. Digression in Barycentrics

Taking the opportunity from the preceding calculations, we should no-
tice that they generalize for arbitrary generic projectivities and their corre-
sponding conics of intersections µP = CoIf (P ). In fact, using the concept
of “barycentric product” ([24, p.99])

X · Y = (x1y1 : x2y2 : x3y3) for X(x1 : x2 : x3) , Y (y1 : y2 : y3) ,

we see that the expressions of f, the point E′ = f(E), and the line εf ,
in terms of the points {D,E} take quite simple forms. In fact, the entries
F (f1 : f2 : f3) of the diagonal matrix representing f in barycentrics are
F = E/D. The image point E′ = f(E) is expressed then with E′ = E2/D
and the coefficients of the line sent to infinity by εf = G · (E/D) = E/D,
are the same with those expressing f.

Since the parabola κf is completely determined by its focus D and the
fact that it is tangent to the side-lines of the triangle ABC, the various
projectivities f = fDE resulting by fixing D and varying E on the cir-
cumcircle κ are represented in barycentrics with diagonal matrices whose
non-zero diagonal entries {F (f1 : f2 : f3)} coincide with the coefficients of
the tangent lines εf to κf .

Transferring to matrices the relation of the conics µE = CoIf (E) = f(κ)
where κ the circumcircle, we have the relations between the matrices M0,
M1, F correspondingly of {κ, µE , f}:

M0 =

 0 c2 b2

c2 0 a2

b2 a2 0

 , M1 = F−1M0F
−1 =

 0 c2 d1e1
d2
e2

b2 d1e1
d3
e3

c2 d1e1
d2
e2

0 a2 d2e2
d3
e3

b2 d1e1
d3
e3

a2 d2e2
d3
e3

0

 .
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Since the matrix of the projectivity is defined up to a non-zero constant
multiple, multiplying the last matrix with e1e2e3

d1d2d3
we obtain the matrix of

the conic in barycentrics

µE = CoIf (E) : XtM1X = 0 with

M1 =

 0 c2e3/d3 b2e2/d2
c2e3/d3 0 a2e1/d1
b2e2/d2 a2e1/d1 0

 =

 0 c2f3 b2f2
c2f3 0 a2f1
b2f2 a2f1 0

 .

11. The Jerabek hyperbola

This well known ([18]) circumconic of the triangle ABC is a rectan-
gular hyperbola passing, besides the vertices of the triangle, also through
the orthocenter H, the circumcenter O, the symmedian point K, and
many other remarkable triangle centers. It intersects the circumcircle at
the triangle center E = X(74) (see Figure 22). Using §10 and adapting to
barycentrics some computations done in the aforementioned reference, we
obtain the formulas: f : F (SA(SB − SC) : . . . ) = εf ,

E = X(74) =

(
a2

SA(SB + SC)− 2SBSC
: . . .

)
,

D = E/F =

(
a2(SA − SB)(SA − SC)

SA(SA(SB + SC)− 2SBSC)
: . . .

)
,

E′ = f(E) = E2/D =

(
a2SA(SC − SB)

SA(SB + SC)− 2SBSC
: . . .

)
.

In these the dots denote the remaining two barycentric coordinates, obtained
from the first by cyclic permutations of the letters {a, b, c} and {A,B,C}.
The symbols SA denote the “Conway triangle symbols” ([19])

SA =
1

2
(b2 + c2 − a2) , SB =

1

2
(c2 + a2 − b2) , SC =

1

2
(a2 + b2 − c2) .

The first of the preceding formulas shows that the line sent to infinity εf

H

K

O

A

B C

E=X(74)

D

P

E'

Q

κ
f

Euler lin
e

Figure 22. The Jerabek hyperbola represented as a CoIf (E)

coincides in this case with the Euler line. Thus, the parabola κf of the
projectivity f is characterized by its tangency to the side-lines and the
Euler line of the triangle ABC. Using the points {E,E′ = f(E)} defined
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above, the Jerabek hyperbola is represented in the form of CoIf (E), i.e. as
locus of intersections Q = λ ∩ λ′ for lines {λ ∋ E, λ′ = f(λ) ∋ E′}.

12. Parabolas represented as conics of intersections

From theorem 7.1 we know that a parabola circumscribing a triangle
ABC and represented as a conic of intersections µE = CoIf (E) for some
generic projectivity f, has necessarily point E lying on the parabola κf
of f (see Figure 23). According to lemma 3.4 the projectivity f is defined
by its properties (i) to fix {A,B,C} and (ii) to map D to E. Point D is
the second intersection with the circumcircle of the tangent to the parabola
at E, which in turn is the fourth intersection point of the circumcircle with
the parabola.

E

D

E'

ε
f

P

Q

S

κ
f

A

B C

κ

μ
Ε

λ

λ'
λ''

Figure 23. {Q = λ′ ∩ λ′′} generating Parabola µE = CoIf (E)

The circumcircle of the triangle ABC is represented as κ = CoIf (D) and
described by the intersections {P = λ ∩ λ′} for λ revolving about D and
λ′ = f(λ) ∋ E. The parabola is the image µE = f(CoIf (D)) = CoIf (E)
described by the intersections {Q = λ′ ∩ λ′′} for λ′′ = f(λ′) ∋ E′ = f(E).
The following theorem lists a couple of properties immediately following
from the preceding discussion.

Theorem 12.1. With the notation and conventions adopted so far the
parabola µE = CoIf (E) has the following properties (see Figure 23):

(1) The line εf sent to infinity by f is tangent to the circumcircle κ
at a point S.

(2) The line ES is parallel to the axis of the parabola µE .

Proof. Referring to figure 23 and lemma 3.3, we have that f maps κ onto
µE along the lines λ′ through E sending f : P 7→ Q. Assume that S is the
second intersection with κ of the tangent to κf at E. Since ES is tangent
to κf the projectivity f sends ES to E′S′ parallel to ES (lemma 5.1).
Thus, S′ = f(S) ∈ µE is on the parabola and also on the line at infinity,
since the corresponding lines {λ′, λ′′} become parallel. Hence S′ = f(S) is
the contact point of the parabola with the line at infinity ℓf = f(εf ). This
implies that εf is tangent to the circumcircle κ and also that E′S′ as well
as ES are parallel to the axis of the parabola, as claimed.
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