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GREAT COMPILATION OF

CHARACTERIZATIONS OF SQUARES

MARTIN JOSEFSSON

Abstract. We study what additional conditions ten different classes of
convex quadrilaterals must satisfy in order for them to be a square.

1. Introduction

Let us start this paper by discussing the difference between a property
and a characterization. All mathematical objects have certain properties,
also called necessary conditions, but in order for a property to be a char-
acterization, it must also be a sufficient condition. Take for example a
rhombus. A necessary condition is perpendicular diagonals, but that is not
a sufficient condition since there are quadrilaterals with perpendicular diag-
onals that are not rhombi (called orthodiagonal quadrilaterals, see [16]). A
parallelogram has bisecting diagonals, and any quadrilateral with bisecting
diagonals is a parallelogram. Hence bisecting diagonals is both a necessary
and sufficient condition, that is, it is a characterization of parallelograms,
whereas perpendicular diagonals is not a characterization of rhombi. We
can conclude that characterizations are the subset of properties that are
unique to a certain object, that is, those properties that distinguishes an
object from other objects. With objects we mean anything we can study in
mathematics, such as numbers, polynomials, circles, polygons, and so on.

We have written many papers on characterizations of different classes of
quadrilaterals (see [15, 16, 18, 21, 22, 23, 24, 25]), but never before considered
to write about squares. In fact, just a couple of months before starting this
paper, we knew of only about a dozen characterizations of squares, and at
the English Wikipedia page there are just seven listed at the time of writing
this paper. But when we started looking closer into squares we found out
that it is actually the second most distinguished quadrilateral when assessing
the number of published characterizations (taking this paper into account).
For number one, see [24].
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In this paper we shall study all 78 characterizations of squares that we
know of. A majority of these were found in various books and papers, but
a few are original as far as we know since we have been unable to track any
references for them. Many of the proofs are very elementary and require lit-
tle more than congruence, but about a third use heavier machinery. We will
study when rectangles, rhombi, parallelograms, isosceles trapezoids, kites,
cyclic quadrilaterals, tangential quadrilaterals, bicentric quadrilaterals, or-
thodiagonal quadrilaterals, and convex quadrilaterals are squares.

This collection can by no means be considered complete, since in our
experience, it has been quite easy to find new characterizations of squares
just by doing a web search or picking a class of quadrilaterals and start
thinking about what restrictions it shall have in order to be a square. The
main merit of this paper is to collect a very large number of characterizations
of squares in one place, and perhaps inspire further research on this topic.

In order to prove a characterization, we normally need to prove that
it is both a necessary and sufficient condition.1 But since a square is a
very well-known type of quadrilateral with well-known properties, we will
exclude proving most of the necessary parts and assume the reader is familiar
with the following basic properties of a square ABCD with sides a = AB,
b = BC, c = CD, d = DA, diagonal intersection P , area K, circumradius
R, inradius r, circumcenter O and incenter I:

• ∠A = ∠B = ∠C = ∠D = 90◦

• a = b = c = d

• AC⊥BD

• AC = BD

• AP = BP = CP = DP (equal diagonal parts)
• ∠CAB = ∠DBA = ∠DBC = ∠ACB = ∠DCA = ∠CDB =
∠BDA = ∠DAC

• it is cyclic
• it is tangential
• K = 2R2 = 4r2

• R =
√
2r

• O = I

Figure 1. General notations

1However when using inequalities, those conditions can often be proved at the same
time, as in the last section of this paper.
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These notations are illustrated in Figure 1 and used throughout this pa-
per. The seventh and eighth properties mean that a square has the capacity
of having a circumcircle and an incircle, that is, one circle passing through
all vertices and one that is internally tangent to all sides respectively. The
centers of these circles are the circumcenter and incenter, and their radii are
called circumradius and inradius respectively.

Another way to look at these properties is that squares are always lo-
cated at the bottom of all classifications of quadrilaterals, which means that
they inherit all properties (many of which are true by definition) of all other
quadrilaterals, and very few of the necessary conditions are therefore re-
quired to be proved if the higher classes are studied first. Anyway, if this is
unsatisfactory to the reader, we invite them to prove the necessary condi-
tions themselves. We claim it’s the sufficient conditions that are the most
interesting, since they are the ones to use when tasked to prove a certain
quadrilateral is a square.

Before we continue, it’s about time to clarify what we mean by a square,
in other words, how it is defined. There are several different ways to define a
square, and in fact, any one of the 78 characterizations would be a possible
definition, although some of them might seem less suitable. We shall use
the following definition: A square is a quadrilateral with 4 equal sides and 4
right angles. This is actually the definition given by Euclid, although he put
it slightly differently: a square is a quadrilateral that is both equilateral and
right-angled. We will also use the definitions that a rhombus is a quadrilat-
eral with 4 equal sides and a rectangle is a quadrilateral with 4 right angles.

2. Rectangles

In this section we study what additional properties a rectangle must have
in order to be a square. There are the following ten criteria. Many high
school text books use a variant of the first: they state that a square is a
rectangle with four equal sides [31, p. 59], but since that contains redundant
information, it is not included here. The ninth is a well-known maximization
property of rectangles that is seldom considered to be a characterization of
squares. We found the tenth condition in [2, p. 8].

The characterizations in this and the next four sections are so basic that
the majority of them have probably been known for a long time. Thus trying
to trace their original publication is an almost impossible task. It is however
difficult to locate any one source that have collected more than say ten of
these 40 characterizations.

A bimedian is a line segment connecting the midpoints of two opposite
sides in a quadrilateral.

Theorem 2.1. A rectangle is a square if and only if it satisfies any one of:

(a) it has two adjacent equal sides
(b) it has perpendicular diagonals
(c) it has diagonals that bisect the vertex angles
(d) it is tangential
(e) its angle bisectors are concurrent
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(f) it has equal bimedians
(g) the diagonals divide it into four congruent triangles
(h) the diagonal intersection is equidistant to the sides
(i) it has the largest area for a given perimeter
(j) it has the largest area of all rectangles inscribed in a given circle

Proof. (a) True by definition.
(b) Since the diagonals in a rectangle ABCD are equal and bisecting,

triangles ABP and BCP are congruent (SAS), where P is the diagonal
intersection (see Figure 2), so AB = BC. Thus it’s a square according (a).

(c) We have ∠PAB = ∠PBA = ∠PBC = ∠PCB, so ∠APB = ∠BPC,
and AP = BP = CP (see Figure 2). Then triangles ABP and BCP are
congruent (SAS). Hence AB = BC, so ABCD is a square by to (a).

Figure 2. Given assumptions in Theorem 2.1 (b) and (c)

(d) Since AB = CD and BC = DA in a rectangle and AB + CD =
BC + DA when it is tangential, we get AB = BC, so the rectangle is a
square according (a).

(e) Suppose the angle bisectors intersect at a point I and let E, F , G,
H be the projections of I on the sides AB, BC, CD, DA (see Figure 3).
Then the eight triangles AEI, BEI, BFI, CFI, CGI, DGI, DHI, AHI

are congruent (AAS), so any two adjacent sides in the rectangle are equal,
making it a square according to (a).

Figure 3. Given assumptions in Theorem 2.1 (e) and (h)

(f) The bimedians in a rectangle have the same lengths as two adjacent
sides. Hence this condition is equivalent to (a).

(g) This congruency directly yields that two adjacent sides are equal, so
the rectangle is a square by (a).

(h) If two adjacent sides in the rectangle have lengths x and y, then the
diagonal intersection is at a distance y

2 from side x and x
2 from side y (see
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Figure 3), so these distances are equal if and only if x = y. This makes it a
square according to (a).

(i) In a rectangle with given perimeter L, let two adjacent sides have
length x and L

2 − x. Then the area is

K = x

(

L

2
− x

)

= −
(

L

4
− x

)2

+

(

L

4

)2

≤
(

L

4

)2

with equality if and only if x = L
4 . Then two adjacent sides in the rectangle

are both equal to L
4 , making it a square.

(j) For a rectangle with sides x and y inscribed in a circle of radius R, we
get

(x

2

)2
+
(y

2

)2
= R2

by the Pythagorean theorem (see Figure 4). Then the area satisfies

K = xy =
√

x2y2 ≤ x2 + y2

2
= 2R2

according to the AM-GM inequality, where equality holds if and only if
x = y. In that case the rectangle is a square. �

Figure 4. A rectangle inscribed in a circle

3. Rhombi

Here we study what additional properties a rhombus must have in order
to be a square. We have seven different criteria. There is sometimes one
in use that has redundant information, stating that a square is a rhombus
with four equal vertex angles (see [31, p. 59]) when two is enough, so that
one is excluded. A rhombus has an incircle, and the distance from a vertex
to a point where the incircle is tangent to a side is called a tangent length.

Theorem 3.1. A rhombus is a square if and only if it satisfies any one of:

(a) it has a right vertex angle
(b) it has two adjacent equal vertex angles
(c) it has two adjacent equal diagonal parts
(d) it has equal diagonals
(e) it is cyclic
(f) two adjacent tangent lengths at different vertices are equal
(g) the diagonal intersection is equidistant to the vertices
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Proof. (a), (b) Since a rhombus is a special case of a parallelogram, any one
of these two assumptions directly yield that ∠A = ∠B = ∠C = ∠D = 90◦,
so the rhombus is a square.

(c), (d) With these assumptions, the rhombus is partitioned into four
congruent isosceles triangles by the diagonals, making it a square.

(e) Opposite vertex angles are equal in a rhombus and supplementary in
a cyclic quadrilateral. Together this make all four vertex angles right angles.
Then the rhombus is a square according to (a) or (b).

(f) If the incircle in a rhombus ABCD has center I and is tangent to
side AB at E, then the condition AE = BE implies that triangles AIE and
BIE are congruent (SAS), see Figure 5, so half the vertex angles at A and
B are equal, and since these vertex angles are supplementary, they are right
angles. Then the rhombus is a square by to (a).

(g) The diagonal intersection P coincide with the incenter I in a rhombus
(see Figure 5), so when AP = BP , triangles APE and BPE are congruent
(RHS). By the same argument as in (f), the rhombus is a square. �

Figure 5. A rhombus with its incircle

4. Parallelograms

In this section we study what additional properties a parallelogram must
have for it to be a square. We know of the following eight criteria. A variant
of the first characterization is to state that a square is a parallelogram with
four equal sides and four right angles [31, p. 59], but since that is just a
reformulation, it is excluded. To prove the last of these eight was given as
Problem 2.1.7 in [4, p. 70].

Theorem 4.1. A parallelogram is a square if and only if it satisfies any one
of:

(a) it is both a rhombus and a rectangle
(b) it has one right angle and two adjacent equal sides
(c) it has equal diagonals that bisect the vertex angles
(d) it has equal and perpendicular diagonals
(e) it has two adjacent equal diagonal parts and perpendicular diagonals
(f) it is cyclic and has perpendicular diagonals
(g) it is cyclic and tangential
(h) it has the largest area for a given perimeter

Proof. (a) True by definition.
(b) These assumptions force the parallelogram into being both a rectangle

and a rhombus, that is, a square.
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(c) Equal diagonals means it has right vertex angles (due to SSS congru-
ence), so it is a rectangle. Bisected vertex angles yield that a diagonal divide
it into two isosceles triangles, so adjacent sides are equal, and it must also
be a rhombus. Thus a square according to (a).

(d) Equal diagonals imply it’s a rectangle, and a rectangle with perpen-
dicular diagonals is a square according to Theorem 2.1 (b).

(e) A parallelogram with perpendicular diagonals is a rhombus, and with
two adjacent equal diagonal parts it’s a square by Theorem 3.1 (c).

(f) A cyclic parallelogram is a rectangle, and with perpendicular diagonals
it is a square.

(g) A parallelogram that is both cyclic and tangential is both a rectangle
and a rhombus, that is, a square according to (a).

(h) A parallelogram with sides a and b and angle B between them has
area

K = ab sinB ≤ ab ≤
(

a+ b

2

)2

=

(

L

4

)2

where L is the given perimeter and we applied the AM-GM inequality.
Equality holds if and only if ∠B = 90◦ and a = b, that is, only when
the parallelogram is both a rectangle and a rhombus. Thus a square. �

5. Isosceles trapezoids

Now we study what additional properties an isosceles trapezoid must
have in order to be a square. An isosceles trapezoid can be defined in
several different ways, for instance as a convex quadrilateral with two pairs
of adjacent equal angles [7, p. 30], or as a convex quadrilateral with two
consecutive pairs of equal diagonal segments [8, p. 73]. Two well-known
properties are that an isosceles trapezoid has a pair of opposite equal sides
and equal diagonals. We have the following eight characterizations. The
first four are taken from [9] and the last from [8].

Theorem 5.1. An isosceles trapezoid ABCD with diagonal intersection P

is a square if and only if it satisfies any one of:

(a) ∠A = ∠B, ∠C = ∠D, AB = CD and AC⊥BD

(b) ∠A = ∠B, ∠C = ∠D, AP = CP and AC⊥BD

(c) AP = BP , CP = DP , AB = CD and AC⊥BD

(d) AP = BP , CP = DP , ∠A = ∠C and AC⊥BD

(e) AP = BP , CP = DP , BC = CD and ∠A = ∠D

(f) ∠C = ∠D, BC = CD = DA and AC⊥BD

(g) ∠A = ∠B, ∠C = ∠D, BC = CD and AP = DP

(h) ∠A = ∠B, ∠C = ∠D and AB = BC = CD

Proof. (a) These conditions directly imply that we have a rectangle with
perpendicular diagonals, so a square (see Figure 6).

(b) In this isosceles trapezoid, AD = BC and DC ‖ AB (see Figure 6).
Now triangles APD and CPB are congruent (RHS), so ∠ADB = ∠CBD

and thus AD ‖ BC. Also, triangles DAB and CBA are congruent (SAS),
so BD = AC. Hence we have a parallelogram with equal and perpendicular
diagonals, that is, a square according to Theorem 4.1 (d).



20 Martin Josefsson

Figure 6. Given assumptions in Theorem 5.1 (a) and (b)

(c) Since it’s an isosceles trapezoid, AD = BC, and with AB = CD

given, we have a parallelogram (see Figure 7). The diagonals in an isosce-
les trapezoid are equal (implying a rectangle here) and since they are also
perpendicular, ABCD is a square.

(d) Triangles APD and BPC are congruent (SAS), so AD = BC, and
∠DAC = ∠DBC implies that ABCD is cyclic (see Figure 7). Then ∠A =
∠C = 90◦, so AB = CD since triangles ABD and CDB are congruent
(RHS). A cyclic parallelogram with perpendicular diagonals is a square ac-
cording to Theorem 4.1 (f).

Figure 7. Given assumptions in Theorem 5.1 (c) and (d)

(e) In this isosceles trapezoid, ∠A = ∠D implies that all four vertex
angles are right angles, so it is a rectangle (see Figure 8). Together with two
adjacent equal sides, we have a square.

Figure 8. Given assumptions in Theorem 5.1 (e) and (f)

(f) According to the isosceles triangle theorem, ∠CAD = ∠ACD =
∠BDC = ∠DBC, and since AC⊥BD, it holds that ∠ACD = ∠BDC = 45◦

(see Figure 8). Then ∠DBC = 45◦, so ∠BCD = 90◦ and it follows that



Great compilation of characterizations of squares 21

all four vertex angles are right angles. Hence we have a rectangle with two
adjacent equal sides, that is, a square according to Theorem 2.1 (a).

(g) The condition AP = DP together with the symmetry of an isosceles
trapezoid imply AP = DP = CP = BP so triangles ADP and CDP are
congruent (SSS), see Figure 9. Then AC⊥BD and according to (f), the
trapezoid is a square.

(h) The pairs of equal angles imply that AB and DC are parallel, and
since AB = CD, ABCD is a parallelogram (see Figure 9). But AB = BC

then means that the quadrilateral must be a rhombus, and since ∠A = ∠B,
it’s in fact a square. �

Figure 9. Given assumptions in Theorem 5.1 (g) and (h)

6. Kites

Here we study what additional properties a kite must have in order to be
a square. There are the following seven criteria. The last three are taken
from [8] where no proofs were given.

Theorem 6.1. A kite ABCD with AB = BC and CD = DA is a square
if and only if it satisfies any one of:

(a) it has equal and bisecting diagonals
(b) it has two opposite equal sides and a right vertex angle
(c) it has two opposite parallel sides and a right vertex angle
(d) ∠B = ∠D = 90◦

(e) ∠A = ∠B = ∠D

(f) ∠A = ∠B and ∠C = ∠D

(g) AP = DP and BP = CP

Proof. (a) With AC = BD and AP = BP = CP = DP , where P is
the diagonal intersection, triangles ABP , BCP , CDP , DAP are congruent
(SAS) since AC⊥BD in a kite (see Figure 10). Then the kite is a rhombus,
and since AC = BD, it is a square according to Theorem 3.1 (d).

(b) We immediately get that the kite is a rhombus with a right vertex
angle, that is, a square by Theorem 3.1 (a), see Figure 10.

(c) Diagonal BD divide the kite into two congruent isosceles triangles, so
it is a rhombus, and since one vertex angle is a right angle, it is a square
(see Figure 11).

(d) Since right triangles ABC and CDA have hypotenuse AC, from the
Pythagorean theorem we get

√
2AB =

√
2BC = AC =

√
2CD =

√
2DA
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Figure 10. Given assumptions in Theorem 6.1 (a) and (b)

so AB = BC = CD = DA (see Figure 11). Hence the kite is a rhombus,
and since it has a right vertex angle (in fact two), it’s a square.

Figure 11. Given assumptions in Theorem 6.1 (c) and (d)

(e) We have that triangles ABD and CBD are congruent (SSS), so ∠A =
∠C. Thus ∠A = ∠B = ∠C = ∠D (see Figure 12). Hence ABCD is a
rectangle, and since two adjacent sides are equal, it’s a square.

(f) These conditions mean that the kite is also an isosceles trapezoid
(see Figure 12). Since triangles ABD and CBD are congruent (SSS), then
∠A = ∠C, and in the same way as in (e) we have a rectangle (∠A = ∠B =
∠C = ∠D) that is a square (due to AB = BC).

Figure 12. Given assumptions in Theorem 6.1 (e), (f) and (g)

(g) In a kite, AC⊥BD, so

∠PAD = ∠PDA = ∠PCB = ∠PBC = 45◦

(see Figure 12). Since triangles BAD and BCD are congruent (SSS), we
have ∠CBP = ∠ABP = 45◦ and ∠CDP = ∠ADP = 45◦. Then ∠B =
∠D = 90◦, so the kite is a square according to (d). �
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7. Cyclic quadrilaterals

This far we have mostly studied really basic characterizations of squares.
Now we will have some more challenging results when we in the next three
sections turn the attention to quadrilaterals that can have a circumcircle,
an incircle, or both. To prove the first formula in the following theorem was
Problem 2 on the second paper in the year 2000 of the Irish Mathematical
Olympiad [10].

Theorem 7.1. A cyclic quadrilateral with sides a, b, c, d, area K and
circumradius R is a square if and only if it satisfies any one of:

(a) K = (abcd)3/4

R
√
2

(b) K = 2R2

(c) it has the largest area of all quadrilaterals inscribed in a given circle
(d) it has the largest area for a given perimeter

Proof. (a) Drawing diagonal p = AC and using a well-known triangle
formula (see Figure 13), we see that the area of a cyclic quadrilateral is

K =
pab

4R
+

pcd

4R
=

p(ab+ cd)

4R

and similarly using diagonal q = BD, we get

K =
q(ad+ bc)

4R
.

Multiplying these formulas and applying Ptolemy’s theorem pq = ac + bd

yields

(1) K2 =
pq(ab+ cd)(ad+ bc)

16R2
=

(ab+ cd)(ac+ bd)(ad+ bc)

16R2
.

This formula, when solving for R, is called Parameshava’s formula. The
derivation we used is cited from [3, p. 40].

Figure 13. Diagonal in cyclic quadrilateral

Next we apply the AM-GM inequaliy to get

K2 ≥ (2
√
abcd)3

16R2

which upon taking the square root simplifies to

K ≥ (abcd)3/4

R
√
2

.
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Equality holds if and only if ab = cd, ac = bd, and ad = bd, which yields
a = b = c = d by multiplying the equalities two by two and simplifying.
The only cyclic rhombus is the square according to Theorem 3.1 (e).

(b) The area of a convex quadrilateral is given by

(2) K = 1
2pq sin θ

where θ is the angle between the diagonals p and q (for a proof, see [13]).
Applying that in a cyclic quadrilateral p = 2R sinB and q = 2R sinA (see
Figure 14), we get

(3) K = 2R2 sinA sinB sin θ ≤ 2R2

with equality if and only if ∠A = ∠B = ∠θ = 90◦. This implies the cyclic
quadrilateral is a rectangle with perpendicular diagonals, that is, a square
by Theorem 2.1 (b).

Figure 14. p = 2R sinB

(c) When we have a quadrilateral inscribed in a given circle, it means the
radius R is constant. This condition is a direct consequence of the inequality
K ≤ 2R2, where there is equality if and only if the quadrilateral is a square.

(d) If we apply the AM-GM inequality to Brahmagupta’s formula, we get

K =
√

(s− a)(s− b)(s− c)(s− d)

≤
(

s− a+ s− b+ s− c+ s− d

4

)2

=

(

4s− 2s

4

)2

=

(

L

4

)2

where s is the semiperimeter and L = 2s is the given perimeter. Equality
holds if and only if

s− a = s− b = s− c = s− d

which is equivalent to a = b = c = d, so we have a cyclic rhombus, that is,
a square according to Theorem 3.1 (e). �

8. Tangential quadrilaterals

For a tangential quadrilateral, there is a similar formula as the one in
Theorem 7.1 (b). The first two characterizations in the following theorem
are closely related via the simple area formula K = rs, but instead of just
connecting them this way we will present different proofs for the readers
benefit. The inequality case of the second formula in this theorem is attrib-
uted to T. A. Ivanova in [28, p. 404] (given as a problem in 1975). The
proof we give of it is taken from [5].
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Theorem 8.1. A tangential quadrilateral with area K, inradius r and semi-
perimeter s is a square if and only if it satisfies any one of:

(a) K = 4r2

(b) s = 4r
(c) it has the smallest area of all quadrilaterals circumscribing a given

circle
(d) it has the largest area for a given perimeter

Proof. (a) If we connect the incenter to the vertices (see Figure 15), it is
easy to see that the area of a tangential quadrilateral is given by

K =
ar

2
+

br

2
+

cr

2
+

dr

2
=

a+ b+ c+ d

2
r (= sr).

Figure 15. The inradius

A double application of the AM-GM inequality yields

(4) a+ b+ c+ d ≥ 2
√
ab+ 2

√
cd ≥ 4

4
√
abcd

where equality holds if and only if a = b = c = d. Putting these results
together, we get

(5) K ≥ 2r
4
√
abcd.

Next we use the following formula for the area of a tangential quadrilateral
ABCD (a derivation can be found for instance in [3, pp. 56, 18–19])

(6) K =
√
abcd sin

A+ C

2
≤

√
abcd

were we have equality if and only if ∠A+∠C = 180◦, that is, only when the
quadrilateral is also cyclic. Now combining a squared version of (5) with
(6), we have

K2

4r2
≥

√
abcd ≥ K

which yields K ≥ 4r2, where equality holds if and only if the tangential
quadrilateral is a cyclic rhombus, that is, a square by Theorem 3.1 (e).

(b) We connect the incenter to the vertices and to the points where the
incircle of a tangential quadrilateral is tangent to the sides and label the eight
angles thus created at the incenter in pairs by α, β, γ, δ (see Figure 16).
Then α+ β + γ + δ = π. We directly get

s = r (tanα+ tanβ + tan γ + tan δ) .



26 Martin Josefsson

The tangent function is convex on the interval
(

0, π
2

)

. Applying Jensen’s
inequality yields

s ≥ 4r tan
α+ β + γ + δ

4
= 4r tan

π

4
= 4r

where equality holds if and only if α = β = γ = δ. In that case all eight
triangles where these four different angles are included are congruent (ASA),
so the tangential quadrilateral is a rhombus with equal vertex angles: a
square by Theorem 3.1 (b).

Figure 16. Angles at the incenter

(c) In a similar way as in Theorem 7.1 (c), here we have a circle with
a given radius r. This condition is a direct consequence of the inequality
K ≥ 4r2 with equality if and only if the quadrilateral is a square.

(d) If L is the perimeter, then using the formulas K = L
2 r and K ≥ 4r2,

we get

K ≥ 4

(

2K

L

)2

=
16K2

L2
⇒ K ≤ L2

16

with equality if and only if the quadrilateral is a square. �

9. Bicentric quadrilaterals

A bicentric quadrilateral is both cyclic and tangential. That the inequality
R ≥

√
2r holds in bicentric quadrilaterals was proved by I. Gerasimov and

O. A. Kotii in 1964 according to [6, p. 132]. The second characterization
in the following theorem was proved by M. Klamkin in 1967 according to
[3, pp. 51–52] and the third was proved as Theorem 6.2 in [1]. We have no
reference for the fourth formula, it was discovered while preparing to write
this paper.

Theorem 9.1. A bicentric quadrilateral with sides a, b, c, d, circumradius
R, inradius r, diagonals p and q, circumcenter O and incenter I is a square
if and only if it satisfies any one of:

(a) R =
√
2r

(b) 8pq = (a+ b+ c+ d)2

(c) O = I

(d) a
c +

c
a + b

d + d
b = 4

(e) it has the largest area for a given perimeter
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Proof. (a) Combining inequalities from the proofs of Theorems 7.1 (b) and
8.1 (a), we have for the area of a bicentric quadrilateral

4r2 ≤ K ≤ 2R2

where equality on either side hold if and only if the quadrilateral is a square.
A direct consequence is the inequality

2r2 ≤ R2

with equality only for a square. Now we just need to take the square root
of both sides.

(b) We use Ptolemy’s theorem, the AM-GM inequality, and that a+ c =
b+ d = s in tangential quadrilaterals to get

8pq = 2(4ac+ 4bd) ≤ 2
(

(a+ c)2 + (b+ d)2
)

= 2(2s2) = (a+ b+ c+ d)2

where equality hold if and only if a = c and b = d, so we have a parallelo-
gram, but since the quadrilateral is both cyclic and tangential, it is a square
according to Theorem 4.1 (g).

(c) Let the distances from the vertices to the points where the incircle is
tangent to the sides be e, f , g, h (the tangent lengths; there are eight of these
that are equal in pairs according to the two tangent theorem). Applying the
Pythagorean theorem four times in a bicentric quadrilateral where O = I

(see Figure 17), we get

e2 = R2 − r2 = f2 = g2 = h2

so e = f = g = h. Then a = b = c = d and the bicentric quadrilateral is a
rhombus, which is also a square according to Theorem 3.1 (e) or (f).

Figure 17. A bicentric quadrilateral where O = I

(d) The AM-GM inequality yields

(7)
(a

c
+

c

a

)

+

(

b

d
+

d

b

)

≥ 2

√

a

c
· c
a
+ 2

√

b

d
· d
b
= 4

with equality if and only if a
c = c

a and b
d = d

b , that is, a = c and b = d.
Again we have that a cyclic and tangential parallelogram is a square.

(e) The area of a bicentric quadrilateral is given by the quite well-known
formula

K =
√
abcd.

(For a proof, see [14, pp. 155–156].) Combining this with (4), we get

K =
(

4
√
abcd

)2
≤
(

a+ b+ c+ d

4

)2

=

(

L

4

)2
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where equality holds if and only if the quadrilateral is a square. �

We note that the second characterization could be formulated with the
semiperimeter s instead, in which case we have that a bicentric quadrilateral
is a square if and only if s2 = 2pq.

A circle tangent to one side of a quadrilateral and the extensions of the
adjacent two sides will be called an escribed circle, see Figure 18. (Note
that an excircle to a quadrilateral is tangent to the extensions of all four
sides, which can only happen in certain quadrilaterals, see [21], whereas all
quadrilaterals always have four escribed circles.)

Figure 18. The four escribed circles

In the proof of the next two characterizations of squares, for which we
have no references, we will need the following formula for the radius of an
escribed circle to a bicentric quadrilateral. The proof of the lemma is cited
from [29, pp. 100–102, 165].

Lemma 9.1. The escribed circle tangent to side a of a bicentric quadrilateral
with sides a, b, c, d and inradius r has radius

ra =
a

c
r.

Proof. With notations as in Figure 19, we have ∠FAE = π−∠A
2 . Then

x

ra
= cot

π −A

2
= tan

A

2

so side a = AB has length

a = x+ y = ra

(

tan
A

2
+ tan

B

2

)

.

In a cyclic quadrilateral ABCD with sides a = AB, b = BC, c = CD,
d = DA, area K and semiperimeter s, we get

ra =
a

tan A
2 + tan B

2

=
aK

K tan A
2 +K tan B

2

=
aK

(s− d)(s− a) + (s− a)(s− b)
=

aK

(s− a)(a+ c)
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Figure 19. The escribed circle radius ra

where we applied the half-angle formula

tan
A

2
=

√

(s− a)(s− d)

(s− b)(s− c)
,

(its derivation is left as an exercise for the reader, for a hint see [11, p. 25]),
a similar one for angle B, and Brahmagupta’s formula

K =
√

(s− a)(s− b)(s− c)(s− d).

To simplify the escribed radius formula, we use that in a tangential quadri-
lateral, s − a = c and K = rs which immediately yields the formula in the
lemma for a bicentric quadrilateral. �

Now we prove two characterizations about the four escribed radii.

Theorem 9.2. A bicentric quadrilateral with escribed circles of radii ra, rb,
rc, rd and inradius r is a square if and only if it satisfies any one of:

(a) ra + rb + rc + rd = 4r
(b) 1

ra
+ 1

rb
+ 1

rc
+ 1

rd
= 4

r

Proof. (a) Applying the lemma (and similar formulas for the other three
escribed radii) we get

ra + rc + rb + rd =

(

a

c
+

c

a
+

b

d
+

d

b

)

r ≥ 4r

where the last step follows from (7), according to which equality holds if
and only if the bicentric quadrilateral is a square.

(b) Analogously, we get

1

ra
+

1

rc
+

1

rb
+

1

rd
=

(

c

a
+

a

c
+

d

b
+

b

d

)

1

r
≥ 4

r

where equality holds if and only if the bicentric quadrilateral is a square. �
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10. Orthodiagonal quadrilaterals

In this section we study what additional properties a quadrilateral with
perpendicular diagonals must have in order to be a square. We know of
the following eight criteria. The first was stated in [12, p. 50] and also
formulated and proved in a different way in [19, p. 138]. Another way to
state it is that an orthodiagonal quadrilateral ABCD is a square if and
only if AP = BP = CP = DP where P is the diagonal intersection. The
other seven characterizations are taken from [9], which was chaired before
publication by our friend Mario Dalćın from Uruguay.

Theorem 10.1. An orthodiagonal quadrilateral ABCD with diagonal in-
tersection P is a square if and only if it satisfies any one of:

(a) it has equal and bisecting diagonals
(b) AB = BC = DA and ∠A = ∠B

(c) AB = BC = DA and AP = BP

(d) AB = DA and AP = BP = CP

(e) BC = DA and ∠A = ∠B = ∠C

(f) DA = AB and ∠A = ∠B = ∠C

(g) ∠A = ∠B and DP = AP = BP

(h) AB = CD and AP = BP = CP

Proof. (a) A quadrilateral with perpendicular, equal, and bisecting diago-
nals is divided by its diagonals into four congruent isosceles triangles (SAS),
see Figure 20, so it is a rhombus with four equal vertex angles, which means
a square.

(b) Triangles ADB and BAC are congruent (SAS), so (see Figure 20)

∠ADB = ∠ABD = ∠BAC = ∠BCA = 45◦

since ∠APB = 90◦. Then ∠A = ∠B = 90◦. We also have AC = BD

by the congruent triangles and AP = BP in isosceles triangle APB, so
DP = CP . Using that ∠DPC = 90◦, we get ∠CDP = ∠DCP = 45◦

and thus ∠C = ∠D = 90◦. Then ABCD is a rectangle with perpendicular
diagonals, that is, a square according to Theorem 2.1 (b).

Figure 20. Given assumptions in Theorem 10.1 (a) and (b)

(c) We directly get ∠BAP = ∠ABP = ∠ACB = ∠BDA = 45◦ from
isosceles triangles using that AC⊥BD (see Figure 21). Then ∠A = ∠B =
90◦ and since triangles ABD and BAC are congruent (SAS), the diagonals
are equal and bisect each other. Then triangles APD and CPD are con-
gruent (SAS), so AD = DC. Thus ABCD is a rhombus with a right vertex
angle, that is, a square by Theorem 3.1 (a).
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(d) Here we have ∠BAP = ∠ABP = ∠PCB = ∠CBP = 45◦, so trian-
gles ABP and BCP are congruent (ASA), see Figure 21. Then AB = BC

and by (c), ABCD is a square.

Figure 21. Given assumptions in Theorem 10.1 (c) and (d)

(e) Triangles ABD and ABC are congruent (SAS), so BD = AC and
∠ABD = ∠BAC (see Figure 22). Then AP = BP , so CP = DP , and thus
∠ACD = ∠BDC. We get

∠C = ∠ACB + ∠ACD = ∠ADB + ∠CDB = ∠D,

and thus ∠A = ∠B = ∠C = ∠D, so we have a rectangle with perpendicular
diagonals: a square.

(f) ∠ADB = ∠ABD, so triangles ADP and ABP are congruent (AAS),
implying DP = BP , so triangles DPC and BPC are congruent (SAS),
see Figure 22. Then DC = BC, so triangles ADC and ABC are congruent
(SSS). Hence ∠A = ∠B = ∠C = ∠D and ABCD is a square since AC⊥BD.

Figure 22. Given assumptions in Theorem 10.1 (e) and (f)

(g) We have ∠PAB = ∠PBA in isosceles triangle ABP , so triangles
ABD and BAC are congruent (ASA), see Figure 23. Then BD = AC,
implying AP = BP = CP = DP and ABCD is a square according to (a).

(h) Triangles ABP and DCP are congruent (RHS) and ∠PAB = ∠PBA,
so ∠DCP = ∠CDP = 45◦ (see Figure 23). Thus CP = DP , so AP = BP =
CP = DP and ABCD is a square. �

11. Convex quadrilaterals

Now we shall study what additional properties a general convex quadri-
lateral must have in order to be a square. We know of the following seven
criteria. The second was discussed in [31, p. 24]. The last five characteriza-
tions are taken from the recent paper [8], where no proofs were given.
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Figure 23. Given assumptions in Theorem 10.1 (g) and (h)

Theorem 11.1. A convex quadrilateral ABCD with diagonal intersection
P is a square if and only if it satisfies any one of:

(a) it has 4 equal sides and 4 right angles
(b) it has rotational symmetry of order 4
(c) AB = BC = CD and ∠A = ∠C = ∠D

(d) AB = BC = CD and AP = BP = CP

(e) AB = BC = CD and AP = CP = DP

(f) AB = DA and AP = BP = CP = DP

(g) BC = CD = DA, AP = DP and BP = CP

Proof. (a) This is the definition of a square that we have used.
(b) A rotational symmetry of order 4 means that if we rotate the quadri-

lateral 360◦

4 = 90◦ then it is congruent with its original position. Hence all
four angles are equal and the four sides have equal length, so it is a square.

(c) From ∠BAC = ∠BCA and ∠A = ∠C we get ∠DAC = ∠DCA, so
DA = DC and ABCD is a rhombus (see Figure 24). But ∠C = ∠D implies
it’s a square.

(d) Triangles ABP and CBP are congruent (SSS), so AC⊥BD (see Fig-
ure 24). Then triangles APD and CPD are also congruent (SAS), implying
that AD = CD and thus that ABCD is a rhombus. But ∠B = 45◦+45◦ =
90◦ due to right isosceles triangles ABP and CBP , so ABCD is a square.

Figure 24. Given assumptions in Theorem 11.1 (c) and (d)

(e) Triangles ABP and CBP are congruent (SSS), so AC⊥BD (see Fig-
ure 25). Then triangles ABP and DCP are also congruent (RHS), implying
that CP = BP . Then ABCD is a square by Theorem 10.1 (a).

(f) Triangles DAP and ABP are congruent (SSS), so AC⊥BD (see Fig-
ure 25). Then ABCD is a square according to Theorem 10.1 (a).

(g) Vertical angles ∠APB = ∠CPD, so triangles APB and DPC are
congruent (SAS), see Figure 25. Then all sides are equal, so ABCD is
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a rhombus, and since the diagonals have equal length, it is a square by
Theorem 3.1 (d). �

Figure 25. Given assumptions in Theorem 11.1 (e), (f) and (g)

12. Area

In this last section we study eight characterizations for when a convex
quadrilateral is a square that are different formulas for the area of the quadri-
lateral expressed in various ways, but mostly in terms of the four sides. The
first is attributed to Z. A. Skopec and V. A. Zarov (1962) in [6, p. 132].
The proof we give is cited from [30]. The second and third characterization
are proved as Corollary 15 in [19] and Theorem 2.2 in [20], but here we
will give a new proof of the second. The inequality case of the fourth was
given as an exercise in [2, p. 72]. We found the fifth and sixth in [3, pp.
202–203, 265–266]. The last two were proved in [26, pp. 48–51], which are
different formulations of the isoperimetric theorem for a quadrilateral. We
cite a much shorter proof from [3, p. 16].

Theorem 12.1. A convex quadrilateral with sides a, b, c, d, area K and
distances w, x, y, z from an interior point to the vertices, is a square if and
only if it satisfies any one of:

(a) K = 1
4

(

a2 + b2 + c2 + d2
)

(b) K = 1
2

(

a2 + c2
)

= 1
2

(

b2 + d2
)

(c) K = 1
8

(

(a+ c)2 + (b+ d)2
)

(d) K = 1
6(ab+ ac+ ad+ bc+ bd+ cd)

(e) K = 1
2

(

w2 + x2 + y2 + z2
)

(f) K = 1
2

3

√

(ab+ cd)(ac+ bd)(ad+ bc)

(g) K = 1
16(a+ b+ c+ d)2

(h) it has the largest area for a given perimeter

Proof. (a) The area of a convex quadrilateral ABCD satisfies (see Fig-
ure 26)

K =
ab sinB + cd sinD

2
≤ ab+ cd

2
≤

a2+b2

2 + c2+d2

2

2
=

a2 + b2 + c2 + d2

4
where equality holds if and only if ∠B = ∠D = 90◦, a = b and c = d. Then
the quadrilateral is a square according to Theorem 6.1 (d).

(b) In the same way as in (a), we get

K =
ad sinA+ bc sinC

2
≤ ad+ bc

2
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and adding this and the similar inequality from (a) yields

2K ≤ ab+ cd+ ad+ bc

2
.

This is factorized into

(8) K ≤ a+ c

2
· b+ d

2
≤
√

(

a2 + c2

2

)(

b2 + d2

2

)

where we to get the second inequality applied the AM-RMS inequality.
Equality holds if and only if ∠A = ∠B = ∠C = ∠D = 90◦, a = c and
b = d, that is, only when ABCD is a rectangle. (Five other proofs of the
second inequality in (8) were given in [17].) Next we use the well-known
characterization that the diagonals in a convex quadrilateral are perpendic-
ular if and only if a2 + c2 = b2 + d2 (for a proof, see [16]). Hence

K ≤ 1
2

(

a2 + c2
)

= 1
2

(

b2 + d2
)

where we have equality if and only if the rectangle has perpendicular diag-
onal, which happens only for a square according to Theorem 2.1 (b).

(c) With diagonals p and q and included angle θ, the area is given by

K =
pq

2
sin θ ≤ pq

2
≤ ac+ bd

2
≤ 1

2

(

(

a+ c

2

)2

+

(

b+ d

2

)2
)

according to (2), Ptolemy’s inequality and the AM-GM inequality. We have
equality if and only if the diagonals are perpendicular, the quadrilateral
is cyclic, a = c and b = d, that is, if and only if it is a rectangle with
perpendicular diagonals, which is a square.

(d) In (a), (b) and (c) we have proved

2K ≤ ab+ cd, 2K ≤ ad+ bc, 2K ≤ ac+ bd.

Adding these, we get

K ≤ 1
6(ab+ ac+ ad+ bc+ bd+ cd)

where equality holds if and only if ∠A = ∠B = ∠C = ∠D = 90◦, the
diagonals are perpendicular and the quadrilateral is cyclic. Hence it must
be a rectangle with perpendicular diagonals, that is, a square according to
Theorem 2.1 (b).

Figure 26. Applying the triangle inequality
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(e) The area satisfies (see Figure 26)

2K ≤ pq ≤ (w+y)(x+z) ≤ 4

√

w2 + y2

2

√

x2 + z2

2
≤ 4

2

(

w2 + y2

2
+

x2 + z2

2

)

where we applied the triangle inequality, the AM-RMS inequality and the
AM-GM inequality. We have equality if and only if the diagonals are per-
pendicular, the interior point in question is the diagonal intersection, w = y,
x = z and w2 + y2 = x2 + z2, where the latter three yields w = x = y = z.
Altogether this means that we have equality only for a square.

(f) We have

8K2 =
(ab+ cd)(ac+ bd)(ad+ bc)

2R2
≤ (ab+ cd)(ac+ bd)(ad+ bc)

K

according to (1) and (3), from which we get the inequality by rearranging
and taking the cube root. Equality holds if and only if the quadrilateral is a
square. This proof relies on the two quite well-known facts that there is al-
ways a cyclic quadrilateral with the same sides as a convex quadrilateral and
that the cyclic quadrilateral has the largest area of all convex quadrilaterals
with given sides. Proofs can be found in [3, pp. 33–34, 241].

(g) Applying the AM-GM inequality to the first inequality in (8) yields

(9) K ≤ 1

4
(a+ c)(b+ d) ≤ 1

4

(

a+ c+ b+ d

2

)2

=
(a+ b+ c+ d)2

16

where we have equality if and only if the quadrilateral is a rectangle (so
a = c and b = d) and a+ c = b+ d, that is, a square.

(h) Denoting the perimeter by L, we have from (9)

K ≤ (a+ b+ c+ d)2

16
=

L2

16
with equality if and only if the quadrilateral is a square, so the last criteria
is just an interpretation of that inequality. �

Note that the last characterization is a generalization of Theorems 2.1 (i),
4.1 (h), 7.1 (d), 8.1 (d) and 9.1 (e).

We conclude by giving a second proof of the inequality in (a), which we
have not found any reference for. It is based on three equalities: the area
formula (2), the simple algebra rule (p − q)2 = p2 + q2 − 2pq, and Euler’s
quadrilateral formula

a2 + b2 + c2 + d2 = p2 + q2 + 4v2

where v is the distance between the midpoints of diagonals p and q (derived
for instance in [3, pp. 9–10]). We get

K = 1
2pq sin θ = 1

4

(

p2 + q2 − (p− q)2
)

sin θ

and thus the area of a convex quadrilateral is

K = 1
4

(

a2 + b2 + c2 + d2 − 4v2 − (p− q)2
)

sin θ ≤ 1
4

(

a2 + b2 + c2 + d2
)

where we have equality if and only if v = 0, p = q and θ = 90◦, which is
a parallelogram with equal and perpendicular diagonals, that is, a square
according to Theorem 4.1 (d).
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