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A new geometric inequality in acute triangles and its applications

JIAN LIU

Abstract. We find a new acute triangle inequality, which gives a lower
bound of a single median for acute triangles. As its applications, we establish
three new symmetric acute triangle inequalities with the help of software
Maple. We also propose several related conjectures checked by the computer.

1. Introduction

Given a triangle ABC, denote by a, b, c the side lengths, ma,mb,mc the
medians, ha, hb, hc the altitudes, ra, rb, rc the radii of excircles, s,R and r the
semiperimeter, the inradius and the circumradius, respectively. In addition,
we denote

∑
and

∏
by cyclic sums and products respectively.

In the recent paper [12], Theorem 1.1 gives a upper bound of a single
median for any triangle ABC, i.e,

(1.1) ma ≤ ha +R

(
b− c

a

)2

,

with equality if and only if b = c or A = π/2. There are several equiva-
lent forms of (1.1). For example, the author pointed out in [13] that it is
equivalent to

(1.2) 4ma ≤ rb + rc + 2ha +
(b− c)2

rb + rc

and

(1.3) ma ≤ ha +
(rb − rc)

2 + (b− c)2

4(rb + rc)
.

Many years ago, the author gave the following linear inequality related to
(1.2) for the acute triangle ABC in a Chinese paper [5]:

(1.4) 4ma ≥ rb + rc + 2ha,

with equality if and only if b = c.
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Very recently, the author [13] considered improvements of (1.4) and ob-
tained the following result:

(1.5) 4ma ≥ rb + rc + 2ha +
3

4
· (b− c)2

rb + rc
,

We also pointed out in [13] that (1.5) is equivalent to

(1.6) ma ≥ ha +
3(b− c)2 + 4(rb − rc)

2

16(rb + rc)
,

with equality if and only if b = c.
From [12] and [13], we see that both inequalities (1.1) and (1.6) can be

used to prove some geometric inequalities involving medians of a triangle.
Inspired by inequality (1.3), the author finds that if (b−c)2 is replaced by

(hb − hc)
2 in (1.3) then the inequality holds for the acute triangle. Specifi-

cally, we have the following conclusion:

Theorem 1.1. Let △ABC be an acute triangle, then

(1.7) ma ≥ ha +
(rb − rc)

2 + (hb − hc)
2

4(rb + rc)
,

with equality if and only if b = c or A = π/2.

By the identity given in [13]:

(1.8) rb + rc = 2ha +
(rb − rc)

2

rb + rc
,

we see that inequality (1.7) is equivalent to

(1.9) 4ma ≥ rb + rc + 2ha +
(hb − hc)

2

rb + rc
,

which is also an improvement of inequality (1.4). In addition, we have known
that the values of the right hand side of (1.6) and (1.7) are not comparable.

The aim of this paper is to prove Theorem 1.1 and establish three new
inequalities by making use of it. We also present some related conjectures.

2. Proof of Theorem 1.1

In this section, we give a simple proof of Theorem 1.1 as follows:
Proof. We denote by S the area of △ABC. Applying the known formula:

(2.1) ra =
S

s− a
,

we get

(2.2) rb + rc =
aS

(s− b)(s− c)
,

and

(2.3) rb − rc =
(b− c)S

(s− b)(s− c)
.
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Denoting by va the value of the right hand side of (1.7), then using (2.2),
(2.3) and ha = 2S/a, we get

va =
2S

a
+

(s− b)(s− c)S

4a
(b− c)2

[
1

(s− b)2(s− c)2
+

4

b2c2

]
.

Again, using s = (a+ b+ c)/2 and simplifying, we obtain

(2.4) va =
N0S

M0
,

where

M0 =4a(c+ a− b)(a+ b− c)b2c2,

N0 =(b− c)2a4 − 2(b2 + c2)(b2 − 4bc+ c2)a2

+ (b2 + c2)(b2 − 4bc+ c2)(b− c)2.

In order to prove inequality (1.7) we need to show that

m2
a − v2a ≥ 0.

Applying the following known formula:

(2.5) 4m2
a = 2b2 + 2c2 − a2

and Heron’s formula:

(2.6) S =
1

4

√
(a+ b+ c)(b+ c− a)(c+ a− b)(a+ b− c),

we easily obtain the following identity:

(2.7) m2
a − v2a =

(b− c)2(b2 + c2 − a2)2X0

256(c+ a− b)(a+ b− c)a2b4c4
,

where

X0 =(b− c)2a6 − (3b4 − 12b3c+ 2b2c2 − 12bc3 + 3c4)a4

+ (3b4 − 12b3c− 10b2c2 − 12bc3 + 3c4)(b− c)2a2

− (b− c)2(b+ c)2(b2 − 4bc+ c2)2.

After analyzing, we find the following identity:

X0 = X1 +X2 +X3,(2.8)

where

X1 =6bc(c+ a− b)(a+ b− c)(b2 + c2 − a2)a2,

X2 =2bc(c2 + a2 − b2)(a2 + b2 − c2) [2bc+ 3(c+ a− b)(a+ b− c)] ,

X3 =(a+ b+ c)(b+ c− a)(c+ a− b)(a+ b− c)(b2 + c2 − a2)(b− c)2.

In fact, we easily verify identity (2.8) by expanding. Since △ABC is an
acute triangle, one has X1 ≥ 0, X2 ≥ 0 and X3 ≥ 0. Note that X1 and X2

are not zero at the same time. Thus inequality X1 + X2 + X3 > 0 holds
strictly, so that X0 > 0. Clearly, we have m2

a − v2a ≥ 0 from identity (2.7)
and it is easily seen that the equality in (1.7) holds if and only if b = c or
b2 + c2 − a2 = 0, i.e. A = π/2. This completes the proof of Theorem 1.1.
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Remark 2.1. It is well known that for any triangle ABC it holds that

(2.9) ma ≥ b2 + c2

4R
.

Here, we wish to point out that for the acute triangle ABC, the inequality
of Theorem 1.1 actually improves (2.9). In fact, it is easy to prove that
inequality (1.7) is equivalent to

(2.10) ma ≥ b2 + c2

4R
+

S(b− c)2(b2 + c2 − a2)2

a(c+ a− b)(a+ b− c)b2c2
.

Hence, the above statement is true.

3. Applications of Theorem 1.1 (I)

In this section and next two sections, we shall apply Theorem 1.1 and
other well-known triangle inequalities to establish three new acute triangle
inequalities. As done as in [12], we shall omit the details of deducing some
identities in a triangle. For the deductions of some complex identities in
triangles we refer the reader to [7], [8] and [10].

Next, we prove the following inequality involving medians and radii of
excircles of an acute triangle.

Theorem 3.1. Let △ABC be an acute triangle, then

(3.1)
∑ 1

mb +mc
≥

∑ 1

ra +ma
,

with equality if and only if △ABC is equilateral.

Proof. We write

va = ha +
(rb − rc)

2 + (hb − hc)
2

4(rb + rc)
,(3.2)

vb = hb +
(rc − ra)

2 + (hc − ha)
2

4(rc + ra)
,(3.3)

vc = hc +
(ra − rb)

2 + (ha − hb)
2

4(ra + rb)
.(3.4)

By Theorem 1.1, we only need to show that

(3.5)
∑ 1

mb +mc
≥

∑ 1

ra + va
.

Again, we set

qa =
1

4
(rb + rc) +

m2
a

rb + rc
,(3.6)

qb =
1

4
(rc + ra) +

m2
b

rc + ra
,(3.7)

qc =
1

4
(ra + rb) +

m2
c

ra + rb
.(3.8)

By the simplest arithmetic-geometric mean inequality, we have

(3.9) ma ≤ qa.
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(This actually is equivalent to (1.1), cf. [12]). Two similar relations mb ≤ qb
and mc ≤ qc are also valid. Thus, for proving (3.5) we need to show

(3.10)
∑ 1

qb + qc
≥

∑ 1

ra + va
.

After computing, we obtain∏
(qb + qc) =

M1

8R2s4
,(3.11) ∑

(qc + qa)(qa + qb) =
N1

16R2s4
,(3.12)

where

M1 =(R+ 2r)s8 + (16R3 + 32R2r + 12Rr2 − 2r3)s6

+ 2(R+ r)(32R4 − 32R3r − 56R2r2 − 20Rr3

− r4)s4 − 2(8R3 + 8R2r − 2Rr2 − r3)(4R+ r)3rs2

+ (4R+ r)6Rr2,

N1 =s8 + 8(4R+ 5r)Rs6 + (192R4 + 192R3r + 16R2r2

− 40Rr3 − 2r4)s4 − 8(4R+ 3r)(4R+ r)3Rrs2

+ (4R+ r)6r2.

It follows from (3.11) and (3.12) that

(3.13)
∑ 1

qb + qc
=

N1

2M1
.

In addition, after computing we obtain∏
(ra + va) =

M2

1024R5
,(3.14) ∑

(rb + vb)(rc + vc) =
N2

256R4
,(3.15)

where

M2 =s8 + 4(7R− r)(R− r)s6 + (304R4 − 448R3r + 352R2r2

− 48Rr3 + 2r4)s4 + (1856R6 − 1280R5r + 1216R4r2

− 192R3r3 − 100R2r4 + 80Rr5 − 4r6)s2

+ (4R− 3r)(4R2 + r2)2(4R+ r)3,

N2 =s6 + (40R2 − 24Rr + 3r2)s4 + (592R4 − 384R3r

+ 304R2r2 − 8Rr3 + 3r4)s2 + (4R2 + r2)(36R2

− 24Rr + r2)(4R+ r)2.

It follows from (3.14) and (3.15) that

(3.16)
∑ 1

ra + va
=

4RN2

M2
.

From (3.13) and (3.16), one sees that inequality (3.10) is equivalent to

N1

2M1
≥ 4RN2

M2
.
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Note that M1 > 0 and M2 > 0, we have to prove that

(3.17) Q0 ≡ M2N1 − 8RN2M1 ≥ 0.

With the help of Maple, we easily obtain

Q0 =s16 + (52R2 − 8Rr + 4r2)s14 + 8(118R3 − 108R2r

− 65Rr2 + 5r3)Rs12 + (6592R6 − 19840R5r − 6400R4r2

+ 8544R3r3 − 1220R2r4 + 56Rr5 − 12r6)s10 + (7168R8

− 167424R7r + 35968R6r2 + 125312R5r3 − 8016R4r4

− 8192R3r5 + 4160R2r6 − 184Rr7 − 6r8)s8 − (110592R10

+ 364544R9r − 1029120R8r2 − 465408R7r3 + 441984R6r4

+ 128768R5r5 + 66944R4r6 + 7424R3r7 − 3476R2r8

− 88Rr9 + 12r10)s6 − 8(3072R10 − 17408R9r − 35200R8r2

+ 19136R7r3 − 3712R6r4 − 7088R5r5 + 1758R4r6

+ 2124R3r7 + 197R2r8 − 23Rr9 − r10)(4R+ r)2s4

+ 4(2560R8 − 1856R7r − 1744R6r2 − 32R5r3 − 656R4r4

+ 20R3r5 + 209R2r6 + 30Rr7 − r8)(4R+ r)5rs2

− (4R2 + r2)(224R4 − 160R3r + 4R2r2 + 8Rr3

+ 3r4)(4R+ r)8r2.(3.18)

We recall that for the acute △ABC the following inequality holds (cf.[9]):

(3.19) v0 ≡ s2 − 4R2 +Rr − 13r2 ≥ 0.

According to this inequality, we can rewrite Q0 as follows:

Q0 =v80 +m7v
7
0 +m6v

6
0 +m5v

5
0 +m4v

4
0 +m3v

3
0

+m2v
2
0 +m1v0 +m0,(3.20)

where

m7 =84R2 − 16Rr + 108r2,

m6 =2848R4 − 1676R3r + 7320R2r2 − 1444Rr3 + 5096r4,

m5 =50304R6 − 60352R5r + 212900R4r2 − 119000R3r3

+ 271468R2r4 − 55792Rr5 + 137216r6,

m4 =499968R8 − 1041024R7r + 3320928R6r2

− 3548668R5r3 + 6533114R4r4 − 3486852R3r5

+ 5552040R2r6 − 1196384Rr7 + 2306064r8,
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m3 =2790400R10 − 9395200R9r + 29610240R8r2

− 49902720R7r3 + 85535228R6r4 − 82554208R5r5

+ 105209060R4r6 − 53860384R3r7 + 67593664R2r8

− 15378752Rr9 + 24770368r10,

m2 =8044544R12 − 42974208R11r + 149402112R10r2

− 348326144R9r3 + 628071904R8r4 − 887623460R7r5

+ 1075542272R6r6 − 947878924R5r7 + 935654840R4r8

− 461311488R3r9 + 489499744R2r10

− 118511168Rr11 + 166070016r12,

m1 =9240576R14 − 80642048R13r + 384334848R12r2

− 1117246464R11r3 + 2385879680R10r4 − 4274776000R9r5

+ 5711920908R8r6 − 6932730040R7r7 + 6598564932R6r8

− 5356135280R5r9 + 4340759104R4r10 − 2069231936R3r11

+ 1950372544R2r12 − 506989056Rr13 + 635378688r14,

m0 =− (R− 2r)(24969216R14 − 262062080R13r + 705221632R12r2

− 2072245504R11r3 + 3082592896R10r4 − 5729865120R9r5

+ 5890241044R8r6 − 7111394629R7r7 + 5795953986R6r8

− 4171641268R5r9 + 3521715512R4r10 − 1114222496R3r11

+ 1547364480R2r12 − 198922752Rr13 + 531062784r14)r.

It is easily seen that m7 > 0 and m6 > 0 by Euler’s inequality (in any
△ABC):

(3.21) e ≡ R− 2r ≥ 0.

Substituting R = 2r + e into the expression of m5 and expanding gives

m5 =50304e6 + 543296e5r + 2627620e4r2 + 7218760e3r3

+ 11911868e2r4 + 11245088er5 + 4854096r6,(3.22)

so m5 > 0 holds strictly. Similarly, we can easily show that m4 > 0,m3 > 0
and m2 > 0.

Therefore, according to identity (3.20) and inequality (3.19), it remains
to prove that

(3.23) Q1 ≡ m1v0 +m0 ≥ 0.

We now recall that for any△ABC the following Gerretsen’s inequality holds:

(3.24) g2 ≡ 4R2 + 4Rr + 3r2 − s2 ≥ 0.

And, for the acute triangle ABC we have the following equivalent form of
Ciamberlini’s inequality s ≥ 2R+ r (see [2] and [15]):

(3.25) u0 ≡ s2 − (2R+ r)2 ≥ 0.



54 JIAN LIU

Based on inequalities (3.21), (3.24) and (3.25), after analysis we obtain the
following identity:

(3.26) Q1 = (k1g2 + k2u0)e
3 + erk3 + k4g2,

where

k1 =64r(393728R10 + 115632R8r2 + 272503209Rr9

+ 1409244696r10),

k2 =4R2(2310144R9 + 30564096R7r2 + 168202912R5r4

+ 207237584R4r5 + 638169891R3r6 + 954609124R2r7

+ 1377157957r8R+ 573963562r9),

k3 =21233664R14 − 159629312R13r + 1290377216R12r2

− 3832424192R11r3 + 9824856576R10r4 − 17967689248R9r5

+ 26393956008R8r6 − 31408505195R7r7 + 33349831506R6r8

− 23500243332R5r9 + 27111934168R4r10 − 34934157824R3r11

− 10162335744R2r12 − 2336022528Rr13 + 2645830656r14,

k4 =1679616(185489R2 − 561004Rr + 429204r2)r12.

Using the above method to prove m5 > 0, we can easily show k3 > 0 and
k4 > 0. Therefore, by Euler’s inequality (3.21), Ciamberlini’s (3.25) and
Gerretsen’s inequality (3.24) we deduce that Q1 ≥ 0 holds for the acute
△ABC. Hence, inequality (3.1) is proved, and it is easy to determine its
equality condition. This completes the proof of Theorem 3.1.

Remark 3.1. By Theorem 3.1, it is easy to obtain the following conse-
quence:

(3.27)
∑ 1

ma + ra
≤ 1

2

∑ 1

ma
,

which holds for the acute triangle ABC.

4. Applications of Theorem 1.1 (II)

In [12], the author established an inequality involving medians and sides
of the acute triangle ABC, i.e.

(4.1)
∑ a

mb +mc
≤

√
3.

We here give an extension of this inequality:

Theorem 4.1. Let △ABC be an acute triangle, then

(4.2)
∑ a

ra +ma
≤

∑ a

mb +mc
,

with equality if and only if △ABC is equilateral.

Proof. According to Theorem 1.1 and the previous inequality (3.9), we
only need to prove

(4.3)
∑ a

qb + qc
≥

∑ a

ra + va
.
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Computing gives

(4.4)
∑

a(qc + qa)(qa + qb) =
N3

4Rs3
,

where

N3 =(4R+ 9r)s6 + (4R+ 3r)(8R2 + 8Rr − 3r2)s4

− (24R2 + 28Rr + r2)(4R+ r)2rs2 + (4R+ r)5r2.

Thus by the previous identity (3.11) we get

(4.5)
∑ a

qb + qc
=

2sRN3

M1
.

On the other hand, we can obtain the following identity after computing:

(4.6)
∑

a(rb + vb)(rc + vc) =
sN4

64R3
,

where va, vb, vc are given by (3.2)-(3.4) respectively, and

N4 =(4R+ 5r)s4 + (96R3 + 24R2r − 68Rr2 + 10r3)s2

+ (4R+ r)(80R4 − 48R3r − 40R2r2 + 52Rr3 − 11r4).

Thus, by the previous identity (3.14), we get

(4.7)
∑ a

ra + va
=

16sR2N4

M2
,

From (4.5) and (4.7), one sees that inequality (4.3) is equivalent to

2sRN3

M1
≥ 16sR2N4

M2
.

Note that M1 > 0 and M2 > 0, we require the following inequality to be
proved:

(4.8) P0 ≡ N3M2 − 8RM1N4 ≥ 0.

With the help of Maple, we easily get

P0 =(4R+ 9r)s14 + (112R3 + 76R2r − 340Rr2 + 27r3)s12

+ (832R5 − 2288R4r − 6096R3r2 + 2892R2r3 − 204Rr4

− 19r5)s10 + (256R7 − 30912R6r − 19008R5r2

+ 62320R4r3 + 18048R3r4 − 4328R2r5 + 1484Rr6

− 57r7)s8 + (−14336R9 − 64000R8r + 290560R7r2
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+ 394048R6r3 − 148736R5r4 − 168064R4r5 − 12320R3r6

+ 3576R2r7 − 1140Rr8 + 11r9)s6 − (4R+ r)(8192R10

− 92160R9r − 396800R8r2 + 129024R7r3 + 475328R6r4

+ 31104R5r5 − 77184R4r6 − 2432R3r7 + 5604R2r8

+ 160Rr9 − 33r10)s4 + (4096R8 − 4864R7r − 24896R6r2

+ 11200R5r3 + 12528R4r4 − 2640R3r5 − 36R2r6

+ 332Rr7 − r8)(4R+ r)4rs2 − (384R6 − 256R5r

− 400R4r2 + 480R3r3 − 80R2r4 + 8Rr5

+ 3r6)(4R+ r)7r2.(4.9)

Putting v0 = s2−4R2+Rr−13r2, then we can obtain the following identity
(which is easily verified by expanding):

P0 = n7v
7
0 + n6v

6
0 + n5v

5
0 + n4v

4
0 + n3v

3
0 + n2v

2
0 + n1v0 + n0,(4.10)

where

n7 =4R+ 9r,

n6 =224R3 + 300R2r − 39Rr2 + 846r3,

n5 =4864R5 + 1216R4r + 1332R3r2 + 29169R2r3

− 17604Rr4 + 34028r5,

n4 =52736R7 − 62592R6r + 84192R5r2 + 281740R4r3

− 490407R3r4 + 1132202R2r5 − 736236Rr6 + 759208r7,

n3 =302080R9 − 957696R8r + 1519872R7r2 − 455104R6r3

− 4390324R5r4 + 12341731R4r5 − 17882008R3r6

+ 22757432R2r7 − 14246624Rr8 + 10148032r9,

n2 =868352R11 − 5260288R10r + 12472064R9r2

− 20809472R8r3 − 3435168R7r4 + 43260132R6r5

− 148694813R5r6 + 222422946R4r7 − 266859096R3r8

+ 251802416R2r9 − 147938176Rr10 + 81266816r11,

n1 =983040R13 − 10993664R12r + 44618752R11r2

− 104931072R10r3 + 119000576R9r4 − 54887936R8r5

− 385401860R7r6 + 805665315R6r7 − 1595272484R5r8

+ 1828090652R4r9 − 1873016416R3r10 + 1461489856R2r11

− 801489920Rr12 + 361030656r13,
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n0 =− (R− 2r)(4915200R13 − 38961152R12r + 75459584R11r2

− 203163392R10r3 + 33298560R9r4 − 56791776R8r5

− 804721572R7r6 + 990417869R6r7 − 1969598540R5r8

+ 1914132836R4r9 − 1866891168R3r10 + 1383155904R2r11

− 721906176Rr12 + 343203840r13)r.

It is easily seen that n6 > 0, n5 > 0 and n4 > 0 hold by Euler’s inequality
R ≥ 2r. Let e = R− 2r, then it is easy to get

n3 =302080e9 + 4479744e8r + 29696256e7r2 + 116558912e6r3

+ 297763148e5r4 + 512063451e4r5 + 591341408e3r6

+ 448363440e2r7 + 214742784er8 + 61517520r9,(4.11)

so that n3 > 0(since e ≥ 0). Thus, by identity (4.10) and inequality (3.19),
to prove P0 ≥ 0 it remains to prove that

(4.12) P1 ≡ n2v
2
0 + n1v0 + n0 ≥ 0.

Simplifying gives

P1 =(868352R11 − 5260288R10r + 12472064R9r2

− 20809472R8r3 − 3435168R7r4 + 43260132R6r5

− 148694813R5r6 + 222422946R4r7 − 266859096R3r8

+ 251802416R2r9 − 147938176Rr10 + 81266816r11)s4

+ (−5963776R13 + 32825344R12r − 88255488R11r2

+ 223256320R10r3 − 219410688R9r4 + 133206944R8r5

+ 979991276R7r6 − 2395871311R6r7 + 4850511314R5r8

− 6503043464R4r9 + 6752430320R3r10 − 6031383840R2r11

+ 3207436288Rr12 − 1751906560r13)s2 + 9961472R15

− 51068928R14r + 179355648R13r2 − 553756672R12r3

+ 897704192R11r4 − 1415582528R10r5 − 373964704R9r6

+ 3659771168R8r7 − 13770272875R7r8 + 25264298291R6r9

− 39108686525R5r10 + 47661845038R4r11 − 43929968344R3r12

+ 37177253872R2r13 − 18121105536Rr14 + 9727101056r15.(4.13)

We now recall that for any triangle ABC we have the fundamental inequality
(see [1] and [14]):

(4.14) t0 ≡ −s4 + (4R2 + 20Rr − 2r2)s2 − (4R+ r)3r ≥ 0,

Gerretsen’s inequality (see [4] and [14]):

(4.15) g1 ≡ s2 − 16Rr + 5r2 ≥ 0,

and the following Yang’s inequality (cf. [9]):

(4.16) g4 ≡ 4R3 − 2Rr2 − r3 − (R− r)s2 ≥ 0.
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Based on these three inequalities, after analysis we obtain the following
identity:

(4.17) (R− r)P1 = (R− r)(f1t0 + f2u0g1) + f3g4 + f4(R− 2r)r2,

where

f1 =Rr(5260288R9 + 20809472R7r2 + 3435168R6r3

+ 148694813R4r5 + 266859096R2r7 + 147938176r9),

f2 =868352R11 + 12472064R9r2 + 43260132R6r5

+ 222422946R4r7 + 251802416R2r9 + 81266816r11,

f3 =2490368R13 − 29151232R12r + 147046400R11r2

− 399980288R10r3 + 699229056R9r4

− 279163056R8r5 − 1257285000R7r6

+ 4653116315R6r7 − 8528923476R5r8

+ 11722707504R4r9 − 11730444128R3r10

+ 9672289760R2r11 − 5128648960Rr12

+ 2076973824r13,

f4 =1245184R13 − 27208704R12r + 257814272R11r2

− 910566784R10r3 + 1682561728R9r4

− 1105962876R8r5 − 2916304483R7r6

+ 10574332574R6r7 − 20268016148R5r8

+ 27432724020R4r9 − 27479086112R3r10

+ 21739795392R2r11 − 11389301632Rr12

+ 4028230656r13.

By using Euler’s inequality (3.21), we easily show that f3 > 0 and f4 > 0.
Therefore, by identity (4.17), Euler’s inequality, Ciamberlini’s acute inequal-
ity (3.25), the fundamental inequality (4.14), Gereetsen’s inequality (4.15)
and Yang’s inequality (4.16), we conclude that P1 ≥ 0 holds for the acute
triangle ABC. And, inequality (4.2) is proved. Also, it is easy to know that
the equality in (4.2) holds if and only if △ABC is equilateral. Theorem 4.1
is proved.

5. Applications of Theorem 1.1 (III)

In this section, we apply Theorem 1.1 to prove the following inequality:

Theorem 5.1. Let △ABC be an acute triangle, then

(5.1)
∑ 1

ra + 2ma
≤ 3∑

ma

,

with equality if and only if △ABC is equilateral.
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Proof. By Theorem 1.1, we only need to prove

(5.2)
∑ 1

ra + 2va
≤ 3∑

ma

,

where va, vb, vc are given by (3.2), (3.3) and (3.4), respectively.
Computing gives

(5.3)
∑ 1

ra + 2va
=

2RF0

E0
,

E0 =s8 + (12R2 − 34Rr + 4r2)s6 + 2(14R− r)(4R3

− 6R2r + 13Rr2 − r3)s4 + 2(104R4 + 52R3r

+ 114R2r2 + 29Rr3 − 2r4)(2R− r)2s2

+ (2R− 3r)(4R2 + r2)2(4R+ r)3,

F0 =s6 + (24R2 − 24Rr + 3r2)s4 + (336R4 − 128R3r

+ 272R2r2 − 8Rr3 + 3r4)s2 + (4R2 + r2)(20R2

− 24Rr + r2)(4R+ r)2.

Now, we recall that for any triangle ABC it holds that

(5.4)
(∑

ma

)2
≤ 4s2 − 16Rr + 5r2,

which was established by Chu X.G and Yang X.Z in [3] (for an improvement
of (5.4), see [6]). Thus, in order to prove inequality (5.2) we needs to show
that the following inequality holds for acute triangle ABC:

(5.5) G0 ≡ 9E2
0 − 4R2(4s2 − 16Rr + 5r2)F 2

0 ≥ 0.

With the help of Maple, it is easy to obtain

G0 =9s16 + (200R2 − 612Rr + 72r2)s14 + (2544R4 − 9680R3r

+ 17920R2r2 − 3420Rr3 + 180r4)s12 + (19200R6

− 88448R5r + 185408R4r2 − 260912R3r3 + 59832R2r4

− 3780Rr5 + 72r6)s10 + (30464R8 − 516608R7r

+ 1042432R6r2 − 1563264R5r3 + 1765312R4r4

− 383936R3r5 − 11024R2r6 + 5220Rr7 − 306r8)s8

− (669696R10 + 816128R9r − 3584000R8r2

+ 3787264R7r3 − 4849408R6r4 + 3600896R5r5

− 261056R4r6 − 575328R3r7 + 90568R2r8 − 5940Rr9



60 JIAN LIU

+ 360r10)s6 − (3403776R12 − 10219520R11r

− 1802240R10r2 − 2753536R9r3 + 693248R8r4

+ 3106304R7r5 + 2192128R6r6 − 121088R5r7

+ 1403728R4r8 + 72464R3r9 − 57888R2r10

+ 3636Rr11 − 36r12)s4 + 4(4R2 + r2)(17408R10

+ 199936R9r − 312704R8r2 + 147200R7r3

− 225248R6r4 + 71328R5r5 − 5928R4r6

+ 9120R3r7 − 3022R2r8 − 819Rr9 + 54r10)(4R+ r)2s2

+ (9216R8 + 2560R7r − 57344R6r2 + 55744R5r3

− 9776R4r4 + 3904R3r5 + 1096R2r6 + 540Rr7

+ 81r8)(4R2 + r2)2(4R+ r)4.(5.6)

Putting

x3 =488R2 − 684Rr + 1008r2,

x2 =12176R4 − 30232R3r + 68880R2r2 − 66168Rr3

+ 49320r4,

x1 =179712R6 − 599456R5r + 1760552R4r2

− 2834060R3r3 + 3726912R2r4 − 2738448Rr5

+ 1376928r6,

x0 =1634304R8 − 6878208R7r + 23708592R6r2

− 50184664R5r3 + 88610922R4r4 − 108409896R3r5

+ 105175256R2r6 − 62854560Rr7 + 23990544r8,

then it is easy to show that x3 > 0, x2 > 0, x1 > 0 and x0 > 0 in the same
way to prove the previous inequality m5 > 0. So, by the previous inequality
(3.19), for the acute triangle ABC we have the following inequality:

(5.7) G1 ≡ (9v40 + x3v
3
0 + x2v

2
0 + x1v0 + x0)v

4
0 ≥ 0.

Putting

y1 = 8454144R10 − 47644672R9r + 184210432R8r2

− 474948032R7r3 + 1009390840R6r4 − 1622741732R5r5

+ 2170095280R4r6 − 2175491488R3r7 + 1709281728R2r8

− 864124416Rr9 + 267120000r10,

y2 = 18874368R12 − 139198464R11r + 457072640R10r2

− 996445184R9r3 + 1493202224R8r4 − 1068850736R7r5

− 899648316R6r6 + 4757436632R5r7 − 8677926856R4r8

+ 10423632896R3r9 − 8641648992R2r10

+ 4589170560Rr11 − 1349316864r12,
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y3 = 100663296R14 − 488636416R13r + 4406902784R12r2

− 19865489408R11r3 + 60769593856R10r4

− 147857566800R9r5 + 291870859632R8r6

− 481805172895R7r7 + 672580302642R6r8

− 780632760708R5r9 + 754989195288R4r10

− 577124774080R3r11 + 340673039872R2r12

− 133932201984Rr13 + 30422310912r14,

y4 = 264241152R13 − 1578041344R12r

+ 6416596992R11r2 − 18119720448R10r3

+ 41669273248R9r4 − 79326701048R8r5

+ 126855932388R7r6 − 173394751264R6r7

+ 197394940496R5r8 − 188441627808R4r9

+ 142309372800R3r10 − 83361408896R2r11

+ 32500242432Rr12 − 7359012864r13.

Then we can also prove y1 > 0, y2 > 0, y3 > 0 and y4 > 0 in the same way
to prove m5 > 0. Thus, in view of the previous inequalities (3.21), (3.24)
and (3.25), we deduce that the following inequality:

(5.8) G2 ≡ (u0y1 + y2)v
2
0 + (R− 2r)ry3 + rg2y4 ≥ 0

holds for the acute triangle ABC.
Finally, it is easy to verify the following identity:

(5.9) G0 = G1 +G2.

Therefore, the two inequalities (5.7) and (5.8) show that G0 ≥ 0 holds for the
acute triangle ABC. We thus finish the proof of inequality (5.1). Also, we
easily know that equality in (5.1) holds if and only if △ABC is equilateral.
This completes the proof of Theorem 5.1.

Remark 5.1. The author has known that the previous inequality (1.6) can
not be used to prove Theorem 3.1, Theorem 4.1 and Theorem 5.1.

6. Some conjectures

In the last section, we give some interesting related conjectures.
Considering exponential generalizations of Theorem 3.1, we propose the

following conjecture:

Conjecture 6.1. If k > 1, then for the acute triangle ABC the following
inequality holds:

(6.1)
∑ 1

mk
b +mk

c

≥
∑ 1

rka +mk
a

.
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Conjecture 6.2. Let p and q be real numbers such that p ≤ 1 and q > 0,
then for the acute triangle ABC the following inequality holds:

(6.2)
∑ ap

(mb +mc)q
≥

∑ ap

(ra +ma)q
,

If p ≥ 1 and q < 0, then the inequality holds reversely for any triangle ABC.

For the inequality of Theorem 5.1, we have the following conjecture:

Conjecture 6.3. Inequality (5.1) holds for any triangle ABC.

We have known that in the acute triangle ABC the following inequality
holds (cf. [11]):

(6.3)
∑

ma ≥ 3

2

√∑
bc,

which together with Theorem 1.1 yields

(6.4)
∑ 1

ra + 2ma
≤ 2√∑

bc
.

This inequality seems to be true for any triangle ABC. We present the
following general inequality with one parameter:

Conjecture 6.4. If 1 ≤ k ≤ 6.12, then for any triangle ABC the following
inequality holds:

(6.5)
∑ 1

ra + kma
≤ 6

(k + 1)
√∑

bc
.

If 0 < k ≤ 0.37, then the inequality holds reversely for any triangle ABC.

Inequality (6.5) also motivates the author to propose the following in-
equality with two parameters:

Conjecture 6.5. Let p and q be real numbers such that p ≥ q ≥ 1, then for
any triangle ABC the following inequality holds:

(6.6)
∑ 1

pra +ma
≥ q + 1

p+ 1

∑ 1

qma + ra
.

If 0 < q ≤ p ≤ 1, then the inequality holds reversely.

Finally, we give a generalization of the previous acute triangle inequality
(3.27) after checking by the computer, that is

Conjecture 6.6. If k ≥ 1.45, then for any triangle ABC the following
inequality holds:

(6.7)
∑ 1

ra + kma
≤ 1

k + 1

∑ 1

ma
.

If 0.65 ≤ k ≤
√
2, then the inequality holds reversely. If 0 < k ≤ 0.24, then

the inequality holds reversely for the acute triangle ABC.
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Ineqalities. Wolters-Noordhoff, Groningen, 1969.

[2] Ciamberlini, C., Sulla condizione necessaria esufficiente affinche un trian goto sia
acutangolo o ottusangolo, Boll.Un.Mat.Ita., 5(1943), 37–41.

[3] Chu, X. G., Several inequalities related to the medians of an acute triangle. Recsearch
in inequalities. Tibet People’s Press, Lhasa, 2000. (in Chinese)

[4] Gerretsen, J.C.H., Ongelijkheden in driehoek. Nieuw Tijdschr. 41(1953), 1–7.
[5] Liu, J., An inequality chain in acute triangles. Journal of East China Jiaotong Uni-

versity. 4(2007), 133–137. (in Chinese)
[6] Liu, J., On an inequality for the medians of a triangles. J.Sci.Arts., (2)19(2012),

127–136.
[7] Liu, J., A refinement of an equivalent form of a Gerretsen inequality, J.Geom.,

106(3)(2015), 605–615.
[8] Liu, J., Two New Weighted Erdös-Mordell Type Inequalities. Discrete.Comput.Ge-

om., 59(3)(2018), 707–724.
[9] Liu, J., Further generalization of Walker’s inequality in acute triangles and its appli-

cations, AIMS Mathematics, 5(6)(2020), 6657–6672.
[10] Liu, J., An inequality involving medians and sides of an acute triangle. Int.J.Open

Problems Compt.Math., 14(3)(2021), 49–63.
[11] Liu, J., Two new proofs and applications of an acute triangle inequality involving

medaians and sides. Int.J.Geom., 11(1)2022, 134–152.
[12] Liu, J., A geometric inequality and its applications. Int.J.Geom., 11(3)(2022), 134–

152.
[13] Liu, J., A geometric inequality in acute triangles and its applications. Int.J.Open

Problems Compt.Math., 15(4)(2022), 21–38.
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