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Tango-Quadrilaterals

Antoine Mhanna

Abstract. In this note, we represent and characterize a tango-quadrilateral
as a quadrilateral having a circle that is tangent to the lines supporting its
sides.

1. Introduction

The problem of tangential and extangential quadrilaterals characteriza-
tions is a well known problem; see [3] and [4] respectively. By definition an
extangential quadrilateral is a convex quadrilateral with an external circle
tangent to the extensions of all four sides. Similarly a tangential quadrilat-
eral is a convex quadrilateral with an incircle, that is a circle tangent at the
inside of the quadrilateral to all four sides.

Our purpose here is to give a unified presentation for both tangential and
extangential quadrilaterals. Throughout this paper we assume quadrilater-
als without three aligned vertices.

Definition 1.1. A tango-quadrilateral is any quadrilateral having a circle
tangent to the lines supporting its four sides, (see Figure 1).
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Figure 1.
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We start by some classic properties of tangential and extangential quadri-
laterals:

Lemma 1.1 (Pitot’s theorem). [3] A convex quadrilateral is tangential if
and only if the sums of opposite sides are equal.

Lemma 1.2. [4] A convex quadrilateral is extangential if and only if the
sum of two adjacent sides is equal to the sum of the other two.

The reader can see [3, 4] and the references therein for further equivalent
properties of such quadrilaterals.

Lemma 1.3 (Newton’s line). [4, 2] Suppose ABCD is a tangential or ex-
tangential quadrilateral. If M and N are the midpoints of its diagonals and
O the center of the tangent circle, then M ,N and O are collinear.

See also [1] for a proof of Lemma 1.3 with a historical view. We reprove
previous lemmas analytically in a slightly more general setting, together
with a trigonometric characterization for tango-quadrilaterals.

Given a quadrilateral ABCD with corners A,B,C,D and sides [AB],
[BC], [CD] and [DA], we call an inside (internal) bisector of a corner, the
bisector of the angle formed by the segments of adjacent sides. The other bi-
sector is called the outside (external) bisector (the one of the supplementary
angle). The following is a basic formulation of tango-quadrilaterals:

Proposition 1.1. A quadrilateral ABCD is a tango-quadrilateral if and
only if there exist four (equivalently 3) angle bisectors, one from each corner
such that they intersect at a single point denoted by O.

2. MAIN RESULT

Before stating the main results we consider which angle bisectors are like
to intersect.

Proposition 2.1. For a tango-quadrilateral ABCD, if 4 corner bisectors
intersect at O, then no consecutive two are both outside bisectors.

Proof. This is straightforward, for suppose the converse; the two outside
consecutive bisectors intersect at point O outside of ABCD and it is easy
to see that, the fourth side (line) can not be tangent to that circle (using
that from a point T on circle (C), there is a single line tangent to (C) and
from a point T ′ outside of (C), there are only two tangents to (C)).

Similarly we have:

Proposition 2.2 (Figure 2). For a crossed tango-quadrilateral ABCD, if 4
corner bisectors intersect at O, no consecutive two are both inside bisectors.

Hereafter consider a line segment [AB] (B on the right from A) with two
angle corners 2a and 2b at A and B, respectively, a and b in ]0; 90◦[. The
points A′ and B′ verify (

−−→
AB;

−−→
AA′) = 2a and (

−−→
BB′;

−−→
BA) = 2b, respectively,

(all directed angles are assumed to have an anticlockwise positive orienta-
tion).
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Figure 2.

Assume that the angle bisectors of 2a and 2b intersect at O and that
without loss of generality O is in the upper half plane divided by (AB).
Notice here that a + b < 180◦. For C ∈ (BB′), (C ̸= B) let (

−−→
CO;

−−→
CB) =

d and for D ∈ (AA′), (D ̸= A) let (
−−→
DA;

−−→
DO) = x, see Figure 3. The

quadrilateral ABCD is a tango-quadrilateral if and only if x = 180◦−a−b−d
or x = 540◦− a− b− d. In particular if x+ a+ b+ d = 180◦, ABCD has an
inside tangent circle and for x + a + b + d = 540◦, ABCD has an external
tangent circle. The proof of this main characterization is straightforward
in term of angle values by drawing a line (CC ′) with (

−−→
CC ′;

−−→
CB) = 2d and

(CC ′) ∩ (AA′) = D.

Figure 3. The main configuration

Remark 2.1. The quadrilateral ABCD is uniquely determined given the
directed angles x and d. Notice also that x + a + b + d ≡ 0 (mod 180◦) is
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equivalent to x+a+b+d = 180◦ or x+b+d+a = 540◦; as one can see that
x+ a+ b+ d = 360◦ and x+ a+ b+ d = 720◦ are not possible; for example
if a + b + d < 180◦ then x > 180◦ and for such point D, x > 360◦ − a, a
contradiction. Similarly for x+ a+ b+ d = 540◦, x+ d > 360◦ with x or d
< 180◦.

Given an orthonormal axis (O;
−→
i ;

−→
j ), the equation of a line (l) is y =

αx + β for some reals α and β, the real α is called the slope of (l). In the
sequel we take α (without loss of generality) to be finite and well defined;
the case of a vertical line is taken as a tending limit for α → ±∞ and
α =

y− yA
x− xA

for some point A ∈ (l).

Lemma 2.1. Let I and J be the midpoints of the diagonals [DB] and [AC],
respectively. For a+ b ≠ 90◦, the points I, J and O are collinear if and only
if ABCD is a tango-quadrilateral.

Proof. We take here an orthonormal axis centered at A, up to a scalar
multiple let d(O; (AB)) = 1, so the circle is of radius one. We find the
slope of (OJ); the slope of (OI) can be deduced by replacing a ↔ b, d ↔ x
and adding a minus sign to the corresponding slopes (vertical reflection).
From the angle definitions we have: A(0; 0), O( cos(a)sin(a) ; 1), B( cos(a)sin(a) +

cos(b)
sin(b) ; 0),

C( cos(a)sin(a) −
cos(2b+d)
sin(d) ; 1+ sin(2b+d)

sin(d) ). If m is the slope of (OJ), it can be verified
that

m =
sin(a)(sin(d)− sin(2b+ d))

sin(a) cos(2b+ d) + sin(d) cos(a)

consequently the slope n of (OI) is

n =
− sin(b)(sin(x)− sin(2a+ x))

sin(b) cos(2a+ x) + sin(x) cos(b)
.

Solving n = m in x gives:
sin(a)(sin(d+ b− b)− sin(b+ b+ d))

sin(a) cos(b+ b+ d) + sin(d+ b− b) cos(a)
=

− sin(b)(sin(x+ a− a)− sin(a+ a+ x))

sin(b) cos(a+ a+ x) + sin(x+ a− a) cos(b)
,

after expanding and simplifying we get:
2 sin(a) sin(b)

sin(b− a) + tan(a+ x) cos(a+ b)
=

2 sin(a) sin(b)

sin(b− a)− tan(b+ d) cos(a+ b)
,

equivalently (sin(a) sin(b) ̸= 0)
tan(a+ x) cos(a+ b) = tan(−b− d) cos(a+ b)

which implies x+ a+ b+ d ≡ 0 (mod 180◦) as cos(a+ b) ̸= 0.
A similar characterization holds if we consider two angle bisectors of two

opposite corners for the quadrilateral ABCD.

Lemma 2.2. In an orthonormal system (O;
−→
i ;

−→
j ), let A(r cos(θ); r sin(θ)),

C(c; 0) for some positives r, c and θ ∈ R. If a point B(t cos(α); t sin(α)) is
taken such that (OB) is an angle bisector of the lines (BA) and (BC) at B,
then

t =
rc sin(2α− θ)

c sin(α)− r sin(θ − α)
.
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Proof. We use the characterization of an angle bisector so:
d(O; (BA))︸ ︷︷ ︸

k

= d(O; (BC))︸ ︷︷ ︸
h

.

By the law of cosines:
4Area(OCB)2 =h2(t2 + c2 − 2tc cos(α)) = t2c2 sin(α)2.

4Area(OAB)2 =k2(t2 + r2 − 2tr cos(θ − α)) = t2r2 sin(θ − α)2.

The equation h2 = k2 gives the quadratic
(t(c sin(α)+r sin(θ−α))−rc sin(θ))(t(r sin(α−θ)+c sin(α))−rc sin(2α−θ)) = 0.

The roots are t1 =
rc sin(θ)

c sin(α) + r sin(θ − α)
and t2 =

rc sin(2α− θ)

c sin(α)− r sin(θ − α)
.

The first root gives A,B and C aligned which we have already excluded.

Theorem 2.1. Given a quadrilateral ABCD with no three aligned vertices;
let the angle bisectors of two opposite corners intersect at O with an angle
θ. If θ ̸= 90◦, the midpoints of the diagonals (I and J) are collinear with O
if and only if ABCD is a tango-quadrilateral.

Proof. Take as in Lemma 2.2 the points O(0; 0), A(r cos(θ); r sin(θ)), C(c; 0)
and B(t cos(α); t sin(α)) where r and c are positives reals with θ ∈ [0; 180◦].
We start by the following figure, let B1 and B2 be the symmetric of B with
respect to (OA) and (OC), respectively. Assume that (B1A) ∩ (B2C) = D.
It can be verified that (B2C) is the line y =

yBx

c− xB
+

yBc

xB − c
and (B1A) is

y =
xB sin(2θ)− yB cos(2θ)− r sin(θ)

xB cos(2θ) + yB sin(2θ)− r cos(θ)
x+

ryB cos(θ)− rxB sin(θ)

xB cos(2θ) + yB sin(2θ)− r cos(θ)
.

This gives point D(xD; yD) where

xD =
rxB sin(θ)(c− xB) + yB(rxB cos(θ)− cxB cos(2θ)− cyB sin(2θ))

(cxB − t2) sin(2θ) + yB(r cos(θ)− c cos(2θ)) + r sin(θ)(xB − c)
.

Simplify yD + yB
xD + xB

to get

slope (OI) =
sin(α)

(
t− r cos(α)

cos(θ)

)
cos(α)

(
t− c sin(2θ − 2α) + r sin(2α) cos(θ)

sin(2θ) cos(α)

) , (ID = IB),

slope (OJ) =
r sin(θ)

r cos(θ) + c
= m, (JA = JC),

with n = slope (OI) =
2 sin(θ) sin(α)(r cos(α)− t cos(θ))

c sin(2(θ − α)) + r sin(2α) cos(θ)− t sin(2θ) cos(α)
.

Solving n = m gives
sin(θ) cos(θ)(t(c sin(α) + r sin(α− θ)) + rc sin(θ − 2α)) = 0,

this is true for θ ≡ 0 (mod 90◦) and for t =
rc sin(2α− θ)

c sin(α) + r sin(α− θ)
. The

case θ ≡ 0 (mod 180◦) gives ABCD a kite, otherwise the given solution is
the one for ABCD a tango-quadrilateral by Lemma 2.2.
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Now assume θ ̸≡ 0 (mod 90◦), the particular case when

r
cos(α)

cos(θ)
=

c sin(2θ − 2α) + r sin(2α) cos(θ)

sin(2θ) cos(α)

gives c = r
cos(α)

cos(θ − α)
= c0. For c = c0, from t = r cos(α)

cos(θ) , (B1A) ≡ (B2C)

(excluded) and from slope (OI) = sin(α)
cos(α) = m we get c = r sin(θ−α)

sin(α) = c1. The
equation c0 = c1 is equivalent to sin(2α) = sin(2θ−2α) so α ≡ θ

2 (mod 90◦),
c = r and ABCD is a kite, or θ = 90◦. This completes the proof.

Figure 4. The Newton line

A particular case of Theorem 2.1 is proved in [4] (Theorem 5.2). A rhom-
bus is a tangential quadrilateral and if only one diagonal is the perpendicular
bisector of the other one, then such quadrilateral (a kite) has an incircle and
an external circle tangent to the lines of its sides.

Now consider an orthonormal system centered at O with d(O; (AB)) = 1,
we have A(− cos(a)

sin(a) ;−1), B( cos(b)sin(b) ;−1), C(− cos(2b+d)
sin(d) ; sin(2b+d)

sin(d) ). The mid-
points I and J are:

I

(
cos(b)

2 sin(b)
+

cos(2a+ x)

2 sin(x)
;
sin(2a+ x)

2 sin(x)
− 1

2

)
,

J

(
− cos(a)

2 sin(a)
− cos(2b+ d)

2 sin(d)
;
sin(2b+ d)

2 sin(d)
− 1

2

)
,

and yJ = 0 if and only if sin(2b+ d) = sin(d) thus b+ d ≡ 90◦ (mod 180◦).
Equivalently b+ d = 90◦ for b acute and b+ d = 450◦ for b obtuse (d verifies
d < 180◦ − b or d > 360◦ − b); this gives J(− cos(a)

2 sin(a) +
sin(b)
2 cos(b) ; 0). When

a + x = 90◦ or a + x = 450◦ we get I( cos(b)
2 sin(b) −

sin(a)
2 cos(a) ; 0). It is easy to

verify that xIxJ > 0 for a or b obtuse and xIxJ < 0 for a and b acute; with
xI = xJ = 0 if and only if a + b = 90◦ (ABCD is a rhombus). With the
same previous notation:
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Proposition 2.3. For x + a + b + d = 180◦, −→OJ = α
−→
IO with α ∈ R+ and

α is nul if and only if ABCD is a rhombus.

Proof. The case yJ = 0 is already discussed so assume yJ ̸= 0 and so is yI ,
we need to prove yIyJ < 0, equivalently
(1) (sin(2b+ d)− sin(d))(sin(b+ d− a)− sin(b+ d+ a)) < 0.

• Say 90◦ < b+ d ⇔ 2b+ d > 180◦ − d ⇔ b+ d− a > 180◦ − b− d− a.
Since b+ d < 180◦ and a acute this implies that sin(2b+ d) < sin(d)
and sin(b+ d− a) > sin(b+ d+ a).

• When 2b+ d < 180◦ − d so 0 < b+ d < 90◦; sin(2b+ d) > sin(d) and
sin(b+ d− a) < sin(b+ d+ a).

Proposition 2.4. For x+ a+ b+ d = 540◦, −→OJ = α
−→
IO with α ∈ R∗−.

Proof. We may assume yI and yJ are not zero, by Remark 2.1 we know
that sin(x) sin(d) < 0. Let without loss of generality d < 180◦ − b < 180◦ so
180◦ < b+ d+ a < 360◦ and (1) is proved as follows:

• If 180◦ < b+ d+ a < 270◦, for b+ d > 90◦, sin(b+ d− a)− sin(b+
d + a) > 0 and similarly to the last proof sin(2b + d) < sin(d).
When b + d − a < 180◦ − a − b − d, b + d < 90◦, a > 90◦ with
sin(b+ d− a)− sin(b+ d+ a) < 0 and sin(2b+ d) > sin(d).

• If 270◦ ≤ b + d + a < 360◦, from 180◦ > b + d > 90◦, a > 90◦ and
b < 90◦: sin(b+ d− a)− sin(b+ d+ a) > 0 and sin(2b+ d) < sin(d).

Proposition 2.5. Under the previous notation:(
cos(x)

sin(x)
+

cos(d)

sin(d)

)2

=
1

sin(x)2
+

1

sin(d)2
+

2

sin(x) sin(d)
cos(2b+2a+d+x)

if and only if x+ a+ b+ d ≡ 0 (mod 180◦).

Proof. Expanding and simplifying gives cos(x+ d) = cos(2a+ 2b+ d+ x)
and thus x+ a+ b+ d ≡ 0 (mod 180◦).

It can be verified that:

(2) DC2 =
1

sin(x)2
+

1

sin(d)2
+

2

sin(x) sin(d)
cos(2b+ 2a+ d+ x).

Notice that ( cos(x)sin(x)+
cos(d)
sin(d) ) has the same sign as sin(x+d)

sin(x) sin(d) . From Remark 2.1,
given a tango-quadrilateral sin(x + d) > 0. For x + a + b + d = 180◦:
sin(x) sin(d) > 0 and for x+ a+ b+ d = 540◦: sin(x) sin(d) < 0.

For d < 180◦ (resp. x < 180◦), BC = cos(b)
sin(b)+

cos(d)
sin(d) with b+d < 180◦ (resp.

AD = cos(x)
sin(x) +

cos(a)
sin(a) with a + x < 180◦ ). For d > 180◦ (resp. x > 180◦),

BC = cos(180◦−b)
sin(180◦−b) +

cos(360◦−d)
sin(360◦−d) = −( cos(b)sin(b) +

cos(d)
sin(d) ) with b + d > 360◦ (resp.

AD = −( cos(a)sin(a) + cos(x)
sin(x) ) with a + x > 360◦). Consequently we have the

following:
• If x < 180◦ and d < 180◦, then ABCD is a tango-quadrilateral with

an incircle if and only if AB +DC = AD +BC.
• If x > 180◦ and d < 180◦, then ABCD is a tango-quadrilateral with

an excircle if and only if AD +AB = DC +BC.
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• If x < 180◦ and d > 180◦, then ABCD is a tango-quadrilateral with
an excircle if and only if AB +BC = DC +AD.

• If x > 180◦ and d > 180◦, ABCD is not a tango-quadrilateral.
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