
INTERNATIONAL JOURNAL OF GEOMETRY
Vol. 12 (2023), No. 3, 69-82

ISOMETRY GROUPS OF THE SPACES OF

TRUNCATED PENTAKIS DODECAHEDRON AND

TRUNCATED TRIAKIS ICOSAHEDRON

ZEYNEP CAN and ÖZCAN GELİŞGEN

Abstract. Many authors have been studied on the relations between
Minkowski geometry and convex solids especially polyhedra. In this paper
we introduce two new Minkowski geometries derived by dTPD−metric and
dTTI−metric which unit spheres are truncated pentakis dodecahedron and
truncated triakis icosahedron, respectively. These solids are in the class
Truncated Catalan solids. We also give some properties of dTPD−metric and
dTTI−metric and we show that the group of isometries of the 3−dimensional
space covered by dTPD−metric or dTTI−metric is the semi-direct product
of icosahedral group Ih the (Euclidean) symmetry group of the icosahedron
and T (3) the group of all translations of the 3−dimensional space.

1. Introduction

Minkowski geometry is a non-Euclidean geometry in a finite number of
dimensions with the same linear structure of the Euclidean one but distance
is not uniform in all directions. What is meant by the similarity of the
linear structure is the points, lines and planes are the same and angles are
measured in the same way. But changing the distance function changes the
concepts related to the distance, for instance instead of the usual sphere
in Euclidean space, unit ball is a general symmetric convex set. (See [1]
and [2]). Although the convex set theory is ancient it is one of the most
interesting and classical field of modern matematics due to rich applications.
Convex set theory developed geometrically by introducing some notions, but
primarily polyhedra. A simple definition of a polyhedron would be given
as the finite, connected set of plane polygons and it is possible to obtain
polyhedra by many different ways. For more detail see [3] and [4].
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Polyhedra, like polygons, may be convex or non-convex. A polyhedron is
an extremely important special solid in Rn especially when it is convex. Con-
vex polyhedra are mainly classified as Platonic, Archimedean and Catalan
solids.Regular convex polyhedra consist of just one type of regular polygon
and they are named as Platonic solids, semi-regular convex polyhedra which
are called Archimedean solids consist of two or more different types of reg-
ular polygons and Catalan solids are dual polyhedra of Archimedean solids
and their faces are not regular polygons (see [3],[15]). By the studies on
metric geometry in 3−dimensional space it has seen that metrics and con-
vex polyhedra are closely related. 3−dimensional analytical space covered
with maximum and taxicab metrics are Minkowski geometries whose unit
spheres are cube and octahedron, respectively, which are two of Platonic
Solids. The taxicab (Manhattan) and the maximum (Chebyshev) norms are
defined as ‖X‖1 = |x|+ |y|+ |z| and ‖X‖∞ = max {|x| , |y| , |z|}, respectively

and they are special cases of lp-norm; ‖X‖p = (|x|p + |y|p + |z|p)1/p, where

X = (x, y, z) ∈ R3. Among lp-metrics only crystalline metrics, i.e., metrics
having polygonal unit balls are l1− and l∞− metrics [5]. Another metric is
CC-metric which is defined as

dCC (P1, P2) = dL (P1, P2) +
(√

2− 1
)
dS (P1, P2)

where

dL (P1, P2) = max {|x1 − x2| , |y1 − y2| , |z1 − z2|} ,
dS (P1, P2) = min {|x1 − x2|+ |y1 − y2| , |x1 − x2|+ |z1 − z2| , |y1 − y2|+ |z1 − z2|} ,
P1 = (x1, y1, z1) and P2 = (x2, y2, z2). Thus Minkowski geometry obtained
by covering 3−dimensional analytical space with CC-metric has unit sphere
as a deltoidal icositetrahedron, a Catalan Solid. There are many studies in
the literature on relations between convex polyhedra and metrics. (See [7],
[8], [9], [11], [12], [13], [14], [17], [19], [20], [21], [22]). In the light of the
mentioned studies, in this study we first introduce two new metrics, and
showed that the spheres of the 3−dimensional analytical space covered by
these metrics are truncated pentakis dodecahedron and truncated triakis
icosahedron then we give some properties of these metrics. Furthermore
we show that the group of isometries of the 3−dimensional space covered
by TPD−metric or TTI−metric is the semi-direct product of Ih and T (3),
where icosahedral group Ih is the (Euclidean) symmetry group of icosahe-
dron and T (3) is the group of all translations of the 3−dimensional space.

2. TRUNCATED PENTAKIS DODECAHEDRON METRIC AND
SOME PROPERTIES

There are many different operations to obtain a polyhedra. For exam-
ple eleven of Arhimedean polyhedra can be obtained from Platonic solids by
truncation. To truncate means to cut off the vertices [6]. Truncated pentakis
dodecahedron is a convex solid obtained by truncating pentakis dodecahe-
dron. Pentakis dodecahedron is a Catalan solid whose faces consist of 60
isosceles triangles and truncated pentakis dodecahedron is a convex solid
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with 60 mirror-symmetric pentagonal and 20 regular hexagonal faces, 132
vertices and 210 edges.

Figure 1: Pentakis Dodecahedron and Truncated Pentakis Dodecahedron

First we give some notions that will be used in the descriptions of distance
functions we define. For P1 = (x1, y1, z1), P2 = (x2, y2, z2) ∈ R3, M denotes
‖P1 − P2‖∞ and S denotes ‖P1 − P2‖1. Moreover X − Y − Z − X and
Z − Y −X − Z orientations are called positive (+) direction and negative
(-) direction, respectively. M+ and M− expresses the next term in the
respective direction according to M . For example, if M = |x1 − x2|, then
M+ = |y1 − y2| and M− = |z1 − z2|. The metric for which the unit sphere
is the truncated tetrakis hexahedron is defined as following:

Definition 2.1. The distance function dTPD : R3 × R3 −→ [0,∞) which is
defined by

dTPD (P1, P2) = max


3+
√

5
6 M +

√
5−1
3 M+ + 1

3M
−,√

5
3 M + 2

3M
− +

√
5−1
6 M+,

M +
√

5−1
6 M+, aM + bM−, cS


where a =

√
3
(

5
√

5−13
33

)
+ 3+9

√
5

22 , b =
√

3
(

14
√

5−32
33

)
+ 6

√
5−9

11 and c =
√

6
(

53−25
√

5
13

)
+ 155

√
3−177

√
2−243

26 +
√

5
(

123+83
√

2−73
√

3
26

)
is called the trun-

cated pentakis dodecahedron distance between P1 and P2, where P1 = (x1, y1, z1),
P2 = (x2, y2, z2) ∈ R3.

There are five different paths from P1 to P2 with the same length with
respect to the truncated pentakis dodecaheron distance. These paths are
i) union of three line segments each of them is parallel to a coordinate

axis,
ii) union of two line segments one of which is parallel to a coordinate axis

and other line segment makes arctan
(√

5
2

)
angle with another coordinate

axis.
iii) union of two line segments one of which is parallel to a coordinate axis

and other line segment makes arctan
(

5+4
√

5
6

)
angle with another coordinate

axis.
iv) union of three line segments one of which is parallel to a coordinate

axis, one of which makes arctan
(√

5
20

)
angle with another coordinate axis

and the last line segment makes arctan
(

10+3
√

5
10

)
angle with the last coor-

dinate axis.
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v) union of three line segments one of which is parallel to a coordinate axis,

one of which makes arctan
(

10−3
√

5
4

)
angle with another coordinate axis and

the last line segment makes arctan
(√

5
2

)
angle with the last coordinate axis.

Thus the truncated tetrakis hexahedron distance between P1 and P2 is
for (i) c times of the sum of Euclidean lengths of the three line segments,
for (ii) a times of the sum of Euclidean lengths of the two line segments,

for (iii) the sum of Euclidean lengths of the two line segments, for (iv)
√

5
2

times of the sum of Euclidean lengths of the three line segments and for

(v) 3+
√

5
6 times of the sum of Euclidean lengths of the three line segments,

where a =
√

3
(

5
√

5−13
33

)
+ 3+9

√
5

22 and c =
√

6
(

53−25
√

5
13

)
+ 155

√
3−177

√
2−243

26 +
√

5
(

123+83
√

2−73
√

3
26

)
. Figure 2 illustrates the truncated tetrakis hexahedron

path from P1 to P2 if maximum value is c (|x1 − x2|+ |y1 − y2|+ |z1 − z2|),
a |y1 − y2|+b |x1 − x2|, |y1 − y2|+

√
5−1
6 |z1 − z2|,

√
5

3 |y1 − y2|+ 2
3 |x1 − x2|+√

5−1
6 |z1 − z2| or 3+

√
5

6 |y1 − y2|+
√

5−1
3 |z1 − z2|+ 1

3 |x1 − x2|.

Figure 2: Some TPD way from P1 to P2

Lemma 2.1. Let P1 = (x1, y1, z1), P2 = (x2, y2, z2) ∈ R3 be distinct two
points, M = ‖P1 − P2‖∞ and S = ‖P1 − P2‖1. Then

dTPD (P1, P2) ≥ 3+
√

5
6 M +

√
5−1
3 M+ + 1

3M
−

dTPD (P1, P2) ≥
√

5
3 M + 2

3M
− +

√
5−1
6 M+

dTPD (P1, P2) ≥M +
√

5−1
6 M+

dTPD (P1, P2) ≥ aM + bM−

dTPD (P1, P2) ≥ cS

where a =
√

3
(

5
√

5−13
33

)
+ 3+9

√
5

22 , b =
√

3
(

14
√

5−32
33

)
+ 6

√
5−9

11 and c =
√

6
(

53−25
√

5
13

)
+ 155

√
3−177

√
2−243

26 +
√

5
(

123+83
√

2−73
√

3
26

)
Proof. Proof would be obtained trivially by the definition of maximum
function.

Theorem 2.1. The distance function dTPD is a metric. Furthermore ac-
cording to dTPD, the unit sphere is a truncated pentakis dodecahedron in
R3.

Proof. To prove dTPD is a metric it must be shown that metric axioms are
satisfied by dTPD. By using the definition of the distance function dTPD,
properties of absolute value metric and Lemma 2.1 it would easily seen that
dTPD is a metric.
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Finally, the set of all points X = (x, y, z) ∈ R3 that truncated pentakis
dodecahedron distance is 1 from O = (0, 0, 0) is

STPD =

(x, y, z) : max


3+
√

5
6 M +

√
5−1
3 M+ + 1

3M
−,√

5
3 M + 2

3M
− +

√
5−1
6 M+,

M +
√

5−1
6 M+, aM + bM−, cS

 = 1


Thus the graph of STPD, the unit sphere in terms of dTPD is as in the Figure
3:

Figure 3: The STPD: Truncated pentakis dodecahedron

Corollary 2.1. A sphere of the truncated pentakis dodecahedron space with
center X0 = (x0, y0, z0) and radius r is

max

{
3+
√

5
6 M0 +

√
5−1
3 M+

0 + 1
3M

−
0 ,
√

5
3 M0 + 2

3M
−
0 +

√
5−1
6 M+

0 ,

M0 +
√

5−1
6 M+

0 , aM0 + bM−0 , cS0

}
= r

which is a polyhedron with 80 faces, 132 vertices and 210 edges, where

a =
√

3
(

5
√

5−13
33

)
+ 3+9

√
5

22 , b =
√

3
(

14
√

5−32
33

)
+ 6
√

5−9
11 , c =

√
6
(

53−25
√

5
13

)
+
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√

3−177
√

2−243
26 +

√
5
(

123+83
√

2−73
√

3
26

)
, M0 = ‖X −X0‖∞, S0 = ‖X −X0‖1

and X = (x, y, z). Coordinates of the vertices are the translation of all ver-
tices of STPD to (x0, y0, z0) with all cyclic permutation of the three axis
components and all possible +/− sign changes of each axis component of
(0, C1r, r), (C2r, C3r, C4r), (C5r, 0, C6r), (C2r, C7r, C8r), (0, C9r, C10r),

(C11r, C12r, C13r) and (C14r, C15r, C16r) , where C1 = 10
√

15−8
√

3
109 − 21+

√
5

218 ,
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√

5−24
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√
3+
√
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√
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√
3
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√

5
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√
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√
3

327 +
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√
5
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√

5−3
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√
5
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3
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√
5

218 , C8 =
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√
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√
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√
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√
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√
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5
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√
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Lemma 2.2. Denote by l the Euclidean line passing through the points
P1 = (x1, y1, z1) and P2 = (x2, y2, z2) in the analytical 3−dimensional space



74 Zeynep Can and Özcan Gelı̇şgen

and by dE the Euclidean metric. If direction vector of l is (p, q, r), then

dTPD (P1, P2) = µ (P1P2) dE (P1, P2)

where

µ (P1P2) =

max

{
3+
√

5
6 Md +

√
5−1
3 M+
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3M

−
d ,
√

5
3 Md + 2
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√
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6 M+
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√
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,
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)
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√
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(
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33

)
+ 6
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√
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√
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123+83
√
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)
, Md = ‖P‖∞, Sd = ‖P‖1, P =

(p, q, r) and O = (0, 0, 0).

Proof. Equation of l gives x1− x2 = λp, y1− y2 = λq, z1− z2 = λr, λ ∈ R.
Thus,

dTPD (P1, P2) = |λ|max


3+
√

5
6 Md +

√
5−1
3 M+

d + 1
3M

−
d ,√

5
3 Md + 2

3M
−
d +

√
5−1
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d ,

Md +
√

5−1
6 M+

d , aMd + bM−d , cSd


where a =

√
3
(

5
√

5−13
33

)
+3+9

√
5

22 , b =
√

3
(

14
√

5−32
33

)
+6
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5−9
11 , c =

√
6
(

53−25
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5
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)
+
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√
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√
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√
5
(

123+83
√

2−73
√
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)
, Ud = ‖P‖∞, Sd = ‖P‖1, and dE (P1, P2) =

|λ|
√
p2 + q2 + r2 . By proportioning the resulting equations the required

consequence is obtained.
The following corollaries are immediate consequences of the lemma above:

Corollary 2.2. If P1, P2 and X are any three collinear points in R3, then
dE (P1, X) = dE (P2, X) if and only if dTPD (P1, X) = dTPD (P2, X).

Corollary 2.3. If P1, P2 and X are any three collinear points in R3, then

dTPD (X,P1) /dTPD (X,P2) = dE (X,P1) /dE (X,P2)

That is, the ratios of the Euclidean and dTPD−distances along a line are the
same.

3. TRUNCATED TRIAKIS ICOSAHEDRON METRIC AND
SOME PROPERTIES

Truncated triakis icosahedron is a Truncated Catalan solid obtained by
truncation operation from triakis icosahedron. The triakis icosahedron has
60 isosceles triangular faces and the truncated triakis icosahedron consists of
60 mirror-symmetric pentagonal and 12 regular decagonal faces, 140 vertices
and 210 edges.
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Figure 4: Triakis icosahedron, Truncated triakis icosahedron

The notations M , M+ and M− will be used as defined in the previous
section. The metric for which the unit sphere is the truncated triakis icosa-
hedron is defined as follows:

Definition 3.1. The distance function dTTI : R3 × R3 −→ [0,∞) which is
defined by

dTTI (P1, P2) = max

{
2
√

5
5 M + 3

√
5−5

10 M+ +
√

5
5 M

−, 5+
√

5
10 M + 5−

√
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5
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}
where a =

√
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√
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√

2
√
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√
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(
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√

5−55
190

)
+

10+
√

5
19 is called the truncated triakis icosahedron distance between P1 and P2

that P1 = (x1, y1, z1) and P2 = (x2, y2, z2) are two points in R3.

There are four different paths from P1 to P2 with the same length with
respect to the truncated triakis icosahedron distance. These paths are
i) union of two line segments one of which is parallel to a coordinate axis

and other line segment makes arctan
(

1
2

)
angle with another coordinate axis,

ii) union of two line segments one of which is parallel to a coordinate axis

and other line segment makes arctan
(

15+6
√

5
10

)
angle with another coordi-

nate axis,
iii) union of three line segments one of which is parallel to a coordinate

axis, one of which makes arctan
(

3
4

)
angle with another coordinate axis and

the last line segment makes arctan
(

9+5
√

5
8

)
angle with the last coordinate

axis.
iv) union of three line segments one of which is parallel to a coordinate

axis, one of which makes arctan
(

1
2

)
angle with another coordinate axis and

the last line segment makes arctan
(√

5
2

)
angle with the last coordinate axis.

Thus the truncated tetrakis hexahedron distance between P1 and P2 is for
(i) a times of the sum of Euclidean lengths of the three line segments, for (ii)

the sum of Euclidean lengths of the two line segments, for (iii) 2
√

5
5 times of

the sum of Euclidean lengths of the three line segments and for (iv) 5+
√

5
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times of the sum of Euclidean lengths of the three line segments, where a =√
2
√

5 +
√

5
(

15−8
√

5
95

)
+ 15+11

√
5

38 . Figure 2 illustrates the truncated tetrakis

hexahedron path from P1 to P2 if maximum value is a |y1 − y2|+ b |z1 − z2|,
|y1 − y2| + 3

√
5−5

10 |x1 − x2|, 2
√

5
5 |y1 − y2| +

√
5

5 |x1 − x2| + 3
√

5−5
10 |z1 − z2| or

5+
√

5
10 |y1 − y2|+ 5−

√
5

10 |x1 − x2|+
√

5
5 |z1 − z2|.
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Figure 5: Some TTI ways from P1 to P2

Lemma 3.1. Let P1 = (x1, y1, z1) and P2 = (x2, y2, z2) be distinct two

points in R3, M = ‖P1 − P2‖∞, a =
√
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5 +
√
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√
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√
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Proof. Proof is trivial by the definition of maximum function.

Theorem 3.1. The distance function dTTI is a metric. Furthermore ac-
cording to dTTI , the unit sphere is a truncated triakis icosahedron in R3.

Proof. By using the definition of the distance function dTTI , properties of
absolute value metric and Lemma 3.1 proof would be done easily.

Finally, the set of points for which the truncated triakis icosahedron dis-
tance from the origin is 1 (the unit sphere with respect to the truncated
triakis icosahedron distance) is

STTI =

(x, y, z) : max


2
√
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5 M + 3

√
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√
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√
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√
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where a =

√
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√
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√
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√

2
√

5 +
√
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(
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√

5−55
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+
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5
19 . Thus the graph of STTI , the unit sphere in terms of dTTI is as in

the Figure 6:
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Figure 6: The STTI : Truncated triakis icosahedron

A sphere of the truncated triakis icosahedron space with center
X0 = (x0, y0, z0) and radius r is

max

{
2
√

5
5 M0 + 3

√
5−5

10 M+
0 +

√
5

5 M
−
0 ,

5+
√

5
10 M0 + 5−

√
5

10 M−0 +
√

5
5 M

+
0 ,

M0 + 3
√

5−5
10 M−0 , aM0 + bM+

0

}
= r

which is a polyhedron with 72 faces, 140 vertices and 210 edges, where M0 =

‖X −X0‖∞, X = (x, y, z), a =
√

2
√

5 +
√

5
(

15−8
√

5
95

)
+ 15+11

√
5

38 and b =
√

2
√

5 +
√

5
(

23
√

5−55
190

)
+ 10+

√
5

19 . Coordinates of the vertices are the trans-

lation of all vertices of STTI to (x0, y0, z0) with all cyclic permutation of the
three axis components and all possible +/− sign changes of each axis com-
ponent of (0, C2r, C13r), (0, C5r, C11r), (C0r, C1r, C14r), (C1r, C8r, C10r),
(C3r, C4r, C12r), (C6r, C6r, C6r), (C7r, C4r, C9r) and (C15r, 0, r), where

C0 =
√

2
√

5 + 5
(

120−47
√

5
305

)
+ 11

√
5−19

122 , C1 =
√

2
√√

5 + 5
(

19−11
√

5
244

)
+

18
√

5−20
61 , C2 = 4

√
5−5

11 , C3 =
√

2
√√

5 + 5
(

11
√

5−19
244

)
+ 25

√
5−21

122 ,

C4 =
√

2
√

5 + 5
(

19−11
√

5
122

)
+ 35−

√
5

61 , C5 =
√

2
√

5 + 5
(

74
√

5−150
305

)
+ 16

√
5−11

61 ,

C6 = 15−
√

5
22 , C7 =

√
2
√

5 + 5
(

335−149
610

√
5
)
+51+9

√
5

122 , C8 =
√

2
√

5 + 5
(

11
√

5−19
122

)
+

26+
√

5
61 , C9 =

√
2
√

5 + 5
(

9
√

5−10
305

)
+ 44−3

√
5

61 , C10 =
√

2
√

5 + 5
(

28−13
√

5
61

)
+

49+23
√

5
122 , C11 =

√
2
√

5 + 5
(

75−37
√

5
305

)
+11+45

√
5

122 , C12 =
√

2
√

5 + 5
(

13
√

5−28
61

)
+

6+19
√

5
61 , C13 = 5+7

√
5

22 , C14 =
√

2
√

5 + 5
(

93
√

5−205
610

)
+ 24+15

√
5

61 and C15 =√
2
√

5 + 5
(

37−15
√

5
61

)
+ 19−11

√
5

122 .

Lemma 3.2. The line through the points P1 = (x1, y1, z1) and P2 = (x2, y2, z2)
in the analytical 3−dimensional space be l and dE denotes the Euclidean
metric. If direction vector of l is (p, q, r), then

dTTI (P1, P2) = µ (P1P2) dE (P1, P2)



78 Zeynep Can and Özcan Gelı̇şgen

where

µ (P1P2) =

max


2
√

5
5 Md + 3

√
5−5

10 M+
d +

√
5

5 M
−
d ,

5+
√

5
10 Md + 5−

√
5

10 M−d +
√

5
5 M

+
d ,

Md + 3
√

5−5
10 M−d , aMd + bM+

d

√
p2 + q2 + r2

,

Md = ‖P‖∞ and P = (p, q, r).

Proof. By using the equations x1 − x2 = λp, y1 − y2 = λq, z1 − z2 = λr,
λ ∈ R obtained by l and definitions of dTTI (P1, P2) and dE (P1, P2) the
denoted result is found.

The lemma above states that dTTI−distance along a line is a particular
positive constant multiple of Euclidean distance along the same line, thus
the following corollaries are immediate consequences of this statement:

Corollary 3.1. If P1, P2 and X are any three collinear points in R3, then
dE (P1, X) = dE (P2, X) if and only if dTTI (P1, X) = dTTI (P2, X).

Corollary 3.2. If P1, P2 and X are any three collinear points in R3, then

dTTI (X,P1) /dTTI (X,P2) = dE (X,P1) /dE (X,P2) .

That is, the ratios of the Euclidean and dTTI−distances along a line are the
same.

4. ISOMETRY GROUPS OF TRUNCATED PENTAKIS
DODECAHEDRON AND TRUNCATED TRIAKIS

ICOSAHEDRON

There are three essential methods in geometric investigations; synthetic,
metric and group approach. The group approach treats isometry groups of
a geometry and convex sets play a substantial role in indication of the group
isometries of geometries. These properties are invariant under the group of
motions and geometry studies those properties. Since Minkowski geome-
tries have the same underlying sets of points and lines with the Euclidean
geometry an interesting problem is to find the group of isometries. For some
studies about group of isometries some metric spaces see [10], [11], [12], [13],
[16], [18]. In [1] the author gives the following theorem:

Theorem 4.1. If the unit ball C of (V, ‖‖) does not intersect a two-plane in
an ellipse, then the group I(3) of isometries of (V, ‖‖) is isomorphic to the
semi-direct product of the translation group T (3) of R3 with a finite subgroup
of the group of linear transformations with determinant ±1.

By this theorem, there only left to determine what the relevant subgroup
is.

To show that the group of isometries of the 3−dimensional space covered
by TPD− metric and TTI−metric are the semi-direct product of Ih and
T (3), where icosahedral group Ih is the (Euclidean) symmetry group of the
icosahedron and T (3) is the group of all translations of the 3−dimensional
space we first give the following definition. In the rest of the article we take
∆1 = TPD and ∆2 = TTI. That is, ∆i ∈ {∆1,∆2}, i = 1, 2.
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Definition 4.1. Let R, S be two points in R3
∆i

, i = 1, 2. The minimum
distance set of P , Q is defined by

{X : d∆i (R,X) + d∆i (S,X) = d∆i (R,S) , i = 1, 2}

and denoted by [RS]∆i
, i = 1, 2.

[RS]TPD stands for a hexagonal dipyramid in R3
TPD and [RS]TTI stands

for a decagonal dipyramid in R3
TTI as shown in Figure(7a) and Figure(7b).

Figure 7(a) Figure 7(b)

Proposition 4.1. Let φ : R3
∆i
−→ R3

∆i
, i = 1, 2, be an isometry and

let [RS]∆i
be the minimum distance set of R, S where i = 1, 2. Then

φ
(
[RS]∆i

)
= [φ (R)φ (S)]∆i

, i = 1, 2.

Proof. Let Y ∈ φ
(
[RS]∆i

)
, i = 1, 2. Then, there exists X ∈ [RS]∆i

such
that Y = φ (X). d∆i (R,X) + d∆i (S,X) = d∆i (R,S), i = 1, 2, since X ∈
[RS]∆i

. Thus d∆i (φ (R) , φ (X)) + d∆i (φ (S) , φ (X)) = d∆i (φ (R) , φ (S)),
i = 1, 2 which means Y = φ(X) ∈ [φ (R)φ (S)]∆i

, i = 1, 2. By similar

way it is easy to prove that [φ (R)φ (S)]∆i
⊂ φ

(
[RS]∆i

)
, i = 1, 2. So

φ
(
[RS]∆i

)
= [φ (R)φ (S)]∆i

, i = 1, 2, is obtained.

Corollary 4.1. Let φ : R3
∆i
−→ R3

∆i
, i = 1, 2, be an isometry and let

[RS]∆i
be the minimum distance set of R and S where i = 1, 2. Then φ

maps vertices to vertices and preserves the lengths of the edges of [RS]∆i
,

i = 1, 2.

Proposition 4.2. Let φ : R3
∆i
−→ R3

∆i
be an isometry such that φ (O) = O,

where i = 1, 2. Then φ ∈ Ih.

Proof. Let ∆i = ∆1 = TPD. Consider seven points V1 = (C11, C12, C13),
V2 = (C13, C11, C12), V3 = (C12, C13, C11), V4 = (C14, C15, C16), V5 =
(C16, C14, C15), V6 = (C15, C16, C14) and W = (C0, C0, C0) in R3

TPD where
the values of Ci for i = 11, 12, .., 16 are as given in Corollary 2.1 and

C0 = 39+33
√

5
109 + 58

√
3−18

√
15

327 . Thus [OW ]TPD is the hexagonal dipyramid
as seen in Figure 8(a).
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Figure 8(a)
Figure 8(b)

Besides points Vi (i = 1, 2, .., 6) lie on minimum distance set [OW ]TPD and
unit sphere centered at origin. Furthermore these six points are the corner
points of a truncated pentakis dodecahedron’s hexagonal face. φmaps points
Vi (i = 1, 2, .., 6) to the vertices of a truncated pentakis dodecahedron by
Corollary 17. Since φ preserves the lenghts of the edges and truncated
pentakis dodecahedron has 20 hexagonal faces and for each face there are 6
possibilities to the points Vi (i = 1, 2, .., 6) which they can map to, the total
number of possibilities is 120. By dealing with each possibility it would seen
that the elements of desired subgroup are obtained.

If ∆i = ∆2 = TTI, then let the choosen eleven points be V1 = (C15, 0, 1),
V2 = (C0,−C1, C14), V3 = (C3,−C4, C12), V4 = (C7,−C4, C9),
V5 = (C10,−C1, C8), V6 = (C11, 0, C5), V7 = (C10, C1, C8), V8 = (C7, C4, C9),
V9 = (C3, C4, C12), V10 = (C0, C1, C14) and W = (C16, 0, C17) in R3

TTI where
the values of Ci for i = 0, 1, .., 15 are as given in Theorem 3.1 and

C16 =

(
260− 112

√
5
)√

5 + 2
√

5

305
+

15 + 17
√

5

61

and

C17 = 52+2
√

5
61 +

(
11
√

5−19−6
√

5
√

25+10
√

2
)√

5+2
√

5

61

+

(
19−11

√
5+64
√

5+2
√

5
)√

25+10
√

2

610 .

Consider [OW ]TTI which is the decagonal dipyramid as seen in Figure
8(b).Also points Vi (i = 1, 2, .., 10) lie on minimum distance set [OW ]TTI
and the unit sphere centered at origin. Furthermore these eight points are
the corner points of a truncated triakis icosahedron’s decagonal face. φ maps
points Vi (i = 1, 2, .., 10) to the vertices of a truncated triakis icosahedron
by Corollary 17. Since φ preserves the lenghts of the edges and truncated
triakis icosahedron has 12 decagonal faces and for each face there are 10
possibilities to the points which they can map to, the total number of pos-
sibilities is 120. By dealing with each possibility it would seen that the
elements of desired subgroup are obtained.

Theorem 4.2. Let φ : R3
∆i
−→ R3

∆i
, i = 1, 2, be an isometry. Then there

exists a unique TA ∈ T (3) and ψ ∈ Oh where φ = TA ◦ ψ.



Isometry Groups of the Spaces of TPD and TTI 81

Proof. Let φ (O) = A such that A = (a1, a2, a3) . Define ψ = T−A ◦ φ. We
know that ψ (O) = O and ψ is an isometry. Thereby, ψ ∈ Oh and φ = TA◦ψ
by Proposition 18. The proof of uniqueness is trivial.
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82 Zeynep Can and Özcan Gelı̇şgen
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