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A new geometric inequality in acute triangles and its applications

JIAN LIU

Abstract. We find a new acute triangle inequality, which gives a lower
bound of a single median for acute triangles. As its applications, we establish
three new symmetric acute triangle inequalities with the help of software
Maple. We also propose several related conjectures checked by the computer.

1. INTRODUCTION

Given a triangle ABC', denote by a, b, ¢ the side lengths, m, my, m. the
medians, hg, hy, he the altitudes, 7, 7y, 7. the radii of excircles, s, R and r the
semiperimeter, the inradius and the circumradius, respectively. In addition,
we denote Y and [] by cyclic sums and products respectively.

In the recent paper [12], Theorem 1.1 gives a upper bound of a single
median for any triangle ABC, i.e,

b—c\>
(1.1) mg < hg + R " ,

with equality if and only if b = ¢ or A = 7/2. There are several equiva-
lent forms of (1.1). For example, the author pointed out in [13] that it is
equivalent to

AV

(1.2) dmg <1y +1e + 2hg + b9
Ty + Te

and

(1.3) e < hy 4 =TS (b= 0

Many years ago, the author gave the following linear inequality related to
(1.2) for the acute triangle ABC' in a Chinese paper [5]:

(1.4) dmg > 1y + re + 2hg,
with equality if and only if b = c.
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Very recently, the author [13] considered improvements of (1.4) and ob-
tained the following result:
3 (b—c)?

1.5 4 > 2h — -
( ) Mg = Tp + Tc+ a+4 Tb+rc’

We also pointed out in [13] that (1.5) is equivalent to

3(b—c)? +4(rp —1c)?

1.6 a > ha
(1.6) Ma 2 fa + 16(rp + 7¢)

9

with equality if and only if b = c.
From [12] and [13], we see that both inequalities (1.1) and (1.6) can be
used to prove some geometric inequalities involving medians of a triangle.
Inspired by inequality (1.3), the author finds that if (b—c)? is replaced by
(hy — he)? in (1.3) then the inequality holds for the acute triangle. Specifi-
cally, we have the following conclusion:

Theorem 1.1. Let AABC be an acute triangle, then

(ry — 1) + (hy — he)?
4(Tb + rc)
with equality if and only if b=c or A =m/2.

(1.7) Mg > hq +

)

By the identity given in [13]:

(rp — 7’0)2
1.8 = 2h R
( ) Ty + Te a T T+ T

we see that inequality (1.7) is equivalent to

(hb — h0)2

1.9 4 > 2h
( ) Mg = Ty + T+ ot o + o

which is also an improvement of inequality (1.4). In addition, we have known
that the values of the right hand side of (1.6) and (1.7) are not comparable.

The aim of this paper is to prove Theorem 1.1 and establish three new
inequalities by making use of it. We also present some related conjectures.

2. PROOF OF THEOREM 1.1

In this section, we give a simple proof of Theorem 1.1 as follows:
Proof. We denote by S the area of AABC. Applying the known formula:

S
(21) Ta = s—a’
we get
aS
(2.2) Ty +Te = (s—b)(s—c)’
and
(2.3) Ty —Te = (b—<)$
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Denoting by v, the value of the right hand side of (1.7), then using (2.2),
(2.3) and h, = 2S5/a, we get

:§+(s—b)(s—c)5

a 4a

1 n 4
(s —b)2(s—c)?  b2c?
Again, using s = (a + b + ¢)/2 and simplifying, we obtain
_ NoS
=

Vq

(b—c)?

(24) Va

where

My =4a(c+a —b)(a+ b — c)b*c,

No =(b—¢)%a* — 2(b* + *)(b* — 4bc + c*)a?

+ (0% 4 A) (b — 4be + ) (b — ¢)%.
In order to prove inequality (1.7) we need to show that
mg — vg > 0.

Applying the following known formula:
(2.5) 4m? = 2b* 4+ 2¢* — a?

and Heron’s formula:

1
(2.6) S:Z\/(a+b+c)(b+c—a)(c+a—b)(a+b—c),
we easily obtain the following identity:

CON2(P2 4 2 2)2
(27) mZ _ ’Ug _ (b C) (b + C a ) X() :
256(c+a —b)(a+b— c)a?bict

where
Xo =(b—¢)%a® — (36" — 1203¢ 4 2b%c? — 12bc® + 3¢t)a®
+ (3b* — 1263¢ — 10b%c? — 12bc® 4 3¢*) (b — ¢)%a?
— (b—¢)*(b+ ¢)*(b* — 4bc + )%
After analyzing, we find the following identity:
(2.8) Xo= X1+ X2+ X3,
where
X1 =6bc(c+a—b)(a+b—c)(b?+c —a*)d?,
Xy =2bc(c? + a® — b?)(a® + b? — ?) [2bc + 3(c+a —b)(a +b—¢)],
Xs=(a+b+c)b+c—a)(c+a—b)a+b—c)b?> 4+ —a?)(b-c)

In fact, we easily verify identity (2.8) by expanding. Since AABC' is an
acute triangle, one has X; > 0, Xo > 0 and X3 > 0. Note that X; and X»
are not zero at the same time. Thus inequality X; + X2 + X3 > 0 holds
strictly, so that Xy > 0. Clearly, we have m2 — v2 > 0 from identity (2.7)
and it is easily seen that the equality in (1.7) holds if and only if b = ¢ or
b2 +c® —a®?=0,ie. A=7/2. This completes the proof of Theorem 1.1.
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Remark 2.1. It is well known that for any triangle ABC it holds that
b2+ 2
2.9 > .
( ) Mg = 4R
Here, we wish to point out that for the acute triangle ABC, the inequality
of Theorem 1.1 actually improves (2.9). In fact, it is easy to prove that
inequality (1.7) is equivalent to
b2 2 S(b — 2 b2 2 . 2)\2

(2.10) my > +c (b—1c)?(b* +c* —a”) ‘

4R a(c+a—>b)(a+b—c)b?c?

Hence, the above statement is true.

3. APPLICATIONS OF THEOREM 1.1 (I)

In this section and next two sections, we shall apply Theorem 1.1 and
other well-known triangle inequalities to establish three new acute triangle
inequalities. As done as in [12], we shall omit the details of deducing some
identities in a triangle. For the deductions of some complex identities in
triangles we refer the reader to [7], [8] and [10].

Next, we prove the following inequality involving medians and radii of
excircles of an acute triangle.

Theorem 3.1. Let AABC be an acute triangle, then

1 1
3.1 _—> _—
(3:1) Zmb—l—mc_zm—kma’
with equality if and only if ANABC is equilateral.

Proof. We write

32 a — ha )
( ) ’ * 4(Tb + TC)
_ (re = 7a)* + (he — ha)®
(3.3) vy = hy + A(re + ) ,
("”a - Tb)Q + (ha - hb)2
4 c = hc
(3.4) Y + Arg +1p)

By Theorem 1.1, we only need to show that

(5.5) eI

Tq + Vg

Again, we set

1 m2
3.6 = - &
(3.6) au = g+ ro) + e

1 m?
3.7 = b
( ) db 4(T0+Ta)+ Tc“"'"a’

1 m2
3.8 = - ¢ .
( ) qdc 4(Ta+rb)+ Ta+Tb

By the simplest arithmetic-geometric mean inequality, we have

(3.9) Mg < qq.
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(This actually is equivalent to (1.1), cf. [12]). Two similar relations my < gp
and m, < ¢, are also valid. Thus, for proving (3.5) we need to show

1 1

3.10 > .

( ) ZQb+QC_Zra+Ua
After computing, we obtain

M
(3.11) H(Qb +qc) = SR2
N

(3‘12) Z(QC + Qa)(Qa + Qb) = mv
where

My =(R+ 2r)s® + (16R3 + 32R?*r 4+ 12Rr? — 213)s°
+ 2(R + 7)(32R* — 32R*r — 56 R*r? — 20Rr*
— 1) st —2(8R3 + 8R?*r — 2Rr? — r3)(4R + r)3rs?
+ (4R +7)°Rr?,

N; =s% + 8(4R + 5r)Rs% + (192R* + 192R3r + 16 R*?
— 40Rr3 — 2r")s* — 8(4R 4 3r)(4R + r)3Rrs?
+ (4R +7)%r2.

It follows from (3.11) and (3.12) that

1 Ny
3.13 -
( ) Z Qb + qc 2]\41
In addition, after computing we obtain
Mo
(314) H(Ta + 'Ua) = m,
No

(315) Z(Tb + Ub)(?"c + UC) = m,
where

My =s® + 4(TR — 7)(R — )% 4+ (304R" — 448 R3r + 352R*r
— 48Rr3 + 2r") st + (1856 R® — 1280R%r + 1216 R*r?
—192R3r3 — 100R?r* + 80Rr® — 41552
+ (4R — 3r)(4R* + r*)*(4R + r)?,

Ny =5% 4+ (40R? — 24Rr + 3r?)s* + (592R* — 384R%r
+ 304R%*r? — 8Rr3 + 3r*)s? + (4R% + 1?) (36 R*

— 24Rr +r?)(4R 4 1)2.

It follows from (3.14) and (3.15) that
1 4RNo
3.16 = .
( ) Z Tq + Vg M,
From (3.13) and (3.16), one sees that inequality (3.10) is equivalent to
Ny S 4RNy
2M7 — My
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Note that M; > 0 and M> > 0, we have to prove that
(3.17) Qo = M>N; — 8RNsM; > 0.
With the help of Maple, we easily obtain

Qo =s'% + (52R? — 8Rr + 4r%)s' + 8(118R3 — 108R*r

— 65Rr? + 5r%)Rs'? 4 (6592R® — 19840R>r — 6400R* >
+ 8544 R3r3 — 1220R*r* + 56 Rr® — 12r%)s'% 4+ (7168 R®
— 167424R"r + 35968 R%% 4 125312R%r® — 8016 R*r?
— 8192R3r® + 4160R?r® — 184Rr" — 67%)s® — (110592R*°
+ 364544 R%r — 1029120 R%r? — 465408 R"r3 + 441984 R%+*
+ 128768 R°1 + 66944 RS + 7424 R3r" — 3476 R*r®
— 88Rr? +12r19)s% — 8(3072R° — 17408 Rr — 35200 R%r?
+ 19136 R™r® — 3712RSr* — 7088 R%r® + 1758 R*+°
+ 2124 R37 + 197R?*r® — 23R — r'9Y(4R + r)%s*
+ 4(2560R® — 1856 R"r — 1744R%% — 32R5r® — 656 R
+ 20R375 + 209R?r® 4+ 30Rr™ — r®)(4R + 7)5rs?
— (4R? + 7?)(224R* — 160R>r 4+ 4R*? + 8Rr

(3.18) + 3rY) (4R + )82

We recall that for the acute AABC' the following inequality holds (cf.[9]):
(3.19) vo = s> —4R? + Rr — 131> > 0.

According to this inequality, we can rewrite Qg as follows:

4
Qo =v5 + mrvl + mev + msvg + mavg + mav

(3.20) + mav + myvg 4+ mo,
where

my =84R? — 16 Rr + 1082,
me =2848R* — 1676 R*r + 7320R*r? — 1444 R + 509612,
ms =50304R° — 60352Rr + 212900R*r? — 119000R3r3
+ 271468 R*r* — 55792Rr> + 13721615,
my =499968R® — 1041024 R"r + 3320928 RYr>
— 3548668 R 4 6533114 R*r* — 3486852 R
+ 5552040 R?r® — 1196384 Rr" + 230606475,
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ms =2790400R'° — 9395200R°r + 29610240 R%r?
— 49902720R"r3 + 85535228 ROr* — 82554208 R°r®
+ 105209060R*r® — 53860384 R3r" + 67593664 R%
— 15378752RrY + 2477036870,

my =8044544R1? — 42974208 RMr + 149402112R'0r?
— 348326144 R 4 628071904 R%r* — 887623460R ™1
+ 1075542272 R5% — 947878924 R5r™ 4 935654840 R*
— 461311488 R>r? + 489499744 R%10
— 118511168 Rr'! + 16607001612,

my =9240576 R — 80642048 R*3r + 384334848 R'?r?
— 1117246464R™ r® + 2385879680 R 7 — 4274776000R"r®
+ 5711920908 R®rS — 6932730040R™r" 4 6598564932 R518
— 5356135280R°r? + 4340759104 R*r1Y — 2069231936 R3r1!
+ 1950372544 R?r'? — 506989056 Rr-'? + 635378688114,

mo = — (R — 2r)(24969216 R — 262062080R3r + 705221632 R %2
— 2072245504RM 3 + 3082592896 R*0r? — 5729865120 R%7
+ 5890241044 R85 — 7111394629R™r" 4 5795953986 RS7®
— 4171641268 R°r? 4 3521715512R 1Y — 1114222496 R3r-1!
+ 1547364480 R*r'? — 198922752 Rrr'3 + 531062784714)r.

It is easily seen that m7; > 0 and mg > 0 by Euler’s inequality (in any
AABC):

(3.21) e=R—-2r>0.
Substituting R = 2r + e into the expression of ms and expanding gives

ms =50304e5 + 543296¢€°r + 2627620er? 4 7218760313
(3.22) + 11911868¢*r* 4 11245088er” 4 485409679,

so my > 0 holds strictly. Similarly, we can easily show that m4 > 0,mz > 0
and moy > 0.

Therefore, according to identity (3.20) and inequality (3.19), it remains
to prove that

(3.23) Q1 = mivg +mg > 0.
We now recall that for any AABC the following Gerretsen’s inequality holds:
(3.24) g2 = 4R? +4Rr +3r? — s > 0.

And, for the acute triangle ABC we have the following equivalent form of
Ciamberlini’s inequality s > 2R + r (see [2] and [15]):

(3.25) up = s> — (2R+1)2 > 0.
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Based on inequalities (3.21), (3.24) and (3.25), after analysis we obtain the
following identity:
(3.26) Q1 = (kig2 + k2u0)63 + erks + k492,
where
k1 =64r(393728 R1? 4 115632R%? + 272503209 Rr”
+ 1409244696719),
ko =4R%(2310144R° + 30564096 R"r% 4 168202912 R>r*
+ 207237584 R4 r° + 638169891 R310 + 954609124 R*r"
+ 1377157957r® R 4 5739635621,
ks =21233664R'" — 159629312R3r 4 1290377216 R*?1->
— 3832424192RM 73 + 9824856576 R1Or* — 17967689248 R0
+ 26393956008 R®5 — 31408505195R"r" + 33349831506 Rr®
— 23500243332R5r° 4 27111934168 R* 10 — 34934157824 R3r !
— 10162335744 R?r12 — 2336022528 Rr'? + 2645830656114,
k4 =1679616(185489R? — 561004 Rr + 4292041%)r12.

Using the above method to prove ms > 0, we can easily show k3 > 0 and
k4 > 0. Therefore, by Euler’s inequality (3.21), Ciamberlini’s (3.25) and
Gerretsen’s inequality (3.24) we deduce that @1 > 0 holds for the acute
AABC. Hence, inequality (3.1) is proved, and it is easy to determine its
equality condition. This completes the proof of Theorem 3.1.

Remark 3.1. By Theorem 3.1, it is easy to obtain the following conse-
quence:

1 1 1
3.27 E <= E —
(3.27) Mo +7q — 2 me’
which holds for the acute triangle ABC.

4. APPLICATIONS OF THEOREM 1.1 (II)

In [12], the author established an inequality involving medians and sides
of the acute triangle ABC, i.e.

(4.1) Y <va

mp + Me
We here give an extension of this inequality:

Theorem 4.1. Let ANABC be an acute triangle, then

a a

4.2 — < _

(42) Zm—i—ma_zmb—i-mc

with equality if and only if ANABC is equilateral.

Proof. According to Theorem 1.1 and the previous inequality (3.9), we

only need to prove

(4.3) y o> a

Q+qc Ta‘i‘va.
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Computing gives

(4.4)

where

N.
Z a(Qc + Qa)(Qa + Qb) = 4Rz3 )

N3 =(4R +9r)s® + (4R + 3r)(8R* + 8Rr — 3r%)s*
— (24R? 4+ 28Rr + r*)(4R + 7)%rs* + (4R + )52

Thus by the previous identity (3.11) we get

(4.5)

On the other hand, we can obtain the following identity after computing:

(4.6)

Z a . 2SRN3
qb + qc My

s,
Z a(ry + vp)(re + ve) = 647}243’

where v, vy, v. are given by (3.2)-(3.4) respectively, and

Ny =(4R +57r)s* + (96 R® 4 24R%*r — 68Rr? + 10r%)s?
+ (4R + 7)(80R* — 48R3 — 40R%*r% + 52Rr® — 117%).

Thus, by the previous identity (3.14), we get

(4.7)

> a  16sR®N,
Ta + Vg B My

From (4.5) and (4.7), one sees that inequality (4.3) is equivalent to

2sRN5 S 16sR2N,
My, — My

55

Note that M7 > 0 and Ms > 0, we require the following inequality to be

proved:

(4.8)

P(] = N3M2 — 8RM1N4 > 0.

With the help of Maple, we easily get

Py =(4R 4 9r)s* + (112R3 + 76 R?*r — 340Rr? + 27r3)s'2
+ (832R® — 2288RYr — 6096 R*r% 4 2892R%*r® — 204 Rr?
—1975)s0 + (256 R — 30912R5 — 19008 R°r2
+ 62320 R + 18048 R3r? — 4328 R?r® + 1484 Rr®
—57r7)s% + (—14336 R? — 64000R®r 4 290560 R "2
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+ 394048 RSr3 — 148736 R%r* — 168064 R*r® — 12320 R3r®
+ 3576 R%r" — 1140Rr® + 1179)s — (4R 4 ) (8192R'°
— 92160R"r — 396800R%r? + 129024R"r3 + 475328 R%+*
+ 31104R%r® — 7T7184R* 5 — 2432R3r™ 4 5604 R*r®
+ 160RrY — 33r19)s* + (4096 R® — 4864R™r — 24896 RO
+ 11200R°r® 4 12528 R*r? — 2640R315 — 36 R*r®
+ 332Rr" — ) (4R + r)*rs® — (384R° — 256 R°r
— 400R*? + 480R3r® — 80R?r* + 8Rr®

(4.9) + 3r8) (4R + r)"r2.

Putting vg = s —4R? + Rr —13r2, then we can obtain the following identity
(which is easily verified by expanding):

4 2
(4.10) Py = n7v(7) + ngvg + n5vg + navy + Tlg’[)g + navy + n1vg + no,
where

ny =4R + 9r,
ne =224R> 4+ 300R*r — 39Rr? + 84613,
ns =4864R° + 1216 R*r + 1332R3r? + 29169 R*r3
— 17604 Rr* 4 340287,
ng =52736R" — 62592R%r + 84192R5? + 281740R "3
— 490407R3r* + 1132202R*r® — 736236 Rr® + 759208¢7,
n3 =302080R° — 957696 R®r + 1519872R7r? — 455104 R5r?
— 4390324 R%r* 4 12341731 R*r® — 17882008 R3r6
+ 22757432 R%*r" — 14246624 Rr® + 1014803217,
no =868352RM — 5260288 R 4 12472064 R%r>
— 20809472R%3 — 3435168 R"r* + 43260132R%°
— 148694813 R5r° 4 222422946 RYr" — 266859096 R3r®
+ 251802416 R*r? — 147938176 Rr1¥ 4 8126681671,
np =983040R — 10993664 R*r + 44618752 R 112
— 104931072R* 073 + 119000576 R%r* — 54887936 R%7
— 385401860R"r® + 805665315 R%r" — 1595272484 R>r®
+ 1828090652 R*r? — 1873016416 R3r'? 4 1461489856 R?r!
— 801489920 Rr'? + 361030656713,
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ng = — (R — 2r)(4915200R' — 38961152R'?r + 75459584 R 172
— 203163392R' %73 + 33298560 R r* — 56791776 R%r®
— 804721572R" % + 990417869 RSr™ — 1969598540 R
+ 1914132836 R*r? — 1866891168 R>r1? + 1383155904 R?r!
— 721906176 Rr'? + 343203840r1%)r.

It is easily seen that ng > 0,n5 > 0 and ng > 0 hold by Euler’s inequality
R > 2r. Let e = R — 2r, then it is easy to get

ns =302080¢e” + 4479744e3r + 29696256¢ 1% + 116558912¢513
+297763148e°r* + 512063451e*r® + 591341408376
(4.11) + 448363440e%r" + 214742784er® 4 615175201,

so that ng > O(since e > 0). Thus, by identity (4.10) and inequality (3.19),
to prove Py > 0 it remains to prove that

(4.12) Py = ngvd + nyvo + ng > 0.
Simplifying gives
Py =(868352R — 5260288 R + 12472064 R%r>
— 20809472R%r3 — 3435168 Rt + 43260132R%°
— 148694813 R5r® + 222422946 R*r" — 266859096 R3r®
+ 251802416 R?*r” — 147938176 Rr'® 4 81266816r11)s*
+ (—5963776 R 4 32825344 R?r — 88255488 R 112
+ 223256320R '3 — 219410688 Rr* 4 133206944 R%1°
+ 979991276 R7r% — 2395871311 Rr" + 4850511314 R5r®
— 6503043464 R*r° + 6752430320310 — 6031383840 R>r!*
+ 3207436288 Rrr'? — 17519065607'%)s + 9961472 R
— 51068928 R*r + 179355648 R'3r? — 553756672R 13
+ 897704192RMr* — 1415582528 RS — 373964704 R0
+ 3659771168 R5r" — 13770272875R"r® + 25264298291 RS9
— 39108686525 ROV + 47661845038 R4 1! — 43920968344 R3 112
(4.13)  + 37177253872R*r13 — 18121105536 Rr'* + 972710105671.

We now recall that for any triangle ABC' we have the fundamental inequality
(see [1] and [14]):

(4.14) to = —s* + (4R? + 20Rr — 2r?)s*> — (4R + 7)3r > 0,
Gerretsen’s inequality (see [4] and [14]):

(4.15) g1 = s> — 16Rr + 5r% > 0,

and the following Yang’s inequality (cf. [9]):

(4.16) g1 = 4R3 —2Rr* — 13 — (R —1)s> > 0.
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Based on these three inequalities, after analysis we obtain the following
identity:
(4.17)  (R—7r)P1=(R—7)(fito + fouog) + fags + fa(R — 2r)r?,
where
f1 =Rr(5260288R° + 20809472R"r? + 3435168 R%13
+ 148694813 R*r® + 266859096 R%r" + 14793817617),
fo =868352RM + 12472064 R%r? + 43260132R%
+ 222422946 R*r7 + 251802416 R%rY + 812668161,
f3 =2490368R'3 — 29151232R'?r 4+ 147046400 R 2
— 399980288 R + 699229056 R
— 279163056 R®r5 — 1257285000R 71
+ 4653116315R5" — 8528923476 R%r®
+ 11722707504 R4 ¥ — 11730444128 R31-1°
+ 9672289760R*r! — 5128648960 Rr'?
+ 2076973824713,
fa =1245184R'3 — 27208704 R %r + 257814272 R 12
— 910566784 R %73 + 1682561728 Rr*
— 1105962876 R85 — 2916304483 R"r6
+ 10574332574 R%" — 20268016148 R°r®
+ 27432724020 R*r® — 27479086112 R3r1°
+ 21739795392 R%r1! — 11389301632 R
+ 4028230656713,

By using Euler’s inequality (3.21), we easily show that f3 > 0 and f4 > 0.
Therefore, by identity (4.17), Euler’s inequality, Ciamberlini’s acute inequal-
ity (3.25), the fundamental inequality (4.14), Gereetsen’s inequality (4.15)
and Yang’s inequality (4.16), we conclude that P; > 0 holds for the acute
triangle ABC. And, inequality (4.2) is proved. Also, it is easy to know that
the equality in (4.2) holds if and only if AABC is equilateral. Theorem 4.1
is proved.

5. APPLICATIONS OF THEOREM 1.1 (III)

In this section, we apply Theorem 1.1 to prove the following inequality:

Theorem 5.1. Let AABC be an acute triangle, then

1 3
(51) Zm—|—2ma = Zm ’

with equality if and only if ANABC is equilateral.
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Proof. By Theorem 1.1, we only need to prove

1 3
(5.2) > S S

where v, vy, v. are given by (3.2), (3.3) and (3.4), respectively.
Computing gives

1 2RFy
(5.3) Z ro 4+ 20a  Fo

Eo =s®+ (12R* — 34Rr + 47%)s° 4+ 2(14R — r)(4R?
— 6R?r 4+ 13Rr? — r®)s* + 2(104R* + 52R3r
+ 114R%* + 29Rr3 — 2r) (2R — r)?s?
+ (2R — 3r)(4R?* +r?)* (4R + 1),

Fy =s% + (24R* — 24Rr + 3r%)s* + (336 R* — 128R3r
+ 272R*r? — 8Rr3 + 3r)s® + (4R? + r?)(20R?
— 24Rr + r*)(4R + 7)°.

Now, we recall that for any triangle ABC' it holds that

2
(5.4) (Z ma> < 4s% — 16Rr + 512,

which was established by Chu X.G and Yang X.Z in [3] (for an improvement
of (5.4), see [6]). Thus, in order to prove inequality (5.2) we needs to show
that the following inequality holds for acute triangle ABC"

(5.5) Go = 9F? — 4R?(4s®> — 16Rr + 5r2)F2 > 0.
With the help of Maple, it is easy to obtain

Go =9s'% 4+ (200R? — 612Rr + 72r%)s™ + (2544R* — 9680R>r
+ 17920 R*r? — 3420Rr® + 180r)s'? 4 (19200R®
— 88448 R°r + 185408 R*r? — 260912R3r® 4 59832R?r*
— 3780Rr® + 72r%)s'% 4 (30464R® — 516608 Ry
+ 1042432R5r? — 1563264 R°r® + 1765312R*r*
— 383936 R3r° — 11024 R + 5220Rr" — 3067%)s8
— (669696 R'® 4 816128 R%r — 3584000R%r?
+ 3787264R7r® — 4849408 R%* + 3600896 R>
— 261056 R* 15 — 575328 R3r™ 4 90568 R%r® — 5940 Rr®
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+ 360r10)s5 — (3403776 R'? — 10219520R
— 1802240 R'%72 — 2753536 R + 693248 R
+ 3106304 R 4 2192128 RS — 121088 R®r"
+ 1403728 R*r® + 72464 R3r? — 57888 R*r10
+ 3636 Rr't — 36r12)s* + 4(4R? + ) (17408 R™?
+ 199936 R — 312704R%r% + 147200R" 3
— 225248 R%* + 71328 R°15 — 5928 R*r®
+ 9120R3r" — 3022R?*r® — 819Rr® 4 54710) (4R + r)?s?
+ (9216 R® + 2560R"r — 57344R%r% + 55744 R5r3
— 9776 R* ! + 3904R3r° 4+ 1096 R?r® + 540Rr"
(5.6) + 817%)(4R? 4+ 12)?(4R + )™,
Putting
x3 =488R? — 684Rr + 100872,
z9 =12176 R* — 30232R3r + 68880R*r? — 66168 Rr>
+ 4932014,
x1 =179712R® — 599456 R + 1760552R*r?
— 2834060 R>r® 4 3726912R?r* — 2738448 Rr®
+ 137692879,
zo =1634304R® — 6878208 R"r 4 23708592 R5r2
— 50184664 R + 88610922 R*r* — 108409896 R3r>
+ 105175256 R%r5 — 62854560 Rr" + 2399054478,

then it is easy to show that z3 > 0,292 > 0,21 > 0 and x¢ > 0 in the same
way to prove the previous inequality ms > 0. So, by the previous inequality
(3.19), for the acute triangle ABC we have the following inequality:

(5.7) G1 = (9vg + x303 + 2902 + 2100 + T0)vg > 0.
Putting

y1 = 8454144 R — 47644672R%r + 184210432 R%r>
— 474948032R"r® 4 1009390840 R5+* — 1622741732R%r°
+ 2170095280 R4S — 2175491488 R3r™ 4 1709281728 R*r®
— 864124416 Rr® 4 2671200007,

yo = 18874368 R'% — 139198464 R r + 457072640 R'r?
— 996445184 R%r3 + 1493202224 R%r* — 1068850736 R r°
— 899648316 R%r® 4 4757436632R5r" — 8677926856 R41®
+ 10423632896 R3r? — 8641648992 R%r10
+ 4589170560 Rr'! — 134931686472,
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y3 = 100663296 R** — 488636416 R 3r + 4406902784 R'?r?
— 19865489408 R 4 60769593856 R0+
— 147857566800R%1° + 291870859632 R%1
— 481805172895R™r" + 672580302642 R5r°
— 780632760708 R + 754989195288 R*710
— B577124774080R3r1! 4 340673039872 R?r !
— 133932201984 R + 3042231091274,

ys = 264241152R* — 1578041344 R%r
+ 6416596992 R 12 — 18119720448 R1073
+ 41669273248 R%r* — 79326701048 R®7
+ 126855932388 R"r% — 173394751264 R5+"
+ 197394940496 R5r® — 188441627808 R*r?
+ 142309372800 R3r1Y — 83361408896 R?r!*
+ 32500242432 Rr'? — 73590128641 3.

Then we can also prove y; > 0,y2 > 0,y3 > 0 and y4 > 0 in the same way
to prove ms > 0. Thus, in view of the previous inequalities (3.21), (3.24)
and (3.25), we deduce that the following inequality:

(5.8) G = (uoy1 + y2)vg + (R — 2r)rys + rgays > 0

holds for the acute triangle ABC.
Finally, it is easy to verify the following identity:

(5.9) Go = G1 + Gs.

Therefore, the two inequalities (5.7) and (5.8) show that Gy > 0 holds for the
acute triangle ABC. We thus finish the proof of inequality (5.1). Also, we
easily know that equality in (5.1) holds if and only if AABC' is equilateral.
This completes the proof of Theorem 5.1.

Remark 5.1. The author has known that the previous inequality (1.6) can
not be used to prove Theorem 3.1, Theorem 4.1 and Theorem 5.1.

6. SOME CONJECTURES

In the last section, we give some interesting related conjectures.
Considering exponential generalizations of Theorem 3.1, we propose the
following conjecture:

Conjecture 6.1. If k > 1, then for the acute triangle ABC the following
inequality holds:

1 1
(6.1) e e Zm

m’,f%—m’é
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Conjecture 6.2. Let p and q be real numbers such that p < 1 and q¢ > 0,
then for the acute triangle ABC' the following inequality holds:

a? a?
6.2 — > e
( ) Z (mb + mc)q N Z (ra + ma)q
Ifp > 1 and q < 0, then the inequality holds reversely for any triangle ABC'.

For the inequality of Theorem 5.1, we have the following conjecture:
Conjecture 6.3. Inequality (5.1) holds for any triangle ABC'.

We have known that in the acute triangle ABC' the following inequality
holds (cf. [11)):

3
(6.3) D ma >y be

which together with Theorem 1.1 yields

1 2
(6.4) > 5 < \/7
Ta mg Z be

This inequality seems to be true for any triangle ABC. We present the
following general inequality with one parameter:

Conjecture 6.4. If 1 < k < 6.12, then for any triangle ABC' the following
inequality holds:

1 6
6.5 < ,
( ) Z’l“a—i—kma (]C—i-l) /Zbc

If 0 < k <0.37, then the inequality holds reversely for any triangle ABC'.

Inequality (6.5) also motivates the author to propose the following in-
equality with two parameters:

Conjecture 6.5. Let p and q be real numbers such that p > q > 1, then for
any triangle ABC' the following inequality holds:

1 g+1 1
6.6 E > E .
( ) pro+mg — p+1 qmg + 14

If 0 < ¢ < p <1, then the inequality holds reversely.

Finally, we give a generalization of the previous acute triangle inequality
(3.27) after checking by the computer, that is

Conjecture 6.6. If k > 1.45, then for any triangle ABC' the following
inequality holds:

1 1 1
(6.7) Zra+kma§k+1zm7a'

If 0.65 < k < V/2, then the inequality holds reversely. If 0 < k < 0.24, then
the inequality holds reversely for the acute triangle ABC'.

Acknowledgements
With the publication of this paper, the author would like to take this op-
portunity to express my gratitude to Professor Kuang Ji-Chang for his help
and support over the years.



(10]
(11]
(12]
(13]
(14]

(15]

A new geometric inequality 63

REFERENCES

Bottema, O., Djordjevi¢. R,Z., Jani¢, R.R., Mitrinovic¢, D.S., Vasi¢, P.M.: Geometic
Ineqalities. Wolters-Noordhoff, Groningen, 1969.

Ciamberlini, C., Sulla condizione necessaria esufficiente affinche un trian goto sia
acutangolo o ottusangolo, Boll.Un.Mat.Ita., 5(1943), 37-41.

Chu, X. G., Several inequalities related to the medians of an acute triangle. Recsearch
in inequalities. Tibet People’s Press, Lhasa, 2000. (in Chinese)

Gerretsen, J.C.H., Ongelijkheden in driehoek. Nieuw Tijdschr. 41(1953), 1-7.

Liu, J., An inequality chain in acute triangles. Journal of East China Jiaotong Uni-
versity. 4(2007), 133-137. (in Chinese)

Liu, J., On an inequality for the medians of a triangles. J.Sci.Arts., (2)19(2012),
127-136.

Liu, J., A refinement of an equivalent form of a Gerretsen inequality, J.Geom.,
106(3)(2015), 605-615.

Liu, J., Two New Weighted Erdds-Mordell Type Inequalities. Discrete.Comput.Ge-
om., 59(3)(2018), 707-724.

Liu, J., Further generalization of Walker’s inequality in acute triangles and its appli-
cations, AIMS Mathematics, 5(6)(2020), 6657-6672.

Liu, J., An inequality involving medians and sides of an acute triangle. Int.J.Open
Problems Compt.Math., 14(3)(2021), 49-63.

Liu, J., Two new proofs and applications of an acute triangle inequality involving
medaians and sides. Int.J.Geom., 11(1)2022, 134-152.

Liu, J., A geometric inequality and its applications. Int.J.Geom., 11(3)(2022), 134—
152.

Liu, J., A geometric inequality in acute triangles and its applications. Int.J.Open
Problems Compt.Math., 15(4)(2022), 21-38.

Mitrinovié, D.S., Pecarié¢, J.E., Volence. V., Recent Advances in Geometric Inequali-
ties. Kluwer Academic Publishers, Dordrecht, 1989.

Wu, S.H., Chu, Y.M.: Geometric interpretation of the fundamental triangle inequality
and Ciamberlini’s inequality. J.Inequal.Appl., (381)2014.

EAST CHINA JIAOTONG UNIVERSITY
JIANGXI PROVINCE NANCHANG CITY, 330013, CHINA
E-mail address: China99jian@163. com



