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THE REDUCTION OF DARBOUX’S THEOREM ON WEIL

BUNDLES

GATSE SERVAIS CYR

Abstract. Let M be a paracompact and connected smooth manifold, A a
Weil algebra and MA the associated Weil bundle. We construct a Darboux’s
theorem on Weil bundles, we also give the reduction of this theorem and we
revisited the hamiltonian vector field on Weil bundles.

1. Introduction

The most abstract reduction principe states that every coisotropic sub-
manifold of symplectic manifold is foliated by isotropic leaves and if the leaf
space is a manifold it carries again a symplectic structure.

In (see [4]), it has been formalized the fact if a n-dimensional symmetry
group acts on a hamiltonian system then the number of degrees of freedom
can be reduced by 2n.

In what follows,M denotes a paracompact differentiable manifold, C∞(M)
the algebra of smooth functions on M,A a local algebra (in the sense of An-
dré Weil), i.e., a real commutative algebra with unit, of finite dimension,
and with a unique maximal ideal m of codimension 1 over R. In this case,
there exists an integer h such that mh+1 = (0) and mh 6= (0). The integer h
is the height of A. Also we have

(1) A = R⊕m.

We recall that a near point of x ∈M of kind A is a morphism of algebras

ξ : C∞(M) −→ A
such that

[ξ(f)− f(x)] ∈ m

for any f ∈ C∞(M). We denote MA
x the set of near points of x ∈M of kind

A and

(2) MA =
⋃
x∈M

MA
x

the manifold of infinitely near points on M of kind A.
We have RA = A,MD = TM where TM is the tangent bundle of M .
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When the dimension of M is m, then the dimension of MA is m×dim(A)
(see [7], [3] and the references given there). Let (U,ϕ) be a local chart with
local coordinates (x1, x2, ..., xm). The application

UA −→ Am, ξ 7−→ (ξ(x1), ξ(x2), ..., ξ(xm)),

is a bijection from UA to an open of Am. Thus MA is an A-manifold of
dimension m [2].

The set, C∞(MA,A), of smooth functions on MA with values in A is a
commutative algebra with unit over A.

For any f ∈ C∞(M), the application

fA : MA −→ A, ξ 7−→ ξ(f),

is smooth and the application

C∞(M) −→ C∞(MA,A), f 7−→ fA,

is a monomorphism of algebras.
The following assertions are equivalent:

(1) X is a derivation of C∞(MA), i.e., X is a vector field on MA;
(2) X : C∞(M) −→ C∞(MA,A) is a R-linear application such that, for

any f, g ∈ C∞(M),

X(fg) = X(f) · gA + fA ·X(g)

that is, X is a derivation from C∞(M) into C∞(MA,A) with respect
the module structure

C∞(MA,A)× C∞(M) −→ C∞(MA,A), (F, f) 7−→ F · fA;

(3) X is a differentiable section of the tangent bundle
(
TMA, πMA ,MA);

(4) X is a derivation of C∞(MA,A) which A-linear.

Thus the set, X(MA), of vector fields on MA considered as derivations of
C∞(M) into C∞(MA,A) is a module over C∞(MA,A).

When

θ : C∞(M) −→ C∞(M)

is a vector field on M , then the map

θA : C∞(M) −→ C∞(MA,A), f 7−→ [θ(f)]A ,

is a vector field on MA. We say that the vector field θA is the prolongation
to MA of the vector field θ.

If X is a vector field on MA, considered as a derivation of C∞(M) into
C∞(MA,A), then there exists, [2], a unique derivation

X̃ : C∞(MA,A) −→ C∞(MA,A)

such that

(1) X̃ is A-linear;

(2) X̃
[
C∞(MA)

]
⊂ C∞(MA);

(3) X̃(fA) = X(f) for any f ∈ C∞(M).
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The application

[, ] : X(MA)× X(MA) −→ X(MA), (X,Y ) 7−→ X̃ ◦ Y − Ỹ ◦X,

is A-bilinear and defines a structure of A-Lie algebra on X(MA) (see [2]).
If we denote Der

[
C∞(MA,A)

]
, the C∞(MA,A)-module of derivations of

C∞(MA,A), then the map

X(MA) −→ Der
[
C∞(MA,A)

]
, X 7−→ X̃,

is a morphism of A-Lie algebras [2], [3].
For any p ∈ N,

(3) Λp(MA,A) = Lpsks
[
X(MA), C∞(MA,A)

]
denotes the C∞(MA,A)-module of skew-symmetric multilinear forms of de-
gree p on X(MA). We say that Λp(MA,A) is the C∞(MA,A)-module of
differential A-forms of degree p on MA. We have

(4) Λ0(MA,A) = C∞(MA,A).

We denote

(5) Λ(MA,A) =

n⊕
p=0

Λp(MA,A).

If ω is a differential form of degree p on M , then there exists a unique
differential A-form of degree p on MA such that

(6) ωA(θA1 , θ
A
2 , ..., θ

A
p ) = [ω(θ1, θ2, ..., θp)]

A

for any vector fields θ1, θ2, ..., θp ∈ X( M). We say that the differential
A-form ωA is the prolongation to MA of the differential form ω [5], [6], [3].

When

d : Λ(M) −→ Λ(M)

is the exterior differentiation operator, we denote

dA : Λ(MA,A) −→ Λ(MA,A)

the cohomology operator associated to the representation

X(MA) −→ Der
[
C∞(MA,A)

]
, X 7−→ X̃.

We recall that for η ∈ Λp(MA,A), we have

(dAη)(X1, X2, ..., Xp+1)

=

p+1∑
i=1

(−1)i−1X̃i

[
η(X1, X2, ..., X̂i, ..., Xp+1)

]
+
∑
i<j

(−1)i+j η([Xi, Xj ] , X1, ..., X̂i, ..., X̂j , ..., Xp+1)

for any vector fields X1, X2, ..., Xp+1 ∈ X( MA).
The map

dA : Λ(MA,A) −→ Λ(MA,A)
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is A-linear and

(7) dA(ωA) = (dω)A

for any ω ∈ Λ(M) [2]. It is easy to see that if

dω = 0,

then

(8) (dω)A = 0.

Let (M,ω) be a symplectic manifold. Then the manifold M is a Poisson
manifold, i.e., the algebra C∞(M) carries a structure of Poisson algebra.
For any linear form

ψ : A −→ R,

the differential form ψ ◦ωA is not necessary a symplectic form on MA. That
is the prolongation ωA does not always induce a structure of Poisson on MA.
Let m be the maximal ideal of a local algebra A,

ann(m) = {a ∈ A /a · x = 0 for any x ∈ m}

and

µA : A× A −→ A, (a, b) 7−→ a · b,
the multiplication on A. Then there exists a linear form ψ : A −→ R such
that the bilinear symmetric form

ψ ◦ µA : A× A −→ R

is nondegenerated if and only if dim [ann(m)] = 1 [6].
When (M,ω) is a symplectic manifold and ψ ∈ A∗ a linear form on A,

then the scalar 2-form ψ ◦ ωA is a symplectic form on MA if and only if
dim [ann(m)] = 1 and ψ [ann(m)] 6= 0: it is the case when

A = R [T1, ..., Ts] /[T
k1
1 , ..., T kss ].

Thus, when (M,ω) is a symplectic manifold, we cannot obtain a Poisson
structure onMA which comes from the prolongation of ω when dim [ann(m)] 6=
1. For example, it is the case when A = R [T1, T2] /(T1, T2)

2.

The main goal of this paper is:
Theorem 2.1. Let (MA, ωA) be a 2n-dimensional symplectic A-manifold,

and let ξ be any point inMA. Then there is a coordinate chart (UA, xA1 , ...., x
A
2n)

centered at ξ such that on UA

ωA =
n∑
i=1

dA(xAi ) ∧ dA(xAn+i).

Theorem 3.1. Suppose that ωA is a dA-closed 2-form of constant half-
rank n on an A-manifold (MA)2n+k. Then the null bundle

NA
ωA =

{
δ ∈ TMA

/
ωA (δ, v) = 0,∀v ∈ Tπ

MA (δ)M
A
}
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is integrable and of constant rank k. Moreover, any point of MA has a neigh-
borhood UA on which there exist local coordinates

(
xA1 , ..., x

A
2n, y

A
1 , ..., y

A
k

)
in

which

ωA
|UA

=

n∑
i=1

dA(xAi ) ∧ dA(xAn+i).

2. Darboux’s theorem on MA

Proposition 2.1. If ω is a differential form on M and if θ is a vector field
on M , then

(9) (iθω)A = iθA(ωA).

Proof. If the degree of ω is p, then (iθω)A is a unique differential A-form
of degree p− 1 such that

(iθω)A(θA1 , ..., θ
A
p−1) = [(iθω)(θ1, ..., θp−1)]

A

= [ω(θ, θ1, ..., θp−1)]
A

for any θ1, θ2, ..., θp−1 ∈ X(M). As iθA(ωA) is of degree p−1 and is such that

iθA(ωA)
[
θA1 , ..., θ

A
p−1

]
= ωA(θA, θA1 , ..., θ

A
p−1)

= [ω(θ, θ1, ..., θp−1)]
A

for any θ1, θ2, ..., θp−1 ∈ X(M), we conclude that (iθω)A = iθA(ωA).

Lemma 2.1. If X is a differentiable section of the tangent bundle
(
TMA, πMA ,MA)

and if (x1, ...., x2n) is a system of local coordinates on an open U of M , then
there exist some functions fi ∈ C∞(UA,A) for i = 1, ..., 2n such that

(10) X/UA =

n∑
i=1

fi

(
∂

∂xi

)A
+

n∑
i=1

fn+i

(
∂

∂xi+n

)A
.

Theorem 2.1. Let (MA, ωA) be a 2n-dimensional symplectic A-manifold,
and let ξ be any point in MA. Then there is a coordinate chart (UA, xA1 , ...., x

A
2n)

centered at ξ such that on UA

(11) ωA =

n∑
i=1

dA(xAi ) ∧ dA(xAn+i).

Corollary 2.1. When (M,ω) is a symplectic manifold, then (MA, ωA) is a
symplectic A-manifold.

When (M,ω) is a symplectic manifold, for any f ∈ C∞(M), we denote
Xf a unique vector field on M such that

(12) iXf
ω = df

and for any ϕ ∈ C∞(MA,A), we denote Xϕ a unique vector field on MA,
considered as a derivation of C∞(M) into C∞(MA,A), such that

(13) iXϕω
A = dA(ϕ).

We easily verify that the bracket

(14) {ϕ,ψ}ωA = −ωA(Xϕ, Xψ)
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defines a structure of A-Poisson manifold on MA. For more details see [1].

Proposition 2.2. [6] If (M,ω) is a symplectic manifold, for any f ∈
C∞(M) then

(15) XfA = (Xf )A.

We state the following theorem:

Theorem 2.2. If (M,ω) is a symplectic manifold, the structure of A-
Poisson manifold on MA defined by ωA coincide with the prolongation on
MA of the Poisson structure on M defined by the symplectic form ω.

3. The reduction of Darboux’s theorem on Weil bundles

Theorem 3.1. Suppose that ωA is a dA-closed 2-form of constant half-rank
n on an A-manifold (MA)2n+k. Then the null bundle

(16) NA
ωA =

{
δ ∈ TMA

/
ωA (δ, v) = 0, ∀v ∈ Tπ

MA (δ)M
A
}

is integrable and of constant rank k. Moreover, any point of MA has a neigh-
borhood UA on which there exist local coordinates

(
xA1 , ..., x

A
2n, y

A
1 , ..., y

A
k

)
in

which

(17) ωA
|UA

=

n∑
i=1

dA(xAi ) ∧ dA(xAn+i).

Proof. Note that X ∈ X(MA) is a section of NA
ωA if and only if iXω

A = 0.

We deduce that LXωA = 0. If X and Y are two sections of NA
ωA , then

i[X,Y ]ω
A = 0, so it follows that [X,Y ] is a section of NA

ωA as well. Thus, NA
ωA

is integrable.
For any point ξ ∈ MA, there exists a neighborhood UA on which there

exist local coordinates yA1 , ..., y
A
2n+k so that NA

ωA restricted to UA is spanned

by the vector fields Yi = ∂
∂yi

for 1 ≤ i ≤ k. Since iYiω
A = LYiωA = 0 for

1 ≤ i ≤ k, it follows that ωA can be expressed on UA in terms of the variables
yA1 , ..., y

A
2n+k alone. In particular, ωA restricted to UA may be regarded as

a nondegenerate dA-closed 2-form on an open set in A2n. The result now
follows from theorem 2.1.

4. Hamiltonian vector fields

We now want to examine some of the special vector fields which are defined
on symplectic A-manifolds. Consider a symplectic A-manifold

(
MA, ωA),

let Sp
(
MA, ωA) ⊂ Diff

(
MA, ωA) denote the subgroup of symplectomor-

phisms of
(
MA, ωA). We would like to follow Lie in regarding Sp

(
MA, ωA)

as an infinite dimensional Lie group. In this case, the Lie algebra of Sp
(
MA, ωA)

should be the space of vector fields whose flows preserve ωA. Of course, ωA

will be invariant under the flow of a vector field X if and only if LXωA = 0.
This motivates the following definition:

A vector field X on MA is said to be symplectic if LXωA = 0. The space
of symplectic vector fields on MA will be denoted Sp

(
MA, ωA).
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Since dAωA = 0, for any vector field X on MA, we have LXωA =
dA
(
iXω

A). It is a very simple characterization of the symplectic vector

fields on MA. Thus we have the following statements:

(1) X is a symplectic vector field on MA;
(2) iXω

A is dA-closed.

Since TMA and T ∗MA have the same rank, it follows that the map

τ : X
(
MA

)
−→ Λ1

(
MA

)
is an isomorphism of C∞

(
MA,A

)
-modules. Let

κ : Λ1
(
MA

)
−→ X

(
MA

)
an inverse of τ .

Remark that the 1-form iXω
A vanishes only where X does.

With this notation, we shown that

(18) sp
(
MA, ωA

)
= κ

(
Z1
(
MA

))
where Z1

(
MA) denotes the vector space of closed 1-forms on MA. Since

dA ◦ dA = 0,Z1
(
MA) contains a subspace,

(19) B1
(
MA

)
= dA

(
C∞

(
MA,A

))
which is the space of exact 1-forms on MA.

For each fA ∈ C∞
(
MA,A

)
, the vector field

(20) XfA = κ
(
dAfA

)
is called the hamiltonian vector field associated to fA.

The set of all hamiltonian vector fields on MA is denoted H
(
MA, ωA).

We obtain

(21) H
(
MA, ωA

)
= κ

(
B1
(
MA

))
.

For this reason, hamiltonian fields are often called exact.

Corollary 4.1. For X,Y ∈ Sp
(
MA, ωA), we have

(22) [X,Y ] = ZωA(X,Y ).

In particular,

(23)
[
XfA , XgA

]
= X{fA,gA}

where, by definition
{
fA, gA

}
= −ωA (XfA , XgA

)
.

If MA is connected, then we get an exact sequence of Lie algebras

0 −→ A −→C∞
(
MA,A

)
−→ H

(
MA, ωA

)
−→ 0,

which is not, in general split. Since

(24)
{
fA, 1C∞(MA,A)

}
= 0

for all functions fA onMA, it follows that the A-Poisson bracket on C∞
(
MA,A

)
makes it into a central extension plays an important role of the algebra of
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hamiltonian vector fields. The geometry of this central extension plays an
important role in quantization theories on symplectic A-manifolds.

Also of great interest is exact sequence

0 −→ H
(
MA, ωA

)
−→sp

(
MA,A

)
−→ H1

dR

(
MA, ωA

)
−→ 0,

where the right hand arrow is just the map described by X 7−→
[
iXω

A].
Since the bracket of two elements in sp

(
MA,A

)
lies inH

(
MA, ωA), it follows

that this A-linear map is actually a Lie A-algebra homomorphism when
H1
dR

(
MA, ωA) is given the abelian Lie A-algebra structure. This sequence

also may or may not split, and the properties of this extension have a great
deal to do with the study of groups of symplectomorphisms of MA.

5. conclusion

The construction discussed in this paper permits to produce new symplec-
tic A-manifolds from a given one,

(
MA, ωA), by combining two operations:

restriction to a submanifold NA of MA upon which ωA induces a 2-form ωA
NA

of constant rank, and than taking the quotient of NA by the characteristic
distribution of ωA

NA . This construction, frequently used in mechanics. It is

particularly important when the submanifold NA is the preimage of a point
under the momentum map associated with the hamiltonian action of the Lie
group.
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