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ON MÖBIUS TRANSFORMATIONS AND

POLYGONS CIRCUMSCRIBING CONICS

PARIS PAMFILOS

Abstract. In this article we study the relations of some particular Möbius transforma-
tions related to vertices of polygons circumscribing a conic. We explore their geometric
properties and apply them to prove the theorems of Siebeck-Marden, Siebeck-Linfield. We
show also some necessary and sufficient conditions for three Möbius transformations which
allow to define any conic inscribed in a triangle.

1. Introduction

The aim of this article is to study by elementary geometric means a particular kind of
Möbius transformations related to a general polygon circumscribing a conic. There are two
core facts lying on the foundations of this study. The first is the following general property
of conics formulated as a theorem ([9, p.4]) (see Figure 1). Chasles in his magnificent
treatise, cited above, noticed its power and derived from it all possible projective and
metrical properties of conics.

Theorem 1.1. The intersection points {X,Y } of two fixed tangents {ε, ε′} of a conic κ
with a variable third tangent of the same are related by a homography between the two
lines. This is equivalent with the property of four fixed tangents to intersect a variable fifth
in four points whose cross ratio is constant.
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Figure 1. Homography h : X 7→ Y between the tangent lines {ε, ε′}

Representing the points {X,Y } through “projective coordinates” {x, y} ([3, p.45], [23])
of the corresponding lines {ε, ε′}, a general homography between these lines is expressed
([22, I, p.122], [23]) through a relation of the form
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(1) y =
ax+ b

cx+ d
with constants ad− bc ̸= 0 ,

and is completely determined by prescribing the values {y1, y2, y3 ∈ ε′} at three arbitrary
points {x1, x2, x3 ∈ ε} ([29, I, p.59]). In our case, in order to define the above homogra-
phy, it suffices to consider the intersections {Xi(xi), Y (yi), i = 1, 2, 3} of {ε, ε′} with three
particular tangents of the conic.

Remark 1.1. When the contact point P of the variable tangent comes in coincidence
with the contact point K of the fixed tangent ε, then also X becomes coincident with
K and Y with A. Analogously, when P comes in coincidence with L , then X becomes
coincident with A and Y coincident with point L.

Thus, the above homography maps {K h7−→ A
h7−→ L} and, in order to completely de-

scribe h, we need one only additional pair of points X
h7−→ Y defined by some particular

tangent τ of the conic (see Figure 1). By the very definition of h, it follows that different
choices of this particular additional tangent will lead to the same transformation.
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Figure 2. The limit points, Q sent to infinity, R image of infinity

Figure 2 suggests a fundamental property of the transformation h. Point Q is the
intersection of line ε with the tangent parallel to ε′, consequently Q maps via h to
the point at infinity of the line ε′. Analogously the intersection point R of ε′ with the
tangent parallel to ε is the image point R of the point at infinity of line ε. The points
{Q,R} are traditionally called “limit points” of the homography and in its representation
by equation (1) their coordinates {q, r} are given by

(2) q = −d

c
and r =

a

c
.

It is also readily seen that the lines {QR,KL,MN} are parallel, the last two equidistant
from the first. The existence of parallel tangents presupposes that the conic is a central
one. In fact, most of the time we’ll deal with this kind of conics. The somewhat simpler
case of parabolas is handled in separate sections (8, 12) below.

The second fact lying on the foundations of this discussion is a theorem by Siebeck
([28], [12, p.154], theorem 5.1) dealing with properties of “Möbius transformations” which
we analyze in the next section.

In this article, identifying the Euclidean plane with the set of complex numbers, we
extend the (real) homography h to a (complex) Möbius transformation ([12, p.126], [27,
p.41]) and study the relations of this extension to the conic κ. We deal mainly with the
question of the fixed points of this transformation, which Siebeck’s theorem identifies with
the focal points of κ. Möbius transformations are described by the same formula (1) with
the only difference that all the entities appearing there are now complex numbers. Their
fixed points result by solving a (complex) quadratic equation

(3) z =
az + b

cz + d
⇔ cz2 + (d− a)z − b = 0 ,
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which, according to Siebeck’s theorem, offers a convenient way to locate the focal points
of a conic inscribed in a polygon.

In the first part of the article we review some elementary properties of conics needed for
a geometric synthetic proof of this theorem, which in the original article [28] by Siebeck is
given using the representation of conics with complex numbers and in [12, p.126] is given
using the definition of focal points as intersections of tangents to the conic from the cyclic
points at infinity ([10, p.161], [8, p.311]).

In section 2 we discuss in short the way the homography h extends to a complex Möbius
transformation and how, conversely, each Möbius transformation restricted on certain lines
defines correspondingly (real) line homographies.

In section 3 we review some well known properties of conics needed subsequently. In
section 4 we analyze two examples of a special kind of Möbius transformation, the “Möbius
involution”, which in our context represent the building blocks of our extended transfor-
mation h. In section 5 we show that h is indeed a composition of Möbius involutions
of the kinds studied in the preceding section and give a proof of Siebeck’s theorem. In
section 6 we examine the composition of all the analogous transformations {hA, hB, . . .}
for the successive vertices of a polygon p = ABC . . . Z circumscribing the conic κ. In
section 7 we discuss the properties of the characteristic constant or “invariant” of hA and
a related way to distinguish the kind of a central conic κ inscribed in a polygon p. In
section 8 we discuss the case of polygons circumscribing a parabola, for which the Möbius
transformations hA turn out to be a similarities. In section 9 we discuss the case of conics
inscribed in triangles and show, how the theorems of Siebeck-Marden and Siebeck-Linfield
are intimately related to transformations of the type hA and result from the properties of
the latter. In section 10 we discuss the case of trapezia to which reduce also some partic-
ular kinds of polygons. Finally, in sections 11 and 12 we discuss the converse procedure of
definition of a triangle and a particular inscribed in it conic from certain triples of Möbius
transformations.

2. From line homographies to Möbius transformations

First, we notice the coincidence of the cross ratio (AB;CD) = a−c
b−c : a−d

b−d of four points
on a line ε using for its definition two different parameterizations of its points. In the
first {a, b, c, d} denote line coordinates on ε and in the second definition the same symbols
denote complex numbers. That the two definitions of the cross ratio lead to the same
result is immediately seen in the case ε coincides with the real axis of the complex plane.
For a general line ε of the plane, we can use a similarity and map ε to the real axis.
Since similarities preserve the cross ratio in both cases, its independence from the kind of
parameterization is proved.

Also the extension of a line homography h to a Möbius transformation is easily under-
stood if we consider the preservation of cross ratios of four collinear points by both, h and
its extension h′ ([27, p.47]). Three points {Xi} on line ε and their images {Yi} on line
ε′ determine a unique homography h : ε → ε′ and also a unique Möbius transformation
h′ : C → C , W = h′(Z), through the equality of cross ratios

(4) (Y1Y2;Y3W ) = (X1X2;X3Z) .

Here C denotes the extension ([27, p.15]) of the complex plane C to which we have
added the “point at infinity” ∞. The same formal equation defines the homography h
using projective line coordinates {Xi(xi), Yi(yi), Z(z),W (w)} in the case the points lie
on the two lines {ε, ε′} and the Möbius transformation h′, the symbols now denoting
complex numbers. In both cases the transformation is defined by solving equation (4)
w.r.t. w = h(z) respectively W = h′(Z), latter defined for all points of C and reducing
to h for points on ε. In the sequel we’ll use the same symbol for both the homography
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between the lines {ε, ε′} and its extension in C. The precise meaning in each case will be
evident from the context.

It is easily seen also a converse property ([27, p.55]), namely that every Möbius trans-
formation defines, by its restriction on certain lines, line homographies. Figure 3 shows
how this is done. The generic Möbius transformation h is defined by corresponding to
the vertices of a triangle UVW the vertices of another triangle U ′V ′W ′, the triangles
being genuine or degenerate with distinct vertices. There is then defined a “characteristic
parallelogram” ([27, p.69]) having pairs of opposite vertices {(S, S′), (Q,R)} respectively
the fixed points and the limit points. Every line ε passing through the point Q sent to
infinity by h, maps to a line ε′ through the other limit point R. The restriction of h
on ε defines then a line homography h : ε ∋ X → Y ∈ ε′ between the lines {ε, ε′}. There
are again two points {K ∈ ε, L ∈ ε′}, the homography mapping {K h7−→ A

h7−→ L}. Again
the line homography and its extension, coinciding with the initial Möbius transformation,
are completely determined by these three points and two additional corresponding points
{X,Y = h(X).} Also fixing {ε, ε′}, the lines τ = XY joining corresponding points enve-
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Figure 3. Producing conversely, line homographies from Möbius transformations

lope, according to the Chasles-Steiner theorem ([9, p.6]), a conic κ creating a configuration
like the one standing in the focus of our discussion. Siebeck’s theorem guarantees that
the fixed points of h coincide with the focal points of κ. Next three sections proceed to a
review of some elementary properties of conics and an elementary proof of this theorem.

3. On Newton’s theorem and isogonal properties of conics

One of Newton’s theorems for conics deals with products of segments intercepted on
conics by lines through a point. For the convenience of reference I formulate the well
known property as a theorem ([8, p.168], [19, I,p.371]) (see Figure 4).

Theorem 3.1. Two lines {α, β} through the point P intersect the central conic κ re-
spectively at the points {(A,B), (C,D)}. Then, it is

PA · PB

PC · PD
=

(A′B′)2

(C ′D′)2
,

where {A′B′, C ′D′} are the diameters of κ parallel respectively to {α, β}.

The theorem has several interesting consequences, since the above ratio remains con-
stant if we vary the location of P but maintain the directions of the lines {α, β}. In
particular, the ratio of the tangents from a point (see Figure 4), a case in which A = B
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and C = D, is equal to the ratio of the corresponding parallel diameters

(5)
PA

PC
=

A′B′

C ′D′ .

The ratio of the theorem on the left remains constant also in the case of parabolas, but
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Figure 4. Newton’s theorem The case of tangents

in this case we have not an expression like the right side. Another consequence, of use
below, often formulated as an exercise ([19, I, p.264]), to which I supply a short proof, is
the following (see Figure 5):

B

C

A

O

β

β'

α

D

E

D' C' E'

G

FJ

I

κ

Figure 5. Segments on a tangent between two parallel tangents

Theorem 3.2. {β, β′} are two parallel tangents of the central conic κ at the points
{I, J ∈ κ}. The variable tangent α at the point A meets {β, β′} correspondingly at the
points {B,C}. Then it is

BA ·AC = OF 2 and BI · CJ = OG2 ,

where OF is the semi-diameter of κ parallel to line α and OG is the semi-diameter
parallel to the tangents {β, β′}.

Proof. From equation (5) we have the relations

BA

BI
=

OF

OG
=

AC

CJ
⇒ BA

BI
· AC

CJ
=

(OF )2

(OG)2
⇒ BA ·AC =

(OF )2

(OG)2
·BI · CJ .

Thus, it suffices to show that BI · CJ = OG2. If we project the points of α parallel to IJ
onto line β, the relation becomes BI · C ′I = IE′2. This is characteristic of a harmonic
quadruple (BC ′;D′E′) = −1, which is true and proves the claim. The reason for latter
relation is a consequence of theorem 1.1, guaranteeing that the cross ratio (BC;DE)
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intercepted on the variable tangent α by the four tangents {β, β′} and their conjugate
tangents {DD′, EE′}, is a constant independent of the location of the tangent α. In our
case letting α take a special position, e.g. letting it coincide with β′, we see that this
constant cross ratio is −1. Since the parallel projection along IJ to points of line β
preserves the cross ratio, we have the desired proof.
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Figure 6. Three isogonal properties of central conics

Figure 6, in its three parts (I), (II), (III) , shows correspondingly three “isogonal prop-
erties of central conics” ([1, pp.10,12], [15, pp. 42,43]), which will be of use below:

(I) The tangent at a point A is equal inclined to the focal radii {AS,AS′}: X̂AS = Ŝ′AY .

(II) The tangents from a point B are seen from a focus under equal angles ĈS′B = B̂S′D.

(III) The tangents from a point E are equal inclined to the focal radii ĜES = Ŝ′EF.
Notice that (II), in the case of hyperbolas, must be considered under the aspect of

“directed angles” ([16, p.11]), by which two angles are considered equal also if they differ
by 180◦. The properties remain true also in the case of parabolas with somewhat modified
wording due to the fact that one of the focal points, S′ say, is at infinity. Then, focal rays,
such as AS′ must be replaced with lines through A parallel to the axis of the parabola.

Lemma 3.1. Assume that the tangent at point A of a central conic κ with focal points
{S, S′} intersects two other parallel tangents {β, β′} at the points {B,C}. Then triangles
{ABS,AS′C} are similar (see Figure 7).
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Figure 7. Two similar triangles defined by two parallel tangents

Proof. The isogonal property (I) implies that the angles at A are equal B̂AS = Ŝ′AC.
It is also well known that the product of the focal distances |AS||AS′| = OD2, latter
being the half diameter parallel to the tangent ([19, I,p.257]). From theorem 3.2 we have
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BA ·AC = OD2 too, which together with the preceding relation produces the equality
of ratios BA

AS = S′A
AC . Hence the triangles are similar as claimed.

The preceding discussion supports next lemma ([25], [14, p.77]), which is essential in
our proof of Siebeck’s theorem. For the convenience of the reader I reproduce here the
short proof by Rouse.

Lemma 3.2. The central conic κ with focal points {S, S′} touches the sides of the triangle
ABC at the points {A′ ∈ BC, B′ ∈ CA, C ′ ∈ AB}. And line {EF, E ∈ AB, F ∈ AC}
is tangent and parallel to BC. Then the triangles {ACS,AS′E} are similar, the triangles
{ABS′, ASF} are also similar, and the products are equal

(6) AC ·AE = AB ·AF = AS ·AS′ .

As a consequence, if we fix the tangents {AC,AB} and vary the direction of the parallel
tangents {BC,EF} these products remain constant (see Figure 8).

Proof. The isogonal property (III) implies that the angles of the triangles at A are equal.

From lemma 3.1 Ŝ′EC ′ = Ĉ ′SB. From the isogonal property (II) we know also that

Ĉ ′SB =
1

2
Ĉ ′SA′ =

1

2
B̂′SC ′ − 1

2
B̂′SA′ = B̂′SA− B̂′SC = ĈSA,

and the triangles, having two angles respectively equal are similar. Analogously is proved
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Figure 8. The product AC ·AE is independent of the direction of the parallels

the similarity of the triangles {ABS′, ASF}. The relation of the products results directly
from these similarities.

4. Two Möbius involutions

Möbius involutions ([12, p.158], [27, p.49]) are characterized by their property h ◦ h = e ⇔
h−1 = h, equivalent to a+ d = 0 in the analytic description through equation (1). To
completely define a Möbius involution it suffices to give two related pairs (A,A′ = h(A))
and (B,B′ = h(B)) , therefore in this case we see the often used notation h = (AA′, BB′).
One or both of these points may be fixed points of the involution, the symbol being then
correspondingly (AA,BB′) or (AA,BB).

In any case, given two pairs of related points {(A,A′), (B,B′)}, fixed or not, it is easily
seen, that, identifying the symbols with corresponding complex numbers, the involution
is described by formula ([27, p.52])

(7) w =
(AA′ −BB′)z +BB′(A+A′)−AA′(B +B′)

(A+A′ −B −B′)z +BB′ −AA′ .

In case we are given the two fixed points {A,B}, the corresponding Möbius involution
h = (AA,BB) is defined geometrically using the fourth vertex Y = h(X) of the corre-
sponding harmonic quadrangle ([8, p.206], [16, p.100,p.306]) XAY B, which is completely
determined by the three points {A,B,X} (see Figure 9). Having these three points, the
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fourth vertex Y of the corresponding harmonic quadrangle is determined as intersection
of the circumcircle of triangle AXB with the symmedian from X.

A

BX

Y

Figure 9. Determination of the involution X
h7−→ Y from its fixed points {A,B}

We’ll see that our transformation h, defined in section 1, is a product (i.e. composition)
of two special Möbius involutions. Their properties are formulated in [12, Ex.125, p.202]
without a proof. Here I state them in the form of the subsequent two lemmata, supply
their proofs and draw some consequences.

Lemma 4.1. Lines {ε = AD, ε′ = AE} are two fixed tangents at points {D,E} of the
central conic κ with focal points {S, S′} (see Figure 10). Then, the Möbius involu-
tion h = (AA,DE) fixing A and interchanging {D,E} interchanges also the focal points
{S, S′}.
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Figure 10. Studying the involution fixing A and interchanging {D,E}

Proof. We represent the points of the plane by complexes {A(a), B(b), C(c), . . .} assuming
also that point A is the origin. The Möbius involution w = h(z) = (pz + q)/(rz − p)
fixing A(0) has q = 0 and the constants {p, r} result trivially from the requirement

h(D) = E ⇒ w =
(de)z

(d+ e)z − (de)
.

Should h fix A and interchange {S, S′} too, then we could represent it also formally in
the same way

w =
(ss′)z

(s+ s′)z − ss′
,

and the two representations should coincide for every z. Equating the two expressions
and simplifying we obtain the equation

de(s+ s′) = ss′(d+ e) ⇔ de ·m = ss′ · n ,

where {M(m), N(n)} are respectively the middles of the segments {SS′, DE}. Last equa-
tion reduces to an equation of the distances of the corresponding points. To see this, write
the complexes in polar form assuming AE coincident with the real axis

d = |AD|eiθ , s′ = |AS′|eiω , s = |AS|ei(θ−ω) , m = |AM |eiϕ , n = |AN |eiϕ .
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Here θ is the angle ÊAD, the equal angles ω result from the isogonal property (III) of

section 3, and ϕ is the angle ÊAM , the points {M,N} being collinear on AM, which
is the conjugate diameter of κ to the direction of DE. Introducing these into the last
equation we obtain the necessary and sufficient condition for our property to hold

(8) |AD||AE||AM | = |AS||AS′||AN | (6)
== |AB||AB′||AN | .

According to lemma 3.2 the equalities remain valid if we change the direction of the parallel
tangents {BC,B′C ′} (see Figure 10). So we choose the direction parallel to the chord DE
getting at figure 11. Projecting all the points parallel to the direction of DE, onto points
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Figure 11. Projecting all points parallel to DE to points of line ε′

of the line ε′, last equation becomes equivalent to

1 =
|AD|
|AB|

· |AE|
|AB′|

· |AM |
|AN |

=
|AE|
|AC|

· |AE|
|AB′|

· |AM
′|

|AE|
=

|AE|
|AC|

· |AM
′|

|AB′|
,

seen easily to be equivalent to the fact that (A,E) are harmonic conjugate to (B′, C).
Latter though is true, since DE is the polar of A and parallel projection preserves the
harmonic relation between points on a line. This completes the proof of the lemma.

Remark 4.1. Taking into account the remarks at the beginning of the section about fixed
points and harmonic quadrangles, the first equality of equations (8) is equivalent with the
fact, that the circumcircles {λ, µ} of the triangles {SAS′, DAE} intersect at the second
fixed point A∗ of the Möbius involution h. For both triangles line AA∗ is the symmedian
from A and the quadrangles {ASA∗S′, ADA∗E} are harmonic.
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Figure 12. The other than A fixed point A∗ of the involution h

Further, the transformation h leaves the circles through {A,A∗} invariant, mapping
each member of the pencil of all these circles to itself, and also leaves invariant every
member circle of the pencil which is orthogonal to the previous one. Since through each
point X of the plane passes a unique member of each pencil, the image point Y = h(X)
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can be found also by considering the other than X intersection point of the member-circles
through X of these two orthogonal pencils (see Figure 12).

In particular the radical axes {AA∗, ν} of the two pencils intersecting at the middle K
of AA∗ remains invariant under h, consequently K maps to infinity and is a limit point
of the transformation. Since involutions are inverse to itself the other limit point of h is
the point at infinity.
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Figure 13. Locus of focal points of conics κ tangent to {ε, ε′} at {D,E}

Remark 4.2. The first of equations (8) can be written in the form

|AS||AS′|
|AM |

=
|AD||AE|

|AN |
,

which, since the right member is constant, expresses a property of the focal points of all
members of the “bitangent pencil” consisting of conics {κ} tangent to lines {AD,AE}
respectively at {D,E}. Figure 13 shows the geometric locus of the focal points of the
members of this pencil. It is a singular at A cyclic cubic, passing through the vertices of
the triangle ADE. These curves are called “isoptic” ([24]), because their points view the
segments {AD,AE} under equal or supplementary angles, a property satisfied by the focal
points because of the isogonal property (II) of section 3.
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Figure 14. Studying the involution interchanging the couples {(A,P ), (B,C)}

Lemma 4.2. In the triangle ABC is inscribed the central conic κ touching the sides
correspondingly at the points {P ∈ BC,E ∈ CA,D ∈ AB}. Then, the Möbius involu-
tion h = (AP,BC) interchanging A ↔ P and B ↔ C, interchanges also the focal points
S ↔ S′ (see Figure 14).
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Proof. Besides the involution in question, we consider also the involution (AP, SS′)
interchanging A ↔ P and S ↔ S′. Assume the vertex A is at the origin and AC is the
real axis. Applying formula (7) with our hypothesis and representing with the symbols
complex numbers, we get the description of the involutions

(AP,BC) : w =
−BCz +BCP

(P −B − C)z +BC
, (AP, SS′) : w =

−SS′z + SS′P

(P − S − S′)z + SS′ .

It suffices to show that the two involutions coincide. Since they coincide at A = 0 it suffices
to show that they coincide also at another point, equivalently, that the first involution
coincides with the second at S, i.e.

S′ =
−BCS +BCP

(P −B − C)S +BC
⇔ (P −B − C)SS′ +BCS′ = −BCS +BCP .

Writing the complex numbers in polar form we have (see Figure 14)

A = 0 , B = |B|eiθ , C = |C| , S = |S|ei(θ−ω) , |S′| = |S|eiω .

Introducing these into last equation we obtain

(P −B − C)|S||S′|+ |B||C|S′ = −|B||C|S + |B||C|P ⇔
P (|S||S′| − |B||C|) = (B + C)|S||S′| − (S′ + S)|B||C| , but by (6)

|S||S′| = |B||B′| ⇒ P (|B||B′| − |B||C|) = (B + C)|B||B′| − (S′ + S)|B||C|
⇔ P (|B′| − |C|) = (B + C)|B′| − (S′ + S)|C| ⇔

P (|B′| − |C|) = 2L|B′| − 2M |C| ⇔ P ′(|B′| − |C|) = L|B′| −M |C| ,

where {P ′ = 1
2P , L = 1

2(B + C) , M = 1
2S + S′} are the middles of the corresponding

segments {AP,BC, SS′}. An inspection of figure 14 suggests that the points {P ′, L,M}
are collinear. Assuming for the moment that this is true, last equation expresses P ′

as linear combination of the points {B′, C}. Since linear combinations are preserved by
parallel projections, we project everything parallel to BC onto line ε′ = AC obtaining

|P ′′|(|B′| − |C|) = |C||B′| − |M ′||C| ⇒
1

2
|C|(|B′| − |C|) = |C||B′| − 1

2
(|B′|+ |C|)|C| ,

which is an identity. Thus, to finish the proof we need still to prove the collinearity of
{P ′,M,L}. For this we use “barycentric coordinates” w.r.t. the triangle ABC ([31, p.25],
[21]). In the framework of these coordinates the joins of the vertices with the contacts of
the conic κ with the opposite sides are seen to pass through a common point K(p : q : r)
(see Figure 14), called perspector of the conic ([31, p.119]). The conic is expressed through
equation

x2

p2
+

y2

q2
+

z2

r2
− 2

yz

qr
− 2

zx

rp
− 2

xy

pq
= 0.

The points of interest have respectively the following barycentric coordinates

L(0 : 1 : 1) , P (0 : q : r) , P ′(q + r : q : r) , M(p(q + r) : q(r + p) : r(p+ q)) .

Last point M is the center of the conic and also the pol of the line at infinity whose
equation is x+ y + z = 0. Its coordinates are determined, up to multiplicative constant,
from the equation expressing the relation pol-polar in terms of the matrix of the conic κ

1

p2
1

pq

1

pr
1

pq

1

q2
1

qr
1

pr

1

qr

1

r2




x

y

z

 =


1

1

1

 ⇒


x

y

z

 = k


p(q + r)

q(r + p)

r(p+ q)

 .
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The collinearity of the points {P ′,M,L} results by proving the vanishing of the determi-
nant of the corresponding coordinate-vectors, seen trivially to be true:∣∣∣∣∣∣

q + r q r
p(q + r) q(r + p) r(p+ q)

0 1 1

∣∣∣∣∣∣ = 0 .

5. A composition of two involutions

Assuming the polygon p = ABC . . . Z circumscribes a central conic κ, we isolate a
vertex A and its adjacent side-lines {ε, ε′} together with some other side-line τ = XY
of the polygon, creating a triangle AXY circumscribing the central conic too (see Figure
15). Next theorem is a slightly different but equivalent formulation of Siebeck’s theorem.

Theorem 5.1. The fixed points {S, S′} of the Möbius transformation hA mapping the
triple {X,K,A ∈ ε} correspondingly to {Y,A,L ∈ ε′}, where {K,L} are the contacts of
{ε, ε′} with the conic κ, coincide with the focal points {S, S′} of the central conic κ.

A B

C

D

κ

ε

ε'
τ

K

L

Y

X

P

S
S'

Q

E

Figure 15. A triangle with a vertex at A defined by the circumscribed polygon

Proof. We show that the Möbius transformation hA is the product of two Möbius
involutions hA = g ◦ f, where f = (AP,XY ) and g = (Y Y,LP ). This implies the proof,
since f is of the kind handled in lemma 4.2 and g is of the kind handled in lemma 4.1
and both interchange the points {S, S′}, hence their composition leaves both fixed.

By the general properties of Möbius transformations, to prove the coincidence of the
transformations hA = g ◦ f, it suffices to show their coincidence at three points. This is
easy for the two points {A,X}, since by the definition of these transformations

A
f7−→ P

g7−→ L and X
f7−→ Y

g7−→ Y .

We show that the two transformations coincide also at K : hA(K) = A = (g ◦ f)(K).
Identifying the symbols with the complex numbers representing the points and taking A
at the origin and AY coincident with the real axis we examine the images of the points
lying on line ε

tX ∈ ε , (g ◦ f)(tX) for t ∈ R .

Applying formula (7) we have the corresponding representations of {f, g}

w = f(z) =
−XY z +XY P

(P −X − Y )z +XY
, w′ = g(w) =

(Y 2 − LP )w + 2LPY − Y 2(L+ P )

(2Y − L− P )w + LP − Y 2
.
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Setting z = tX and L = kY we obtain after simplification

w = f(tX) =
−XY t+ Y P

(P −X − Y )t+ Y
,

w′ = g(f(tX)) =
(k(Y +X − 2P ) + P −X)t+ k(P − Y )

(k(X − P ) + Y −X)t+ (P − Y )
Y

=
(k((X − P )− (P − Y ))− (X − P ))t+ k(P − Y )

(k(X − P )− (X − Y ))t+ (P − Y )
Y

=
(k(λ(X − Y )− µ(X − Y ))− λ(X − Y ))t+ kµ(X − Y )

(kλ(X − Y )− (X − Y ))t+ µ(X − Y )
Y

=
(k(λ− µ)− λ)t+ kµ

(kλ− 1)t+ µ
Y = t′Y, with t′ ∈ R ,

where we have set {X − P = λ(X − Y ) , P − Y = µ(X − Y ) , λ , µ ∈ R , λ+ µ = 1}.
Last equation shows that g ◦ f maps line ε onto ε′. Point A = 0 is obtained for

(k(λ− µ)− λ)t+ kµ = 0 ⇒ t =
k(λ− 1)

k(2λ− 1)− λ
⇒ zX

zA
=

λ(1− k)

k(λ− 1)
,

which together with

(*)
LA

LY
=

k

k − 1
,

PY

PX
=

λ− 1

λ
⇒ LA

LY
· PY

PX
· zX
zA

= −1 .

Since the segments {AP, Y K,XL} pass through the perspector Q of the conic w.r.t. the
triangle AXY, by Ceva’s theorem we have also

LA

LY
· PY

PX
· KX

KA
= −1 ,

which together with (∗) implies z = K and completes the proof of the theorem showing
that (g ◦ f)(K) = A.

6. About the compositions

According to the discussion in the preceding sections, a polygon p = A1A2 . . . An cir-
cumscribing a central conic defines a series of Möbius transformations {h1, h2, . . . , hn},
where we shortened the notation to hi = hAi . According to theorem 5.1, these transfor-
mations share the same fixed points {S, S′} and, as we notice below (section 7, nr-9 ), they
are non-ivolutive. This implies ([12, p. 169]) that they commute pairwise. Next theorem
determines their composition (see Figure 16).

A
2

Z A
1

A
n

A
3

A
4

A
n-1

K L Mn

n-1

n-2321

S

S'

ε

Figure 16. K = h1(A1) , A2 = h2(K) , L = h3(A2) , . . .
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Theorem 6.1. With the notation and conventions adopted so far the composition h of
the transformations is the identity transformation e.

(9) h = hn ◦ hn−1 ◦ · · · ◦ h1 = e ,

Proof. Since Möbius transformations build a group under composition, the above com-
position h is also a Möbius transformation. Since a Möbius transformation fixing three
points is the identity, it suffices to show the existence of three fixed points of h. Since
the transformations hi share the same fixed points {S, S′} their composition h does the
same. Hence, in order to show h = e it suffices to find one more fixed point of h.

It is though readily seen that h(A1) = A1. In fact, consider the contact point K of the
conic with the side ε = A1A2 and the intersections {L,M, . . .} of ε with the successive
other sides {A3A4, A4A5, . . .} of the polygon. From remark 1.1 follows that h1(A1) = K
and h2(K) = A2 (see Figure 16). From the way the transformations hi are defined,
follows also that they map h3(A2) = L and more general, for i > 2, each intersection L
of ε with a side AiAi+1 to the intersection M of ε with next side Ai+1Ai+2. It follows
that the last transformation hn maps the intersection Z = ε ∩An−1An to A1 realizing
the identification of points h(A1) = A1, as claimed.

Remark 6.1. Partial compositions out of the set of transformations {hA, hB, · · · , hZ}, for
successive vertices, like for example {hABC...M = hM ◦ · · · ◦ hC ◦ hB ◦ hA}, have the same
properties and can be defined in the same way as the hX ’s. They correspond to a polygon
p′ resulting from the original p from which the successive sides {AB,BC, . . . , LM} have
been deleted. Figure 17 illustrates the case of h = hAB = hB ◦ hA. It coincides with hA′

where A′ = ZA ∩BC corresponding to polygon p′ = A′C . . . Z resulting from the original

A

B
C

DZ

ε

ε'

τ

K

L

P

M

ε''

Α'

Figure 17. The partial composition hAB = hB ◦ hA mapping ε to ε′′

p from which side AB has been deleted and the vertices {A,B} have been replaced with A′.
Also hB ◦ hA maps A to B and composing analogous successive such transformations we
obtain the identity transformation through a product, in which each factor maps a vertex
of the polygon, considered in a fixed orientation, to an adjacent one

(hA ◦ hZ) ◦ · · · ◦ (hD ◦ hC) ◦ (hC ◦ hB) ◦ (hB ◦ hA)
(9)
== (hZ)

2 ◦ · · · ◦ (hB)2 ◦ (hA)2 = e ,

Thus, a polygon circumscribing a conic defines a group of commuting Möbius transforma-
tions with generators {hA, hB, . . .} satisfying the relation (9). This rises the question for
the converse, namely, whether such a group defines some polygons circumscribing appro-
priate conics. This will be handled in sections 11 and 12 for the case of triangles.

7. The characteristic constant or invariant

The “characteristic constant” ([27, p.64]) or “invariant” ([12, p.150]) k of a Möbius
transformation w = h(z) with two fixed points {S, S′} is defined by its representation
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using the fixed points
(10)

w = h(z) ⇔ S − z

S′ − z
= k

S − w

S′ − w
⇔ (SS′; zw) = k ⇔ (S′S;wz) =

1

k
.

In particular k = 1 and k = −1 characterizes correspondingly the identity and the invo-
lutive Möbius transformations. Using this constant we can find a criterion for the kind
of the conic inscribed in the polygon. We discuss here the case of a central conic and
the Möbius transformation hA fixing a vertex A of the circumscribed polygon, which
together with the adjacent to A side-lines and some other side-line of the polygon forms a
circumscribed to the conic triangle ABC. In order to simplify the calculations we assume
that the coordinate axes coincide with the axes of the conic (see Figure 18).

We work for the case of an inscribed ellipse, the case of hyperbola being analogous
with small differences on which we comment later. We assume also that the construction
of such a genuine triangle is possible, leaving the case of a parallelogram, for which the
construction of a genuine triangle with these properties is impossible, to be discussed in
section 10. We assume that {D ∈ AC,E ∈ AB} are the contact points of the sides with
the conic. From the preceding discussion we know that the Möbius transformation h = hA
is completely determined by the correspondences

D
h7−→ A

h7−→ E and C
h7−→ B .

Having in mind the definition of the invariant k, we define the dependent on E Möbius
transformation

(11) w = kE(z) = (SS′; zE) =
S − z

S′ − z
:
S − E

S′ − E
.

We use this to produce the circle η shown in figure 18. In fact, we see immediately that
z = S′ is the limit point send to infinity by kE and line ε = AB does not pass through
it. Hence, by the general properties of Möbius transformations, the corresponding image
of this line, η = kE(ε), is a circle. The circle, by its definition, contains the invariants
{kA, A ∈ ε} of the various Möbius transformations {hA, A ∈ ε} resulting by fixing the
tangent to the conic ε and varying the point D of the conic and its tangent. In the

A

B

C

E

D

k

k
0

η

ε

S S'

k
1

k
2

1

E'

F

δ

O

Figure 18. Circle η carrying the invariants k of {hA, A ∈ ε}

framework of the circumscribed polygon, whose figure 18 is a part, this means a variation
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of its side-line AC maintaining its tangency to the inscribed conic. This change affects
the transformation hA and its invariant by changing the location of A along the line ε,
in contrast to the tangent BC, whose variation has no effect on the definition of fA. This
circle has some properties on which we comment.

(1) The circle η contains the invariant k of h = hA, since this is obtained for z = A
kE(A) = (SS′;AE) = k.

(2) It passes through z = 1 since kE(E) = 1.
(3) Its second intersection point with the unit circle {S1 : |z| = 1} is point k0 = kE(F ),

where F is the intersection of ε with the real axis. In fact, to see this it suffices

to show that |k0| = |kE(F )| = |SF |
|S′F | :

|SE|
|S′E| = 1 ⇔ |S′E|

|SE| = |SF |
|S′F | . But this is a well

known property of points on the axes of the conic. The property follows by re-
flecting S′ in FE to a point S′′ collinear with {S,E} because of the isogonal
property (I) of section 3. Then, FE is the bisector at F of triangle SFS′′ and
this implies the last equality.

(4) Obviously kE(S) = 0 , kE(S
′) = ∞ and k1 = kE(∞) = S′−E

S−E ∈ η .

(5) The intersection point E′ of the imaginary axis with line ε maps to k2 = kE(E
′)

which is the other than z = 1 intersection point of the circle η with the real axis.
This is proved by showing that k2 is real. For this reflect S′ in ε to the point
S′′ collinear to {S,E}. It is formed an isosceles triangle SE′S′′ showing that the

angles ÊSE′ = ÊS′E′ are equal. From this follows easily the reality of k2.
(6) The real axis maps via kE to a line δ through the origin and points {k0, k1} are

on this line. This follows from the fact that the real axis passes through the limit
point S′ sent to infinity by kE . Hence its image is a line δ. Since {F, S,∞} are
on the real axis, their images {k0, 0, k1} are on δ.

(7) If the conic is an ellipse, its center O is outside the circle η. For this consider the
ratio

k0/k1 = kE(F )/kE(∞) =

(
S − F

S′ − F
:
S − E

S′ − E

)
:

(
S′ − E

S − E

)
=

(
S − F

S′ − F

)
> 0 ,

which is a condition for the collinear segments {Ok0, Ok1} to be equally oriented,
thereby proving that O is outside the circle.

(8) The chords {[1k2], [k0k1]} of the circle η have the same length. This follows directly
by measuring the power of O w.r.t. the circle η correspondingly along the real
axis and the line δ.

(9) The circle η does not pass through z = −1, which is the invariant characterizing
the involutive Möbius transformations. This because in the contrary case, the circle
η would degenerate to the real axis and line ε would pass through S′, which is
impossible. Thus, all the Moebius transfrormations hA are non-involutive.

Figure 19 shows the analogous configuration for the case of the hyperbola. Properties nr-1,
nr-2 are equally obvious. For nr-3 the argument is the same, differing only in the bisector

FE, which now is the external of the angle ŜFS′′. Nr-4 is equally obvious and nr-5 differs

in that the angles {ÊSE′, ÊS′E′} are now supplementary. Nr-6 holds verbatim true and
nr-7, using the same arguments, proves now that k0/k1 < 0 and the origin is inside the
circle η. Nr-8 and nr-9 follow using the same arguments.

Next theorem results from the preceding remarks and formulates a criterion allowing
the determination of the kind of the inscribed in the polygon conic in terms of the Möbius
transformation hA and its related structures.

Theorem 7.1. With the notation and conventions adopted so far, the inscribed central
conic κ of the circumscriptible to it polygon p is a hyperbola/ellipse, if and only if, its
center O is an inner/outer point of the circle η = kE(ε).
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A

B

C
E

k

k
0

1k
2

S S'

k
1

F O

ε

η

δ

Figure 19. Circle η carrying the invariants k of {hA, A ∈ ε}

Remark 7.1. One could object that the preceding result is somewhat superficial, since one
has the much simpler criterion, for the kind of the central conic inscribed in a polygon,
according to which every side-line of the polygon leaves always the focal points on the same
side in the case of ellipse, and on different sides in the case of hyperbola.

The point is that one may not know the location of the focal points {S, S′}, whereas using
the transformation hA for a single vertex of the polygon one can quickly find the center of
the conic as the middle O of the segment SS′ expressed directly through the coefficients of
the Möbius transformation O = a−d

c and also the circle η = hA(ε) and carry out the test
suggested by the preceding theorem. This, even in the case where the location of the focal
points using the quadratic equation (3) may present difficulties if the coefficients {a, b, c, d}
are some involved expressions of other variables.

Remark 7.2. From our discussion follows, that the invariants {kA, kB, . . .} of the Möbius
transformations {hA, hB, . . .} corresponding to the vertices of the circumscribed to the conic
polygon p = ABC . . . are, excepting the cases {k = 1, k = k2}, genuine complex numbers.
Excepting also the case k = k0, they have measure |k| ≠ 1. This implies, that in all cases,
excepting the preceding three, the Möbius transformations {hX} are “loxodromic” ([27,
p.65]).

S S'1

OΑ

Ε

k
0

η

k
2

R

C

B

Q
D

Figure 20. Case of vertex lying on the principal axis of the inscribed conic
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From the exceptional cases, the one with k = 1 cannot occur, since it would imply that
the polygon at the vertex A has a “flat (180◦)” or “zero (0◦)” angle, which we exclude. The
other real case k = k2 is obtained when the vertex A of the polygon falls into the conjugate
axis of the conic. From our discussion follows that k2 > 0 in the case of the ellipse and
k2 < 0 in the case of hyperbola, showing that the transformation hA is correspondingly
“proper / improper hyperbolic” ([27, p.65]).

Figure 20 shows the case with non-real k = k0 and |k0| = 1. The vertex A of the
polygon is in this case on the principal axis of the conic and the Möbius transformation is
“elliptic”. It can be proved that it is conjugate, in the group of Möbius transformations, to
a rotation determined by the angle ϕ of the polar form of k = eiϕ. The figure shows the
location of the invariant k = k0 and also the corresponding characteristic parallelogram
which is a rhombus, as is the case for all elliptic Möbius transformations.

8. The case of the parabola

The identification of the fixed point of the Möbius transformation hA with the focus in
the case of a parabola κ is quite simple. Figure 21 shows the corresponding configuration
and suggests next theorem.

C

B A K

L

M

X

YS

ε'

ε

P

Q

κ

R

Figure 21. hA : P 7→ Q is a similarity with center S the focus of the parabola

Theorem 8.1. In the case of a parabola, the Möbius transformation hA is a similarity
represented with complex numbers in the form w = hA(z) = az + b, with constant complex
numbers {a, b}. The center S of the similarity coincides with the focus of the parabola.

Proof. In fact, assume the Möbius transformation hA in the most general form

w =
az + b

cz + d
.

From its general definition hA maps points {C,L,A} on the tangent ε at L corre-
spondingly to points {B,A,K} of the tangent ε′ at K. Identifying the symbols with the
corresponding complex numbers representing the points, and taking into account, that
“an arbitrary tangent of the parabola intersects three fixed tangents at points {R,P,Q}
such that the ratio RP/PQ is constant” ([26, p.299]). In figure 21 all the ratios are equal:
{RP/PQ = MC/CB = BA/AK = CL/LA} and we have.

A =
aL+ b

cL+ d
, K =

aA+ b

cA+ d
, B =

aC + b

cC + d
⇒

LC

LA
=

AB

AK
⇔ c(L− C)(dC + cCL− b− aL)

(d+ cC)(dL+ cL2 − b− aL)
= 0 .
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It is though always C ̸= L and

dC + cCL− b− aL = 0 ⇔ L =
dC − b

−cC + a
= h−1

A (C) ,

which is not possible, since hA(L) = A. Thus, the only possibility to have this equation is
c = 0, implying that the Möbius transformation is a similarity. We rewrite it in the form

(12) w = az + b ⇒ a =
K −A

A− L
, b =

KL−A2

L−A
and S =

KL−A2

L+K − 2A
,

latter being the fixed point of hA. By the general properties of similarities ([6, ch.IV], [30,
II, p.36]), for every point X of the plane and Y = hA(X) the triangle SXY remains

similar to itself and the angle X̂SY = P̂SQ = ĈAB. The identification of S with the
focus of the parabola κ results now from the fact that all triangles {SPQ} for {P ∈ ε}
are similar to each other and consequently {Q = fA(P ) ∈ ε′}. This, according to the well
known property ([13, p.51]) If the triangle SPQ with fixed vertex S and P varying on a
line ε remains similar to itself, then the line PQ envelopes a parabola κ′ with focus at
S . Thus the lines tP = PQ are simultaneously tangent to the parabola of reference κ
and to the parabola-envelope κ′ with focus S. Hence the two parabolas coincide and S
is the focus of κ.

For a polygon p = ABC . . . Z circumscribing a parabola κ, the composition of similar-
ities h = hZ ◦ . . . hB ◦ hA is proven to be the identity transformation in a similar way, as
this was done for central conics. In fact, since all these similarities have the same center
S, this is also the center of the similarity h. In order to show that h is the identity
transformation it suffices to find one more point fixed by h.

In fact, it is h(A) = A. This is seen by watching the sequence {A,A′,K, L . . .}, where
A′ is the contact point of the first side ε = AB, K is the intersection of the first side
ε = AB with side CD and {L, . . .} are the intersections of ε with the subsequent sides
{DE,EF, . . .} of the polygon. It is readily seen that the various similarities map each
term of this sequence to the next, recurring at last to A (see Figure 22).

A
hA−→ A′ hB−→ B

hC−→ K
hD−→ L . . .

hZ−→ A .

This proves next theorem.

A

B

C

D

E

A'

B'

C'

D'

E'

S

K

L

ε

Figure 22. A
hA−→ A′ hB−→ B

hC−→ K
hD−→ L

hL−→ A
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Theorem 8.2. For a polygon p = ABC . . . Z circumscribing a parabola the composition
of the similarities corresponding to the vertices {h = hZ ◦ · · · ◦ hB ◦ hA} is the identity
transformation.

Remark 8.1. Assuming that the polygon circumscribes a genuine parabola, the various
similarities {hA, hB, . . .} corresponding to its vertices are also a genuine, i.e. different from
the identity or a translation. They have two fixed points, their similarity center coinciding
with the focus of the parabola and the point at infinity ∞. Obviously the fixed point of
the the similarity w = az + b is z0 =

b
1−a , and it is readily seen that transformation can

be expressed in the form w = a(z − z0) + z0. From our definition of the invariant follows
then that k = (z0∞; zw) = 1

a .

9. Conics inscribed in a triangle

The case of conics inscribed in triangles is, under the present viewpoint, in some sense
universal and can be used for all other kinds of polygons circumscribing a conic. This,
because selecting some vertex A of the polygon together with the adjacent to it side-lines
{ε, ε′} and any one of the remaining side-lines of the polygon, non-parallel to {ε, ε′}, we
create a triangle circumscribing the conic. In this section we discuss this case, starting with
some examples and proceeding to the general conic inscribed in a circle, defined through
its perspector. Figure 23 shows the basic configuration, with the triangle of reference

A B

C

E

D

P

F

M

Figure 23. Inscribed conic and its perspector

ABC having its vertex A at the origin and side-line AB coinciding with the x−axis.
Point P is assumed to be the perspector of the inscribed conic, which contacts the sides
at the traces {D,E, F} of P. The Möbius transformation h = hA corresponds {D,A,C}
to {A,E,B} and, identifying the labels with complex numbers, we see easily that the
Möbius transformation w = h(z) = (az + b)/(cz + d) is given by

w = h(z) = −EBC
z −D

(D(E −B)− CE)z +BCD
.

Writing the vertices in the form {C = µ ·D,B = ν · E} we come to the expression

(13) w = −µνE
z −D

(1− µ− ν)z + νµD
= −E(z −D)

λz +D
with λ =

1− µ− ν

µν
.

The fixed points of the transformation are the roots of the quadratic equation

(14) λz2 + (D + E)z −DE = λz2 + 2Mz −DE = 0 with M =
1

2
(D + E)

the middle of the segment DE.
In the case of the “incircle” the fixed points or focal points of the inscribed conic coincide

and this leads to a well known triangle formula. In fact, the vanishing of the discriminant

(*) M2 + λDE = 0 ⇔ M2

DE
= −λ =

µ+ ν − 1

µν
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in this case implies, with {a = |BC| , b = |CA| , c = |AB| , τ = (a+ b+ c)/2}

µ =
AC

AD
=

b

τ − a
, ν =

AB

AE
=

c

τ − a
and

M2

AE
= cos2

(
Â

2

)
,

since in this case the triangle ADE is isosceles. Combining these with (∗) we obtain

cos2

(
Â

2

)
=

τ(τ − a)

bc
.

B B2

C

C2

BC

X

Y

Z

-Z

D

E

F

A

Figure 24. The focal points as centroids of triangles {ZBC, (−Z)BC}

Next example is the “Steiner in-ellipse” of the triangle seen in figure 24. In this case
µ = ν = 2, λ = −3/4 and it is easily seen that the equation (14) for the fixed points of
the Möbius transformation takes the form

(15) 3z2 − 2(B + C) +BC = 0 ,

implying for the focal points the expressions

S, S′ =
1

3
(B + C ± Z) with Z =

√
B2 + C2 −BC .

The operations with the complexes are suggested by the figure, and can be carried out
easily geometrically requiring constructions using only straightedge and compasses. Points
{X = B2 + C2 , Y = B2 + C2 −BC , Z =

√
B2 + C2 −BC }, lead to the triangles

{ZBC, (−Z)BC} and the focal points are the centroids of these two triangles

S =
1

3
(B + C + Z) , S′ =

1

3
(B + C − Z) .

This construction of the focal points of Steiner’s in-ellipse can be used to give a proof of
the ([18]) “most marvelous theorem in Mathematics” attributed to Siebeck-Marden ([7],
[17], [2], [6]) which states:

Theorem 9.1. For the non collinear complex numbers {A,B,C}, the roots of the de-
rivative of the complex polynomial P (z) = (z −A)(z −B)(z − C) coincide with the focal
points of the Steiner in-ellipse of the triangle ABC.
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Proof. In fact, taking A at the origin and line AB coincident with the x−axis we get
for the derivative P ′(z) the same equation (15).

The general conic inscribed in a triangle, seen in figure 23, is determined by its perspector
P (u : v : w), whose barycentric coordinates are related to the ratios on the sides of the
traces {D,E, F} of P

FB

FC
= −w

v
,

DC

DA
= − u

w
,

EA

EB
= −v

u
⇒

µ =
u+ w

w
, ν =

u+ v

v
, λ = − vw + wu+ uv

(v + u)(w + u) .

Equation (14) becomes then

−(vw + wu+ uv)z2 + (Bv(w + u) + Cw(u+ v))z − vwBC = 0
A=0⇐⇒

−(vw + wu+ uv)z2

+(Au(v + w) +Bv(w + u) + Cw(u+ v))z

−(vwBC + wuCA+ uvAB) = 0 .

This, setting {p = 1/u, q = 1/v, r = 1/w} is seen equivalent to

(p+ q + r)z2 − (A(q + r) +B(r + p) + C(p+ q))z + (BCp+ CAq +ABr) = 0 ⇔
p

z −A
+

q

z −B
+

r

z − C
= 0 ,(16)

proving the Siebeck-Linfield generalization of the preceding theorem ([20]):

Theorem 9.2. For non collinear complex numbers {A,B,C} and non-zero real numbers
{p, q, r : pqr ̸= 0}, the roots of equation (16) are the focal points of the conic inscribed
in the triangle ABC and touching the sides {AB,BC,CA} correspondingly at points
{C ′, A′, B′} such that

AC ′

C ′B
=

p

q
,

BA′

A′C
=

q

r
,

CB′

B′A
=

r

p
.

10. Conics inscribed in a trapezium

We start with a parallelogram. Genuine conics κ inscribed in a parallelogram p = ABCD
must be central. The diagonals of the parallelogram are conjugate diameters of κ. To sim-
plify calculations we set the vertex A at the origin and the side AB on the x−axis. The
inscribed conics are created by drawing a line α = KL parallel to the diagonal BD and
considering the conic tangent to {β = AB, γ = AD} respectively at L,K and passing
through the symmetric L′ of L w.r.t. the center of the parallelogram (see Figure 25).
The Möbius transformation hA in this case takes a simple form. Taking into account that

D

A B

C

K

L

S

S'

L'

α

β

γ

κ

Figure 25. Conic κ inscribed in the parallelogram ABCD
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the points {D,K,A} map via hA to {∞, A, L}, using the special position of ABCD, and
identifying points with complex numbers we see easily that

(17) hA(z) = B · z −K

z −D
, with fixed points satisying z2 − (B +D)z +BK = 0 .

Since B +D = C, this reduces to z2 − Cz +BK = 0 and an easy location of the focal
points.

A B

CD E

S

S'

F

N

L

K

G

L'

M

H

O

κ

λ

Figure 26. Conic κ inscribed in a trapezium

The case of trapezium is also in some sense universal, since it occurs also in the case
of polygons p = ABC . . . with three consecutive sides {CD,DA,AB, . . .} from which
{CD,AB} happen to be parallel. Any other side of the polygon complements the three
sides to a trapezium. Using the same coordinate system as before, the homography hA
maps again the triple {D,K,A} to {∞, A, L} and leads to an analogous equation

(18) w =
DL

K
· z −K

z −D
⇔ w = sB · z −K

z −D
where

D

K
= s

B

L
.

This leads to equation z2 − (D + sB)z + sBK = 0 for the focal points, which reduces to
(17) in the case of parallelograms, for which the real number s = 1.

Figure 26 suggests the way to obtain all conics inscribed in a trapezium by reducing the
problem to that of parallelograms. In fact, q = ABED is the parallelogram created by
extending the side DC of the trapezium. Having the inscribed in the trapezium conic κ,
the “affinity”([11, p.199]) g of the plane fixing the points {D,A,B} and mapping C to
E maps κ to a conic λ = g(κ) inscribed in the parallelogram and tangent to AB at the
same point L with κ. We obtain all conics κ as g−1(λ) from the conics λ inscribed in
the parallelogram q and from equation (18) results a convenient way to determine their
focal points.

11. Triangles from three Möbius transformations

From our discussion so far follows that each polygon p = ABC . . . circumscribed to a
conic defines some series of commuting Möbius transformations {hA, hB, . . .}, sharing the
same fixed points and satisfying the condition (9) of section 5. Also an easy calculation
using the common fixed points shows that the invariant kBA of a composition hB ◦ hA
is equal to the product of the respective invariants kBA = kB · kA.

All these facts rise the question of a converse possibility, to construct a polygon from
a finite series {h1, . . . hn} of Möbius transformations satisfying these compatibility condi-
tions. We postpone the examination of the general case to a future occasion and handle
in this and the next section the case of triangles which answers the question in the affir-
mative. Here we consider Möbius transformations with distinct fixed points “lying in the
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finite plane”, i.e. different from ∞, which lead to central conics. In the next section we
consider transformations still with two distinct fixed points, one of which however is ∞,
leading to parabolas.

Theorem 11.1. Three non-involutive Möbius transformations {h1, h2, h3} with distinct
common fixed points {S, S′} lying in the finite plane and invariants {k1, k2, k3} satisfying
k1k2k3 = 1, define a triangle ABC and an inscribed in it central conic with focal points
{S, S′}. Conversely, every central conic inscribed in a triangle results from a triple of
Möbius transformations satisfying the above conditions.

S

S'
Q
1

R
1

Q
2

R
2

Q
3

R
3

A

B C

K

L

X
Y

F

F'

κ

Figure 27. Configuration of three pairwise commuting Möbius transformations

Proof. We show the first part of the theorem, since the converse part follows from the
preceding discussion.

Figure 27 shows a configuration resulting from three commuting Möbius transformations
{h1, h2, h3}, whose invariants do not satisfy the condition k1k2k3 = 1. This implies that
h = h3 ◦ h2 ◦ h1 ̸= e is not the identity. For an X different from the assumed common
fixed points {S, S′} of these transformations we have then Y = h(X) ̸= X, as this is
suggested by the figure.

The limit points {(Qi, Ri) of hi, i = 1, 2, 3} define three characteristic parallelograms
and these through their vertices define a symmetric hexagon R1Q3R2Q1R3Q2 . By the
inverse of Brianchon’s theorem ([1, p.66]) there is a conic κ inscribed in this hexagon. The
hexagon defines through its non-consecutive side-lines two congruent, symmetric w.r.t. to
the center of the conic, triangles and we stick to one of them ABC as shown in the figure.

The conic κ, in general, has focal points {F, F ′} different from the common points
{S, S′} of our initial transformations {h1, h2, h3}. We define the Möbius transforma-
tions {hA, hB, hC}, as we have done in the preceding sections. For example hA will
map, through the tangents of κ, points {K,A,C} of line AC correspondingly to points
{A,L,B} of line AB , with fixed points {F, F ′} and limit points {Q1, R1}, the same with
those of h1. We show, that if k1k2k3 = 1, then the fixed points {F, F ′} coincide with
{S, S′} and consequently the maps coincide too, i.e. {h1 = hA, h2 = hB, h3 = hC}. For
example we’ll then have h1 = hA, because the two maps will share the same fixed points
and will coincide at Q1 and R1.

Assuming that {m1,m2,m3} are respectively the invariants of {hA, hB, hC}, we have
the expressions through the fixed points

ki =
S −Qi

S′ −Qi
and mi =

F −Qi

F ′ −Qi
for i = 1, 2, 3 .
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Because of the symmetry w.r.t. the center of the conic, which we may assume at the
origin, we have S′ = −S and

there is an x ∈ C with F = S + x and F ′ = −S − x .

The valid condition m1m2m3 = 1 implies

(F ′ −Q1)(F
′ −Q2)(F

′ −Q3) = (F −Q1)(F −Q2)(F −Q3) ⇒
−(S + x+Q1)(S + x+Q2)(S + x+Q3) = (S + x−Q1)(S + x−Q2)(S + x−Q3) ⇒

2(x+ S)(x2 + 2Sx+ S2 +Q1Q2 +Q2Q3 +Q3Q1) = 0 .(19)

The assumed condition k1k2k3 = 1 implies

(S′ −Q1)(S
′ −Q2)(S

′ −Q3) = (S −Q1)(S −Q2)(S −Q3) ⇒
−(S +Q1)(S +Q2)(S +Q3) = (S −Q1)(S −Q2)(S −Q3) ⇒

2S(S2 +Q2Q3 +Q1Q3 +Q1Q2) = 0 .(20)

The two equations imply, taking into account our assumption S ̸= 0 :

(x+ S)(x2 + 2Sx) = 0 ⇒ x = −S or x = 0 or x = −2S .

The first solution x = −S is rejected since it produces F = F ′ = 0 i.e. the case κ being
a circle, which we have excluded. The second x = 0 implies the coincidence of {S, S′}
with {F, F ′} and the third x = −2S is not acceptable producing {F = −S, F ′ = −3S}
non-symmetric w.r.t. to the origin. Thus, the only acceptable solution x = 0 leads to
identification of {S, S′} with {F, F ′} and completes the proof of the theorem for the case
of central conics.

12. Parabolas from three similarities

There are three basic facts differentiating the case of parabolas from the central con-
ics with regard to circumscribed polygons and in particular triangles. The first is the
existence of one only focal point lying in the finite plane, the fact that the Möbius trans-
formations {hA, hB, . . .} are similarities, and the fact ([1, p.22]) that the circumcircle κ of
the circumscribed to a parabola triangle ABC passes through the focus S of the parabola
(see Figure 28).

A

K

L
B

C
M

S

κ

κ

Figure 28. The circumcircle of △ABC passes through the focus S

Our discussion so far could suggest the conjecture that three similarities {h1, h2, h3}
possessing a common fixed point S define a triangle and a parabola inscribed in it. But
this is not so. There is one additional condition for the {hi} that must be satisfied in
order to be able to define through them a triangle and an inscribed in it parabola. The
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additional condition is due to the third basic fact, stated above, and leads to the following
theorem.

Theorem 12.1. Three similarities {hi(z) = ai(z − z0) + z0, i = 1, 2, 3}, expressed with
complex numbers, define a triangle ABC and an inscribed in it parabola with focus z0, if
and only if a1a2a3 = 1 and (1− a1a3)/(a3 − a1a3) ∈ R, i.e. {1, a3, a1a3} are collinear.

Proof. In section 8 we saw the necessity of the condition a1a2a3 = 1. Assuming z0 = 0,
the necessity of the other relation results from the fact that the four points S(0) , C and
B = a1C , A = a1a3C are on a circle κ, hence their cross ratio is real

R ∋ (SC;BA) =
S −B

C −B
:
S −A

C −A
=

0− a1C

C − a1C
:
0− a1a3C

C − a1a3C
=

1− a1a3
a3 − a1a3

.

a
2η

κ

μ

α

C(1)

B(a
1
 )A(a

1
 

β γ

L(a
3
 )

Μ

Κ

a
3
 )

X

Y

Figure 29. Generating an inscribed parabola from three similarities

To proceed to the converse we use the configuration of figure 29 which shows the location
of the complex numbers {a1, a2, a3} satisfying the given conditions and a possible definition
of the triangle ABC. Because of the general properties of similarities, cited in section 8,
applying successively the transformations to any point z of the plane we obtain triangles
which are pairwise similar. Thus, we can define the triangle ABC by starting from z = 1

C = 1 , B = h1(C) = a1 , A = h3(B) = a1a3 .

By the general properties of similarities the points X ∈ AC map to points Y ∈ AB and
the line XY envelopes a parabola with focus at the origin and for appropriate positions
of X the tangent XY coincides with the side-lines of the triangle. Analogous arguments
for h2, h3 lead to the same parabola inscribed in ABC and prove the theorem.

We notice some properties in figure 29, whose simple proofs are left as exercises:

(1) If we fix the location of a1, hence the location of the circle κ = (01a1), then the
possible a2 satisfying the second relation vary on the line η : a2 = (1− t) + t 1

a1
.

(2) This line is tangent to κ at z = 1.
(3) Point a3 varies on a circle µ through {0, 1} tangent to the line BC at C = 1.
(4) The similarity h1 maps the circle µ onto κ.
(5) The collinearity of one of the triples {(1, a1, a1a2), (1, a2, a2a3), (1, a3, a1a3)} im-

plies the collinearity of the other two.
(6) Point a2a3 is the other than 1 intersection of line η and circle µ and M = a1a2.
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