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N.A. COURT’S CENTROID LOCUS PROBLEM

YU CHEN AND R.J. FISHER

Abstract. Let C be a circle with center O and radius r . Let K 6= O be a
point lying inside C . The paper studies the locus of triangles inscribed in C having
K as symmedian point. This locus is referred to as the (C,K)-locus . In his book
College Geometry [2], N. A. Court includes the problem/conjecture that the locus of
centroids of the triangles in the (C,K)-locus is a circle. The paper proves this fact
in three steps using the canonical vector space V of geometric vectors associated to
the plane E .

Step one proves the following: Given A ∈ C , assume that the dot product (2
−−→
OK−

−→
OA) ·

−−→
AK 6= 0 . Let D be the point defined by the vector equation

−−→
AD = 3

−→
AO·
−−→
AK

(2
−−→
OK−

−→
OA)·

−−→
AK

−−→
AK.

Let BC be the polar of D . Then 4ABC is the unique triangle (C,K)-locus that
has A as a vertex. See Theorems 2.4 and 2.7. Next, Lemma 2.2 addresses the case

(2
−−→
OK −

−→
OA) ·

−−→
AK = 0 proving that the triangle in the (C,K)-locus having A as a

vertex is a right triangle where ∠A = 90 and K is the midpoint of the altitude at
vertex A .

Step two is the following theorem: Let Og be the point defined by the vector
equation

−−→
OOg =

2r2

4r2 − k2
−−→
OK

where k = OK , the distance from O to K . Then the centroid G of a triangle in the

(C,K)-locus lies on the circle Cg with center Og and radius r2k
4r2−k2 . See Theorem

3.1.

Step three solves the inverse problem in section §4 . Specifically, given a point
G ∈ Cg , the inverse problem is a method for finding the triangle in the (C,K)-locus
having G as its centroid. The method depends on the roots of a cubic polynomial
determined by G . Let g = OG . Then this polynomial has the form X3 + pX + q
where

p = −3k2

r2
, q =

2[(4r2 − 3k2)g2 − r2k2]
r2(r2 − g2)

.
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The polynomial is shown to have three real roots, with multiplicity counted, that
explicitly determine the triangle in the (C,K)-locus having centroid G .

1. Introduction

In his celebrated textbook College Geometry [2], N. A. Court includes the following
problem:

Exercise 1.1. A variable triangle has a fixed circumcircle and a fixed symmedian
point. Show that the locus of the centroid is a circle.

See problem 6 on page 292 of [2]. The problem though simple to state is not so
simple to solve. Court’s book includes many problems of this sort that in Court’s
words may appeal primarily to those who have an enduring interest, either professional
or avocational, in the subject of modern geometry. Based upon our proposed solution
to Exercise 1.1, it is our opinion that Court regarded the exercise as a conjecture
based upon his intuition.

To formulate Exercise 1.1 more precisely, fix a circle C with center O , radius r ,
and a point K 6= O lying inside C . We refer to the locus of triangles inscribed in C
having K as symmedian point as the (C,K)-locus . In an involved proof using the
transversality of a harmonic pencil, Court proves that for each point A ∈ C , there is
a unique triangle (C,K)-locus having the point A as a vertex. We call this result
Court’s Uniqueness Theorem. See Theorem 2.7 in section §2.3 and also item 623,
page 266 of [2].

Given the variable nature of the (C,K)-locus , we use the canonical vector space
V of geometric vectors associated to the plane E to first describe the locus and then
prove Exercise 1.1 in sections §3 and §4 .

For organizational purposes, the vector calculations, which are used multiple times
in the paper to study (C,K)-locus , are outlined in section §2 .

Section §2 begins with a review of some known facts about the symmedians of
a triangle. Theorem 2.4 in section §2.2 relates the concepts of vector projection to
harmonic division; see Chapter 7 of [2]. Together Theorems 2.4 and 2.6 provide an
alternate proof of the Court Uniqueness Theorem; see Theorem 2.7 in §2.3 .

In section §3 the forward direction of Exercise 1.1 is given. Specifically Theorem

3.1 shows that there is a circle Cg , called the centroid circle, having radius rk2

4r2−k2
where k = OK , with the property that the centroid of a triangle in the (C,K)-locus
lies on the circle Cg .

In section §4 , the backward direction of Exercise 1.1, referred to as the inverse
construction, is proved. Specifically, given a point G from the centroid circle, the
inverse construction is a method for finding a triangle in the (C,K)-locus having G
as its centroid. The method depends on the roots of a cubic polynomial determined
by G . This polynomial (4.7) is shown to have three real roots with multiplicity
counted; see Lemmas 4.1 and 4.3.
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2. A Vector Method for Constructing a Triangle with a Fixed
Symmedian Point

Canonically associated to the plane E is its vector space V of geometric vectors.
By definition the elements of V are equivalence classes of directed line segments,
which roughly are defined as follows: given four points A,B,C,D ∈ E no three of
which are collinear, the directed line segments [A,B] ∼ [C,D] iff the quadrilateral
�ABDC is a parallelogram. Special care has to be given to the case when A,B,C,

and D are collinear. We ignore this. To establish notation, the vector
−−→
AB is taken

to mean the equivalence class represented by the directed line segment [A,B] .

It is well known that V has a canonical vector addition, a canonical scalar mul-

tiplication, a dot product, and has dimension two. Note that
−−→
AB ·

−−→
CD will denote

the dot product of the two vectors. Following [5], let
−−→
AB and

−→
AC be vectors in V .

Then

BC2 =
−−→
BC ·

−−→
BC

= (
−→
AC −

−−→
AB) · (

−→
AC −

−−→
AB)

=
−→
AC ·

−→
AC − 2

−−→
AB ·

−→
AC +

−−→
AB ·

−−→
AB

= AC2 − 2
−−→
AB ·

−→
AC +AB2.

Hence
−−→
AB ·

−→
AC =

AB2 +AC2 −BC2

2
. (2.1)

This form of the dot product is a generalization of the Law of Cosines and will be
used freely through out the paper. Also used throughout is the well known concept

of vector projection. Specifically, the projection of the vector
−→
AC parallel to

−−→
AB is

Proj−→
AB

(
−→
AC) =

−→
AC·
−→
AB

AB2

−−→
AB.

Finally, for us the “vector method” is the use of the vector space V to study the
problems to follow. In particular, the use of a variable basis, i.e. moving frame, for
V is both natural and efficient in discussing the problems of the paper.

2.1. Harmonic Division Characterization of the Symmedian Point. This sec-
tion presents a known description of the symmedian point of a triangle in terms of
harmonic division (equivalently inversion in a circle). The description, uses the ba-
sic midpoint property of the symmedians of a triangle together with the midpoint
characterization of a harmonic pencil; see Theorem 351 and 352, page 169 of [2].

Theorem 2.1. (Midpoint Property of a Harmonic Range) Let A,S,K, and
D be four collinear points situated as in the figure. Let B be a point not lying on the
line (ASKD) . Let lK be the line through K that is parallel to BD . Let U and V
be the points where lK intersects lBA and lBS , resp. Then K is the midpoint of U
and V iff K and D harmonically divide AS in the direction from A to S , that
is, K and D are inverse in the circle C(AS) .
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Proof. Since 4AUK ∼ 4ABD and 4SKV ∼ 4SDB, we get

AK

AD
=
UK

BD
and

SK

SD
=
V K

BD
.

Then

(ASKD) is a harmonic range ⇐⇒ AK

SK
=
AD

SD

⇐⇒ AK

AD
=
SK

SD

⇐⇒ UK

BD
=
V K

BD
⇐⇒ UK = V K

⇐⇒ K is the midpoint of UV .

Hence K and D harmonically divide AS in the A-direction . �

Remark 2.1. Theorem 2.1 can be stated in a more general way. For example, take
the line l through A that is parallel to lBD . Let U and V be the two points
where l meets the lines lBK and lBS . Then the same argument used in the proof of
Theorem 2.1 shows that (ASKD) is a harmonic range iff U is the midpoint of A
and V . The narrower statement of Theorem 2.1 is for convenience.

Remark 2.2. (Basic Midpoint Property of the Symmedians of a Triangle)
To keep the discussion self-contained, the symmetric median (i.e. symmedian) of a
triangle 4ABC at a given vertex, say A , is the reflection of the median at A across
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the angle bisector at A . The three symmedians intersect. The common point K is
called the symmedian point of 4ABC .

A chord of a triangle 4ABC at a vertex, say B , is a line segment obtained by
intersecting a line not passing through B with the lines lBA and lBC . In terms
of chords, the median mB at vertex B is characterized as the point B along with
those points P such that P is the midpoint of the unique chord through P that is
parallel to lAC . Next, let lB be the unique line through B that is parallel to lAC .
The reflection of lB across the angle bisector at vertex B is the tangent line lBB to
the circumcircle C of 4ABC at B . On the other hand, the symmedian at B is
the reflection smB of the median mB across the angle bisector of ∠B . Hence, since
a reflection preserves midpoints and parallel lines, the symmedian smB consists of
the point B and all points P ′ where P ′ is the midpoint of the unique chord that
is parallel to the tangent line lBB . This “basic midpoint” characterization of smB

along with several other characterizations are nicely discussed in [3].

The following well known fact is an immediate consequence of the basic midpoint
characterization. There are other proofs of this lemma. See page 58 of [6] and
Theorem 348 on page 216 of [7].

Lemma 2.1. Let 4ABC be a right triangle with ∠A = 90 . Let Ah be the foot of
the altitude at vertex A . Then the symmedian point of 4ABC is the midpoint of A
and Ah .

Proof. Since BC is a diameter of the circumcircle C of 4ABC , the altitude AAh
is a chord at vertices B and C that is parallel to the tangent lines lBB and lCC .
Hence the midpoint of AAh lies on the symmedians at vertices B and C by the
basic midpoint characterization of a symmedian. �

Theorem 2.1 together with the basic-midpoint characterization of a symmedian
leads to an interesting characterization of the symmedian point of a triangle. We use
this theorem in an essential way in the proof Theorem 2.4 just ahead.

Theorem 2.2. Let 4ABC be a triangle with circumcircle C and symmedian point
K . Suppose that ∠A 6= 90 . Let D be the point where the tangent lines to C at
B and C intersect. Let S be the point where the line lAD (i.e. the symmedian at
vertex A ) intersects BC . Then K is the inverse of D in the circle C(AS) .

Proof. Suppose that L is the inverse of D in the circle C(AS) , that is, (ASLD) is
a harmonic range. As in Theorem 2.1, let lL be the line through L that is parallel
to BD . Let U and V be the two points where lL intersects lBA and lBS = lBC .
Then L is the midpoint of the chord UV of 4ABC at vertex B . So, since lBD is
the tangent line to C at B , the chord UV is parallel to the tangent line at vertex
B by construction. Hence the point L lies on the symmedian at vertex B by the
basic midpoint characterization of a symmedian. On the other hand, L also lies on
the symmedian at vertex A by construction. Therefore, L = K . �
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Theorem 2.2 and Theorem 2.1(in its general form; see Remark 2.1) lead to a sec-
ond midpoint characterization of the symmedian point in terms of the altitudes of a
triangle. See Theorem 586, page 256 of [2] and Theorem 2.3 just below. This theorem
is used in an essential way in the proof of Theorem 2.6 in §2.3 . A different proof of
Theorem 2.3 than the one given below can be found on page 66 of [6].

Theorem 2.3. Given a triangle 4ABC , let Ah be the foot of the altitude at A ; let
Mh be the midpoint of A and Ah . Next, let M be the midpoint of BC . Assume
∠A 6= 90 . Then the intersection of the symmedian at vertex A and the segment
MMh is the symmedian point K of the triangle.

Proof. In the notation of Theorem 2.2, consider the harmonic range (ASKD) . Con-
sider the line lMD . The line through A that is parallel to lMD is the altitude at
vertex A . Next by Theorem 2.1, the midpoint Mh of A and Ah is the intersection
of lMK and the altitude at A . Hence K is the point where the segment MMh

intersects the symmedian point K . �

2.2. Harmonic Division and the Vector Method.

Theorem 2.4. Let C be a circle with center O and radius r . Fix a point K 6= O
lying inside C . Let O′ denote the rotation of O about K by 180 . Let C(OK) 1

and C(O′K) be the circles with diameters OK and O′K , resp.

For each A ∈ C, A /∈ C(O′K) , let R ∈ C(OK) and Q ∈ C(O′K) be the second
points where the line lAK intersects the circles C(OK) and C(O′K) , resp.

Let AA′ be the unique chord of C through K having A as an endpoint. Let R′

be the rotation of R about A′ by 180 .

Choose any line l through A . Choose any line m through Q that is not parallel
to l . Let m′ be the parallel to m through R′ . Let Q′ and R′′ be the points where
the lines m and m′ meet l , resp. Let n be the parallel to l

KQ′ through R′′ . Let

D be the point where n meets lAK . Then A is either the external or internal point
that harmonically divides KD in the K-direction in the “signed” ratio

δ =
3
−→
AO ·

−−→
AK

(2
−−→
OK −

−→
OA) ·

−−→
AK

. (2.2)

Geometrically, up to sign,

δ =
DA

AK
= 3

AR

AQ
. (2.3)

Also the point D lies outside the circle C and is given by the vector equation
−−→
AD = 3

−→
AO·
−−→
AK

(2
−−→
OK−

−→
OA)·

−−→
AK

−−→
AK. (2.4)

Let BC be the polar of D , i.e. the chord through the inverse M of D that is
perpendicular to the line lOD . Then the harmonic conjugate of A in KD is the point
S where the line lAD intersects BC . Consequently, the point K is the symmedian
point of 4ABC .

1The circle C(OK) is commonly referred to as the First LeMoine circle. See [2], page 258.
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Proof. Suppose first that AK > A′K , i.e. (2.2) is positive. When AK < A′K ,
(2.2) < 0, the proof is analogous. As the figures illustrates, we have the triangle

similarities 4AQQ′ ∼ 4AR′R′′ and 4AKQ′ ∼ 4ADR′′ . Hence AR′

AQ = AR′′

AQ′ = AD
AK .

Let δ denote the common ratio. Since OR ⊥ AA′ , R is the midpoint of AA′ so
that AR′ = 3AR . Hence, δ = 3ARAQ .

Regardless of whether AK > A′K or AK < A′K , the point Q lies between A
and R′ . Indeed, in terms of signed distances |KR| < AR so that

AQ = AR+ 2KR < 3AR = AR′.

Hence δ > 1 . Consequently, A is on the side of K opposite to D . Hence, A is the
external point that harmonically divides KD in the K-direction in the ratio δ .

To argue that D lies outside the circle C , it suffices to show that AD > AA′ .
First note that K is the midpoint of Q and R . Next, assuming AK > A′K ,

AD −AA′ = δAK − 2AR

=
3(AR)(AK)− 2(AR)(AQ)

AQ

=
3(AR)(AK)− 2(AR)(AK +KR)

AQ

=
(AR)(AK − 2KR)

AQ

=
(AR)(AR−KR)

AQ

> 0.

If AK < A′K , a similar argument shows that D lies outside C .
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To prove (2.4), observe that
−−→
OO′ = 2

−−→
OK ,

−→
AR = Proj−−→

AK
(
−→
AO) =

−→
AO·
−−→
AK

AK2

−−→
AK,

−→
AQ = Proj−−→

AK
(
−−→
AO′) = (2

−−→
OK−

−→
OA)·

−−→
AK

AK2

−−→
AK.

(2.5)

Then (2.4) follows immediately.

To prove S ∈ BC , first observe that
−−→
OM = r2

OD2

−−→
OD since M and D are inverse

in the circle C . Then

S ∈ lBC ⇐⇒ Proj−−→
OD

(
−→
OS) =

−−→
OM

⇐⇒
−→
OS ·

−−→
OD = r2.

Next, we express the vectors
−−→
OD and

−→
OS in terms of

−−→
OK and

−→
OA . In fact, we

will show that for all A /∈ C(KO′) ,

−−→
OD = δ

−−→
OK + (1− δ)

−→
OA

−→
OS = 2δ

δ+1

−−→
OK + (1− δ)

−→
OA.

(2.6)

The equation
−−→
AD = δ

−−→
AK implies

−−→
OD = δ

−−→
OK + (1− δ)

−→
OA.

Let k = OK and µ =
−→
OA ·

−−→
OK . From the formulas (2.5) for

−→
AR and

−→
AQ just

above,

δ =
3(r2 − µ)

2k2 − 3µ+ r2
, 1− δ =

2(k2 − r2)
2k2 − 3µ+ r2

.

Since A and S harmonically divide KD in the ratio δ , K and D harmonically
divide A and S in the ratio

ε =
δ + 1

δ − 1
=
k2 − 3µ+ 2r2

r2 − k2
.

In particular,
−−→
AK = ε

−−→
KS so that

−→
OS = 1+ε

ε

−−→
OK − 1

ε

−→
OA

= 2δ
δ+1

−−→
OK + (1− δ)

−→
OA.

To show that dot product
−→
OS ·

−−→
OD = r2 , observe as follows:

−→
OS ·

−−→
OD = 1

δ+1

(
2δ
−−→
OK + (1− δ)

−→
OA

)
·
(
δ
−−→
OK + (1− δ)

−→
OA

)
= 1

δ+1

[
2δ2k2 + 3δ(1− δ)µ+ (δ − 1)2r2

]
.



N.A. COURT’S CENTROID LOCUS PROBLEM 97

Next,

2δ2k2 + 3δ(1− δ)µ+ (δ − 1)2r2

= δ2(2k2 − 3µ+ r2) + δ(3µ− 2r2) + r2

=
9(r2 − µ)2 + 3(r2 − µ)(3µ− 2r2) + r2(2k2 − 3µ+ r2)

2k2 − 3µ+ r2
.

Hence

(2k2 − 3µ+ r2)(δ + 1)
−→
OS ·

−−→
OD

= 9(r2 − µ)2 + 3(r2 − µ)(3µ− 2r2)

+ r2(2k2 − 3µ+ r2)

= 3(r2 − µ)r2 + r2(2k2 − 3µ+ r2)

= r2(2k2 − 6µ+ 4r2).

On the other hand,

δ + 1 =
2k2 − 6µ+ 4r2

2k2 − 3µ+ r2

so that
(2k2 − 3µ+ r2)(δ + 1) = 2k2 − 6µ+ 4r2.

Hence
−→
OS ·

−−→
OD = r2.

By construction the point K lies on the symmedian of 4ABC at vertex A . So
to argue that K is the symmedian point of 4ABC , we need to argue that K also
lies on either the symmedian at vertex B or C . However, this is an immediate
consequence of Theorem 2.2 since B(ASKD) is a harmonic pencil. �

Remark 2.3. Let IJ be the unique chord of C where K is the midpoint. When
A = I or J , Theorem 2.4 holds. Indeed, suppose A = I . Then K = Q = R .

The point D is defined by the vector equation
−→
ID = 3

−→
IK . In turn, the harmonic

cojungate of I in KD is the midpoint S of K and J . Next, S and D are inverse
in the circle C(IJ) so that the point S lies on the polar BC of D in the circle
C . Hence the hypothesis of Theorem 2.2 holds so that K is the symmedian point of
4IBC . See the figure.

Remark 2.4. (1) For each A ∈ C , the angle ∠OAK is acute so that the dot

product
−→
AO ·

−−→
AK > 0 .

(2) Let k = OK . If r/2 < k, then the point O′ lies outside C . Also the
two circles C and C(O′K) intersect at two points, say A1 and A2 . Label

the intersection points so that the arc
_

A1A2⊂ C lies inside C(O′K) . Then

∠KAO′ is obtuse for all A ∈
_

A1A2, A 6= A1, A2 . Hence the dot product

(2
−−→
OK −

−→
OA) ·

−−→
AK < 0 .

(3) When A = A1, A2 , ∠KAO′ = 90 so that (2
−−→
OK −

−→
OA) ·

−−→
AK = 0. The

triangle 4ABC can be constructed in this case though δ is not given by
(2.2). See Lemma 2.2 just ahead.
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Lemma 2.2. Let C be a circle with center O and radius r . Let K be a point inside
C . Let O′ be the rotation of O about K by 180 ; let C(O′K) denote the circle with
diameter O′K . Let k = OK . Assume k > r/2 . Then C(O′K) and C intersect at
two points.

Let 4ABC be a triangle inscribed in C with symmedian point K . Then 4ABC
is a right triangle iff one of the vertices of 4ABC lies in the intersection C(O′K)∩C .

Proof. Since 2k < 2r , the two circles C(O′K) and C intersect at two points.

Up to relabelling, we can assume that ∠A = 90 .

Let ρ denote rotation by 180 about K . Then O′ = ρ(O) . Consequently, for each
A ∈ C, the line ρ(l

AO′ ) is an extended diameter of C . Let BC be the diameter so
determined. Then 4ABC is a right triangle inscribed in C with ∠A = 90 . Next,
let Ah = ρ(A) . Since ρ preserves angles,

∠KAhO = ∠KAO′.

Suppose now that A ∈ C(KO′) . Then 90 = ∠KAO′ = ∠KAhO so that since
lBC = lOAh

, AAh is the altitude at vertex A of 4ABC with K as its midpoint.

By Lemma 2.1, K is the symmedian point of 4ABC .
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Conversely, if the right triangle 4ABC has K as its symmedian point, then

90 = ∠KAhO = ∠KAO′

so that A ∈ C(KO′) . �

Remark 2.5. When k = r/2 , Lemma 2.2 is also true. In this case, C(O′K) ∩ C =
{O′} . If A = O′ , the line l

AO′ is replaced by the tangent line lAA to C at O′ .
Then ρ(lAA) is the extended diameter lBC parallel to lAA . The altitude at vertex
A is AO with midpoint K .

Show Intersections

D

K'

V

Q

O'

R

O
K

A
Q'

Figure 4

Corollary 2.1. In the notation of Theorem 2.4, the point D can also be constructed
as follows:

• Choose any line l through A and any line m through Q that is not parallel
to l . Let Q′ be the point where l and m meet.
• Let the point V be defined by lRV ‖ m with V ∈ l .
• Let K ′ be defined by l

KQ′ ‖ lK′V with K ′ ∈ lAK .

Then D is the dilation of K ′ through A by a factor of 3 .

Proof. As illustrated in the figure, 4AQQ′ ∼ 4ARV and 4AKQ′ ∼ 4AK ′V .
Hence

AK ′

AK
=
AV

AQ′
=
AR

AQ
.

Moreoever, the point K ′ lies on the ray
−−→
AK . Hence D is the dilation of K ′ through

A by a factor of 3 by Theorem 2.4. �
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Remark 2.6. Let A1A2 be the diameter of C that contains the point K . Then it
can be argued routinely that the triangles 4AiBiCi in the (C,K)-locus are isosceles.
Indeed, the triangles are symmetric across the line lOK . Hence the two centroids Gi
also lie on lOK . Assuming that A1K > A2K, the two centroids lie between O and
K such that if k = OK , then

OG1 =
rk

2r + k
< OG2 =

rk

2r − k
.

2.3. The Symmedian Point in Vector Form/Court Uniqueness Theorem.
In this section, we prove some known results about the symmedian point of a triangle
using the vector method.

Let C be a circle and K a point lying inside C . In [2], Court proves that for
each point A ∈ C , there is a unique triangle 4ABC inscribed in C having K as
its symmedian point. See 623, page 266 of [2]. As indicated in the introduction,
we refer to this locus of triangles as the (C,K)-locus . Continuing, Court’s proof of
the existence and uniqueness uses the duality of poles and polars, the transversality
property of a harmonic pencil, and the Apollonian circles of a triangle. The three
concepts are discussed in detail in [2]. Using Theorem 2.4 and Theorem 2.6, the Court
Uniqueness Theorem is an immediate consequence; see Theorem 2.7.

The following theorem gives a natural vector description of the symmedian point.

Theorem 2.5. Let O be the circumcenter of a triangle 4ABC . Let a = BC, b =
CA, and c = AB . The symmedian point K of 4ABC is given by the vector
equation

−−→
OK =

a2

a2 + b2 + c2
−→
OA+

b2

a2 + b2 + c2
−−→
OB +

c2

a2 + b2 + c2
−−→
OC. (2.7)

Proof. Theorem 2.5 can be proved in the general context of isogonal points of a
triangle. Our proof is for K only. Additionally, Theorem 2.5 is similar in spirit to
the trilinear coordinates of the symmedian point of a triangle; see [8]. In particular,
if ∆ = Area(4ABC) , then the trilinear coordinates of K are

ka =
2a∆

a2 + b2 + c2
, kb =

2b∆

a2 + b2 + c2
, kc =

2c∆

a2 + b2 + c2
.

Let Sa be the point of intersection of lAK and lBC . Let Ka be the foot of the
perpendicular through K to the line lBC . Let Ha be the foot of the altitude at

vertex A . Since CSa
BSa

= b2

c2
(see [2], Theorem 561, page 248),

−−→
BC =

(
1 +

CSa
BSa

)
−−→
BSa

=
b2 + c2

c2
−−→
BSa.
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Hence,

−−→
ASa =

−−→
AB +

−−→
BSa

=
−−→
AB +

c2

b2 + c2
−−→
BC

=
b2

b2 + c2
−−→
AB +

c2

b2 + c2
−→
AC.

Next,

KKa =
2a∆

a2 + b2 + c2
;

see Corollary 343, page 214 of [7]. Of course, AHa = 2∆/a . Hence, since 4KKaSa ∼
4AHaSa ,

KSa
ASa

=
KKa

AHa
=

a2

a2 + b2 + c2
.

In turn, AK = ASa −KSa so that

AK

ASa
=

b2 + c2

a2 + b2 + c2
.
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Finally,

−−→
AK = b2+c2

a2+b2+c2
−−→
ASa

= b2

a2+b2+c2
−−→
AB + c2

a2+b2+c2
−→
AC

= b2

a2+b2+c2
(
−−→
OB −

−→
OA) + c2

a2+b2+c2
(
−−→
OC −

−→
OA).

Using
−−→
AK =

−−→
OK −

−→
OA , the above equation is rewritten in the intended form (2.7).

�

Theorem 2.6. Let 4ABC be a triangle inscribed in a circle C of radius r centered
at O . Let K be the symmedian point of 4ABC .

(1) If ∠A = 90 , then (2
−−→
OK −

−→
OA) ·

−−→
AK = 0 .

(2) If ∠A 6= 90 , let M be the midpoint of BC and D be the inverse point of
M with respect to the circle C . Then

−−→
AD =

3(
−→
AO ·

−−→
AK)

(2
−−→
OK −

−→
OA) ·

−−→
AK

−−→
AK;

in particular, we have (2
−−→
OK −

−→
OA) ·

−−→
AK 6= 0 .

Proof. For notational convenience in the proof to follow, let a = BC, b = CA, and
c = AB . Next, let k = OK and d = OD . Finally, since the line lAD is the

symmedian of 4ABC at vertex A , see Theorem 560, page 248 of [2],
−−→
AK = δ

−−→
AD

for some δ ∈ R .

First suppose 4ABC is a right triangle with ∠A = 90 . Let AAh be the altitude
of 4ABC at the vertex A , where Ah lies on lBC . As observed earlier, K is the
midpoint of AAh ; see Lemma 2.1. On the other hand, since BC is a diameter of the

circle C and K lies on the altitude at A , we have
−−→
OB ·

−−→
AK = 0 and

−−→
OC ·

−−→
AK = 0 .

Next, a2 = b2 + c2 so that by Theorem 2.5,

−−→
OK =

a2

a2 + b2 + c2
−→
OA+

b2

a2 + b2 + c2
−−→
OB +

c2

a2 + b2 + c2
−−→
OC

=
1

2

−→
OA+

b2

2a2
−−→
OB +

c2

2a2
−−→
OC.

Hence,

2
−−→
OK −

−→
OA =

b2

a2
−−→
OB +

c2

a2
−−→
OC

so that (2
−−→
OK −

−→
OA) ·

−−→
AK = 0 .

The proof of statement (2) is broken into two cases.

Case 1: Assume the points A , O , and K are noncollinear. Let µ =
−→
OA ·

−−→
OK .

Let AAh be the altitude of 4ABC at the vertex A , where Ah lies on the line lBC .
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Let Mh be the midpoint of AAh . The point K is the intersection point of the lines
lMMh

and lAD . See Theorem 2.3. Next,

−−→
OD =

−→
OA+ δ

−−→
AK =

−→
OA+ δ(

−−→
OK −

−→
OA) = (1− δ)

−→
OA+ δ

−−→
OK

−−→
AM =

−−→
OM −

−→
OA =

r2

d2
−−→
OD −

−→
OA

so that
−−→
AM ·

−−→
OD = (

−−→
OM −

−→
OA) ·

−−→
OD

=
−−→
OM ·

−−→
OD −

−→
OA · [(1− δ)

−→
OA+ δ

−−→
OK]

= r2 − [(1− δ)r2 + δµ]

= δ(r2 − µ).

Additionally,

−−−→
AMh = 1

2Proj−−→
OD

(
−−→
AM) =

−−→
AM ·

−−→
OD

2d2
−−→
OD =

δ(r2 − µ)

2d2
−−→
OD.

Since K is the intersection point of lMMh
and lAD , there exists t ∈ R such that

−−→
AK = (1− t)

−−→
AM + t

−−−→
AMh

= (1− t)
(
r2

d2
−−→
OD −

−→
OA

)
+
tδ(r2 − µ)

2d2
−−→
OD

=
2r2 + t[δ(r2 − µ)− 2r2]

2d2
−−→
OD − (1− t)

−→
OA.

Hence,
−−→
OD −

−→
OA =

−−→
AD

= δ
−−→
AK

= 2δr2+t[δ2(r2−µ)−2δr2]
2d2

−−→
OD − (1− t)δ

−→
OA.

Since
−−→
OD and

−→
OA are linearly independent vectors, we have

2δr2 + t[δ2(r2 − µ)− 2δr2] = 2d2,

(1− t)δ = 1.

Then t = (δ − 1)/δ and hence

2d2 = 2δr2 +
δ − 1

δ
[δ2(r2 − µ)− 2δr2]

= δ(δ − 1)(r2 − µ) + 2r2.

On the other hand, we have

d2 = [(1− δ)
−→
OA+ δ

−−→
OK] · [(1− δ)

−→
OA+ δ

−−→
OK]

= (1− δ)2r2 + 2δ(1− δ)µ+ δ2k2

= δ2(r2 − 2µ+ k2)− 2δ(r2 − µ) + r2.
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Then
2[δ2(r2 − 2µ+ k2)− 2δ(r2 − µ) + r2] = δ(δ − 1)(r2 − µ) + 2r2

and δ2(r2 − 3µ+ 2k2) = 3δ(r2 − µ). Note that δ 6= 0 . We get

δ =
3(r2 − µ)

r2 − 3µ+ 2k2

= − 3(
−→
OA ·

−−→
OK −

−→
OA ·

−→
OA)

−→
OA ·

−→
OA− 3

−→
OA ·

−−→
OK + 2

−−→
OK ·

−−→
OK

=
−3[
−→
OA · (

−−→
OK −

−→
OA)]

(2
−−→
OK −

−→
OA) · (

−−→
OK −

−→
OA)

=
−3(
−→
OA ·

−−→
AK)

(2
−−→
OK −

−→
OA) ·

−−→
AK

.

Hence
−−→
AD =

3(
−→
AO ·

−−→
AK)

(2
−−→
OK −

−→
OA) ·

−−→
AK

−−→
AK.

Case 2: Suppose the points A , O , and K are collinear. Then 4ABC is an

isosceles triangle with AB = AC . Moreover,
−−→
AD = δ′

−→
OA for some δ′ ∈ R so that

−−→
OD =

−→
OA+ δ′

−→
OA = (δ′ + 1)

−→
OA. (2.8)

Note that δ′ + 1 6= 0 . We will first prove that
−−→
AD = −(2δ′ + 3)

−−→
AK (2.9)

and then argue that

−3(
−→
OA ·

−−→
AK)

(2
−−→
OK −

−→
OA) ·

−−→
AK

= −(2δ′ + 3). (2.10)

First of all,

−−→
OK =

a2

a2 + b2 + c2
−→
OA+

b2

a2 + b2 + c2
−−→
OB +

c2

a2 + b2 + c2
−−→
OC

=
a2

a2 + 2b2
−→
OA+

b2

a2 + 2b2
−−→
OB +

b2

a2 + 2b2
−−→
OC

=
a2

a2 + 2b2
−→
OA+

b2

a2 + 2b2
(
−−→
OB +

−−→
OC)

=
a2

a2 + 2b2
−→
OA+

2b2

a2 + 2b2
−−→
OM.

(2.11)

Next,

−−→
OM =

r2

d2
−−→
OD =

r2

[(δ′ + 1)r]2
−−→
OD (by (2.8))

=
1

(δ′ + 1)2
· (δ′ + 1)

−→
OA

=
1

δ′ + 1

−→
OA.
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Hence

OM2 =
r2

(δ′ + 1)2
.

Additionally,
−−→
AM =

−−→
OM −

−→
OA = −δ′

δ′+1

−→
OA so that

AM2 =

(
δ′r

δ′ + 1

)2

.

Both 4OMB and 4AMB are right triangles. So using the Pythagorean Theorem
twice leads to

a2 =
4δ′(δ′ + 2)r2

(δ′ + 1)2
, b2 =

2δ′r2

δ′ + 1
,

a2 + 2b2 =
4δ′(2δ′ + 3)r2

(δ′ + 1)2
.

Hence (2.11) becomes

−−→
OK =

δ′ + 3

2δ′ + 3

−→
OA.

In turn,

−−→
AK =

−−→
OK −

−→
OA

=
−1

2δ′ + 3

−−→
AD

so that (2.9) holds. Note that 2δ′ + 3 6= 0 .

On the other hand, we have

2
−−→
OK −

−→
OA =

2(δ′ + 3)

2δ′ + 3

−→
OA−

−→
OA =

3

2δ′ + 3

−→
OA.

Hence,

−3(
−→
OA ·

−−→
AK)

(2
−−→
OK −

−→
OA) ·

−−→
AK

=
−3(
−→
OA ·

−→
OA)

{[3/(2δ′ + 3)]
−→
OA} ·

−→
OA

=
−3r2

3r2/(2δ′ + 3)

= −(2δ′ + 3).

Hence (2.10) holds. �

Theorem 2.7. (Court Uniqueness Theorem) Let C be a circle with center O
and radius r . Let K 6= O be a point lying inside C . For each point A ∈ C ,
there is a unique triangle 4ABC inscribed in C having K as its symmedian point.
Additionally, if (C,K) denotes the locus of all such triangles, i.e. the (C,K)-locus ,
then the map from C to (C,K) is 3-1.
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Proof. Let A ∈ C . By Theorem 2.4 there is a triangle 4ABC inscribed in C
having K as its symmedian point. However, this triangle is unique by Theorem 2.6.
Consequently, there is a well defined map

C −→ (C,K).

It is clear that the map is 3-1. �

3. The Centroid Locus Theorem

Let C be a circle of radius r centered at O and let K 6= O be a fixed point inside
C . For each point A ∈ C , let 4ABC be the unique triangle in the (C,K)-locus .
Let G be the centroid of 4ABC . The objective of this section is to prove that the
variable centroid G is an arc on a circle; see Theorem 3.1 just ahead. In preparation

for the proof, we first express G in terms of the moving frame {
−→
OA,
−−→
OK} .

Assuming that A /∈ C(KO′) , let D and M be defined as in the statement of

Theorem 2.4. Let d = OD, k = OK, and µ =
−→
OA ·

−−→
OK . Let

λ = (2
−−→
OK −

−→
OA) ·

−−→
AK = 2k2 − 3µ+ r2, (3.1)

x =
λ

−→
AO ·

−−→
AK

. (3.2)

Note that, up to ± , x is the ratio AQ
AR . Continuing, the harmonic ratio from Theorem

2.4 is given by

δ =
3

x

=
3
−→
AO ·

−−→
AK

(2
−−→
OK −

−→
OA) ·

−−→
AK

=
3(r2 − µ)

λ
.

(3.3)

Hence x =
λ

r2 − µ
. As the discussion to follow will show, the number x (3.2) is an

efficient parameter that is geometrically natural.

Lemma 3.1. The scalar µ =
−→
OA ·

−−→
OK is the rational function of x given by

µ =
r2(x− 1)− 2k2

x− 3
. (3.4)
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Proof.

x =
λ

r2 − µ
⇐⇒ x(r2 − µ) = λ

⇐⇒ xµ = r2x− (2k2 − 3µ+ r2)

⇐⇒ (x− 3)µ = r2x− (r2 + 2k2)

⇐⇒ µ =
r2x− (r2 + 2k2)

x− 3
.

�

Lemma 3.2. The centroid is given by the vector equation

−−→
OG = α

−→
OA+ β

−−→
OK (3.5)

where

α = 1
3 + 2r2

3d2
(1− δ), (3.6)

β = 2r2δ
3d2

. (3.7)

Proof. First of all,

3
−−→
OG =

−→
OA+

−−→
OB +

−−→
OC

=
−→
OA+ 2

−−→
OM.

Next,

2
−−→
OM = 2r2

d2
−−→
OD

= 2r2

d2
(
−→
OA+

−−→
AD)

= 2r2

d2
(
−→
OA+ δ

−−→
AK)

= 2r2

d2

[
−→
OA+ δ(

−−→
OK −

−→
OA)

]
= 2r2

d2

[
(1− δ)

−→
OA+ δ

−−→
OK

]
.

Hence

3
−−→
OG =

(
1 + 2r2

d2
(1− δ)

)
−→
OA+ 2r2δ

d2
−−→
OK.

�

The point D in Theorem 2.4 can also be shown to lie outside the circle C using the
dot product. Though the calculation is somewhat tedious, equation (3.8) in Lemma
3.3 will be used Lemma 3.4, Theorem 3.1, and again in Lemma 4.3 in section §4 .
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Lemma 3.3. Let C be a circle of radius r centered at O . Let K be a point with

OK < r and A be a point on C satisfying (2
−−→
OK −

−→
OA) ·

−−→
AK 6= 0 . The point D

determined by

−−→
AD =

3(
−→
AO ·

−−→
AK)

(2
−−→
OK −

−→
OA) ·

−−→
AK

−−→
AK

lies outside of the circle C . In particular, set k = OK, d = OD, µ =
−→
OA ·

−−→
OK ,

and λ = 2k2 − 3µ+ r2 . Then

d2 = r2 +
3(r2 − k2)(r2 − µ)2

λ2
. (3.8)

Proof. First of all,
−→
OA ·

−−→
AK =

−→
OA · (

−−→
OK −

−→
OA) = µ− r2

(2
−−→
OK −

−→
OA) ·

−−→
AK = (2

−−→
OK −

−→
OA) · (

−−→
OK −

−→
OA) = 2k2 − 3µ+ r2.

Then
−−→
AD =

3(r2 − µ)

λ
(
−−→
OK −

−→
OA).

On the other hand,
−−→
AD =

−−→
OD −

−→
OA . Hence

λ
−−→
OD = 3(r2 − µ)

−−→
OK − 2(r2 − k2)

−→
OA. (3.9)

Letting d = OD ,

λ2d2 = (12r2 − 3k2)µ2 − 6r2(2r2 + k2)µ

+ r2(4r4 + k2r2 + 4k4).

Next,

λ2(d2 − r2) = (12r2 − 3k2)µ2 − 6r2(2r2 + k2)µ

+ r2(4r4 + r2k2 + 4k4)− r2(2k2 − 3µ+ r2)2

= (12r2 − 3k2)µ2 − 6r2(2r2 + k2)µ

+ r2(6r2µ+ 12k2µ− 9µ2) + 3r4(r2 − k2)
= 3(r2 − k2)µ2 − 6r2(r2 − k2)µ+ 3r4(r2 − k2)
= 3(r2 − k2)(µ− r2)2.

Since 0 < k < r , −r2 < −kr ≤ µ ≤ kr < r2 by the Cauchy-Schwarz inequality.
Hence µ− r 6= 0 so that d2 − r2 > 0 by the above equation, that is, D lies outside
C . In addition, equation (3.8) holds. �

Lemma 3.4. The coefficients α (3.6) and β (3.7) are the rational functions of x
given by

α =
r2(x− 1)2 − k2

r2(x2 + 3)− 3k2

β =
2r2x

r2(x2 + 3)− 3k2
.
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Proof. First of all, the squared distance d2 is a rational function of x . Indeed, by
(3.8) from Lemma 3.3,

d2 = r2 +
3(r2 − k2)(r2 − µ)2

λ2

= r2 +
(r2 − k2)δ2

3

(
∵ δ =

3(r2 − µ)

λ

)
= r2 +

3(r2 − k2)
x2

(
∵ δ =

3

x

)
=
r2x2 + 3(r2 − k2)

x2
.

Next,

3α =
d2 + 2r2(1− δ)

d2

=
r2x2 + 3(r2 − k2) + 2r2x(x− 3)

r2x2 + 3(r2 − k2)

=
3r2(x− 1)2 − 3k2

r2(x2 + 3)− 3k2
.

Finally,

3β =
2r2δ

d2

=
6r2x

r2(x2 + 3)− 3k2
.

�

Theorem 3.1. (Centroid Locus) Let C be a circle of radius r centered at O and
K 6= O 2 be a fixed point inside C . Let k = OK . For any point A ∈ C , let
4ABC be the unique triangle in the (C,K)-locus having A as a vertex and K as
its symmedian point; see Theorem 2.7. As A varies along C , the locus of centroids
G lie on the circle Cg of radius rk2/(4r2− k2) with center Og defined by the vector
equation

−−→
OOg =

2r2

4r2 − k2
−−→
OK. (3.10)

Proof. Let A1A2 be the diameter of C containing the point K . The centroids Gi
of the two triangles 4AiBiCi in the (C,K)-locus lie on the diameter A1A2 ; see
Remark 2.6. The proof to follow shows that the midpoint of G1 and G2 is the point
Og defined by equation (3.10).

2If K = O , then the triangles in the (C,K)-locus are equilateral. Hence, the variable centroid
G degenerates to O .
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Using Lemma 3.2 and the point Og defined by (3.10),

−−→
OgG =

−−→
OG−

−−→
OOg

= α
−→
OA+ β̃

−−→
OK

where

β̃ =

(
β − 2r2

4r2−k2

)
=
−2r2(x− 3)(r2(x− 1) + k2)

(4r2 − k2)(r2x2 + 3(r2 − k2))
.

Next using the algebraic properties of the dot product

OgG
2 = r2α2 + 2αβ̃µ+ k2β̃2. (3.11)

By Lemmas 3.1 and 3.4,

r2α2 =
r2(r2(x− 1)2 − k2)2

(r2x2 + 3(r2 − k2))2
,

2αβ̃µ =
−4r2(r2(x− 1)2 − k2)(r2(x− 1) + k2)(r2(x− 1)− 2k2)

(4r2 − k2)(r2x2 + 3(r2 − k2))2
,

k2β̃2 =
4r4k2(x− 3)2(r2(x− 1) + k2)2

(4r2 − k2)2(r2x2 + 3(r2 − k2))2
.

Hence equation (3.11) is equivalent to

(4r2 − k2)2(r2x2 + 3(r2 − k2))2OgG2 =

r2(4r2 − k2)2x1 − 4r2(4r2 − k2)x2 + 4r4k2x3

where

x1 = (r2(x− 1)2 − k2)2,
x2 = (r2(x− 1)2 − k2)(r2(x− 1) + k2)(r2(x− 1)− 2k2),

x3 = (x− 3)2(r2(x− 1) + k2)2.

Expanding the polynomials (patiently), we get

x1 = r4x4 − 4r4x3 + 2r2(3r2 − k2)x2 − 4r2(r2 − k2)x+ (r2 − k2)2,

x2 = r6x4 − r4(4r2 + k2)x3 + 2r2(3r4 + r2k2 − k4)x2

− r2(r2 − k2)(4r2 + 5k2)x+ (r2 − k2)2(r2 + 2k2),

x3 = r4x4 − 2r2(4r2 − k2)x3 + (22r4 − 14r2k2 + k4)x2

− 6(r2 − k2)(4r2 − k2)x+ 9(r2 − k2)2.



N.A. COURT’S CENTROID LOCUS PROBLEM 111

Consequently,

(4r2 − k2)2(r2x2 + 3(r2 − k2))2OgG2 =

r2
[
r4k4x4 + 6r2k4(r2 − k2)x2 + 9k4(r2 − k2)2

]
= r2k4

[
r2x2 + 3(r2 − k2)

]2
,

that is,

OgG
2 =

r2k4

(4r2 − k2)2
.

�

4. Inverse Construction

In this section, the inverse problem is addressed, namely, given a point G from the
centroid circle Cg , we provide a method for finding the triangle in the (C,K)-locus
having the point G as its centroid. The method depends on the roots of a cubic
polynomial determined by G . This polynomial is shown to have three real roots
with multiplicity counted; see (4.7) ahead.

From section §3 , the centroid G of a triangle 4ABC in the (C,K)-locus is given
by the vector equation

−−→
OG = α

−→
OA+ β

−−→
OK;

see Lemma 3.4. Let θA (resp, θG ) denote the angle between
−→
OA and

−−→
OK (resp,

−−→
OG and

−−→
OK ). Geometrically, the equation

−−→
OG ·

−−→
OK = α

−→
OA ·

−−→
OK + βk2 (4.1)

explains how the angles θA and θG are related.

Conversely, let G ∈ Cg . Let g = OG . By (3.10)

−−→
OgG =

−−→
OG−

−−→
OOg =

−−→
OG− 2r2

4r2−k2
−−→
OK

so that

OgG
2 = g2 − 4r2

4r2−k2
−−→
OG ·

−−→
OK + 4r4k2

(4r2−k2)2

and hence
−−→
OG ·

−−→
OK =

(4r2 − k2)g2 + r2k2

4r2
. (4.2)

Rewrite equation (4.1) as

−→
OA ·

−−→
OK =

1

α

−−→
OG ·

−−→
OK − β

α
k2. (4.3)
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The inverse problem reduces to finding α and β so that the point A ∈ C and also
the corresponding triangle in the (C,K)-locus has centroid G . Using Lemma 3.4,
rewrite (4.3) as

−→
OA ·

−−→
OK =

r2(x2 + 3)− 3k2

r2(x− 1)2 − k2
−−→
OG ·

−−→
OK − 2r2k2x

r2(x− 1)2 − k2
.

Using µ =
−→
OA ·

−−→
OK , (4.3) is equivalent to

(r2(x2 + 3)− 3k2)(
−−→
OG ·

−−→
OK)− (r2(x− 1)2 − k2)µ− 2r2k2x = 0. (4.4)

By Lemmas 3.1 and 3.4, as well as (4.2), equation (4.4) is[
r2(x2 + 3)− 3k2

r2(x− 1)2 − k2

][
(4r2 − k2)g2 + r2k2

4r2

]
− r2(x− 1)− 2k2

x− 3

− 2r2k2x

r2(x− 1)2 − k2
= 0.

(4.5)

Since x 6= 3 , multiply the above equation by 4r2(r2(x− 1)2 − k2)(x− 3) to get the
equivalent cubic equation

0 = [(4r2 − k2)g2 + r2k2][r2(x2 + 3)− 3k2](x− 3)

− 4r2[r2(x− 1)2 − k2][r2(x− 1)− 2k2]

− 8r4k2x(x− 3).

(4.6)

Next,

[r2(x2 + 3)− 3k2](x− 3) = r2(x− 1)3 − 3k2(x− 1)− 2(r2 − 3k2),

[r2(x− 1)2 − k2][r2(x− 1)− 2k2] = r4(x− 1)3 − 2r2k2(x− 1)2

− r2k2(x− 1) + 2k4,

−8r4k2x(x− 3) = −8r4k2(x− 1)2 + 8r4k2(x− 1) + 16r4k2.

Using this information, rewrite (4.6) as

−r2(4r2 − k2)(r2 − g2)(x− 1)3 + 3k2(4r2 − k2)(r2 − g2)(x− 1)

− 2(4r2 − k2)[(4r2 − 3k2)g2 − r2k2] = 0.

Letting X = x−1 and dividing by −r2(4r2−k2)(r2−g2) , we get the cubic equation

X3 + pX + q = 0 (4.7)

where

p = −3k2

r2
, q =

2[(4r2 − 3k2)g2 − r2k2]
r2(r2 − g2)

. (4.8)
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Lemma 4.1. Let G1G2 be the diameter of the centroid circle Cg lying between O
and K . Given G ∈ Cg such that G 6= Gi, i = 1, 2 , the corresponding cubic equation
(4.7) has three distinct real roots.

Proof. First of all, the diameter G1G2 of the centroid circle is determined by the
vector equations

−−→
OG1 = r

2r+k

−−→
OK,

−−→
OG2 = r

2r−k
−−→
OK;

see Remark 2.6 in section §2.2 . Next, given any G ∈ Cg, G 6= Gi

OG1 = rk
2r+k < g = OG < rk

2r−k = OG2.

Hence

g(2r − k) < rk < g(2r + k). (4.9)

Next, by routine algebra

p3

27
+
q2

4
=
−(r2 − k2)[(2r + k)2g2 − r2k2][r2k2 − (2r − k)2g2]

r6(r2 − g2)2
.

By (4.9), both (2r+k)2g2−r2k2 and r2k2−(2r−k)2g2 are positive. Hence p3

27+ q2

4 < 0

so that the discriminant of the cubic, namely, ∆ = −(4p3 + 27q2) > 0 . This means
that (4.7) has three distinct real roots. See Chapter 14, §2 of [1]. �

Lemma 4.2. Let X be a real solution to (4.7). Set x = X + 1 . Since x − 1 is a
solution of (4.7),

x3 = 3x2 − (p+ 3)x+ (p− q + 1)

= 3x2 − 3(r2−k2)
r2

x+ (r2−k2)(r2−9g2)
r2(r2−g2)

(4.10)

and

x4 = (6− p)x2 − (2p+ q + 8)x+ 3(p− q + 1)

= 3(2r2+k2)
r2

x2 − 8(r2−k2)
r2−g2 x+ 3(r2−k2)(r2−9g2)

r2(r2−g2) .
(4.11)

Using (4.10) and (4.11),

[r2(x2 + 3)− 3k2](x− 3) = −8r2(r2−k2)
r2−g2 (4.12)

and

[r2(x− 1)2 − k2]2 = r2k2x2 − 8r2g2(r2−k2)
r2−g2 x

+ (r2−k2)[(8r2+k2)g2−r2k2]
r2−g2 .

(4.13)

Proof. Equations (4.10) and (4.11) follows immediately from the assumption that
x − 1 is a solution of the cubic equation (4.7). In turn, equations (4.12) and (4.13)
follow routinely. However, they are used in an essential way in the proof of Lemma
4.3 just ahead. �
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Lemma 4.3. Let X be a solution to (4.7). Set x = X + 1 . Define α and β by

Lemma 3.4. In turn, define A by the vector equation
−→
OA = 1

α

−−→
OG− β

α

−−→
OK; see (4.3).

Then A ∈ C and
−→
OA ·

−−→
OK =

r2(x− 1)− 2k2

x− 3
= µ,

i.e. equation (3.4) in Lemma 3.1 holds. Consequently, the given point G is the
centroid of the unique triangle in the (C,K)-locus having the point A as a vertex.

Proof. First of all, from
−→
OA = 1

α

−−→
OG− β

α

−−→
OK,

OA2 =
g2

α2
− 2

β

α2

−−→
OG ·

−−→
OK +

β2k2

α2
.

Using Lemma 3.4, this equation is equivalent to

[r2(x− 1)2 − k2]2OA2 = [r2(x2 + 3)− 3k2]2g2

− 4r2x[r2(x2 + 3)− 3k2]
−−→
OG ·

−−→
OK

+ 4r4k2x2.

(4.14)

Using (4.2), the right side of equation (4.14) is the quartic polynomial

Q(x) = r4g2x4

− r2[(4r2 − k2)g2 + r2k2]x3 + [6r2g2(r2 − k2) + 4r4k2]x2

− 3(r2 − k2)[(4r2 − k2)g2 + r2k2]x

+ 9g2(r2 − k2)2.
Next use Lemma 4.2 to rewrite the above quartic as

Q(x) = r4g2x4 − r2[(4r2 − k2)g2 + r2k2]x3 + [6r2g2(r2 − k2) + 4r4k2]x2

− 3(r2 − k2)[(4r2 − k2)g2 + r2k2]x+ 9g2(r2 − k2)2

= r2
[
r2k2x2 − 8r2g2(r2 − k2)

r2 − g2
x+

(r2 − g2)[(8r2 + k2)g2 − r2k2]
r2 − g2

]
= r2[r2(x− 1)2 − k2] by (4.13).

Hence (4.14) becomes

[r2(x− 1)2 − k2]OA2 = [r2(x− 1)2 − k2]r2,
that is, OA2 = r2 so that A ∈ C .

To argue the equation

−→
OA ·

−−→
OK =

r2x− r2 − 2k2

x− 3
, (4.15)

proceed as follows:
−→
OA ·

−−→
OK = 1

α

−−→
OG ·

−−→
OK − β

αk
2

=
r2(x2 + 3)− 3k2

r2(x− 1)2 − k2
−−→
OG ·

−−→
OK − 2r2k2x

r2(x− 1)2 − k2
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Hence (4.15) holds iff

[r2(x− 1)2 − k2][r2(x− 1)− 2k2] =
−−→
OG ·

−−→
OK[r2(x2 + 3)− 3k2](x− 3)

− 2r2k2x(x− 3)

=

[
(4r2−k2)g2+r2k2

4r2

]
[r2(x2 + 3)− 3k2](x− 3)

− 2r2k2x(x− 3).

Clearing the denominator, (4.15) holds iff

4r2[r2(x− 1)2 − k2][r2(x− 1)− 2k2] =

[(4r2 − k2)g2 + r2k2][r2(x2 + 3)− 3k2](x− 3)

− 8r4k2x(x− 3).

(4.16)

Using equation (4.13) from Lemma 4.2,

4r2[r2(x− 1)2 − k2][r2(x− 1)− 2k2] = 4r2
[
− 2r2k2x2 + 6r2k2x

− 2(r2−k2)[(4r2−k2)g2+r2k2]
r2−g2

]
.

Using equation (4.12) from Lemma 4.2,

[(4r2 − k2)g2 + r2k2][r2(x2 + 3)− 3k2](x− 3) =
−8r2(r2 − k2)[(4r2 − k2)g2 + r2k2]

r2 − g2
.

Hence the right side of (4.16) is

4r2
[
− 2r2k2x2 + 6r2k2x− 2(r2−k2)[(4r2−k2)g2+r2k2]

r2−g2

]
.

Therefore (4.15) holds.

Finally, having shown that µ =
−→
OA ·

−−→
OK = r2(x−1)−2k2

x−3 ,

δ =
3(r2 − µ)

λ
=

3

x
and d2 =

r2(x2 + 3)− 3k2

x2
.

Hence

d2 + 2r2(1− δ)
d2

=
3(r2(x− 1)2 − k2)
r2(x2 + 3)− 3k2

= 3α.

Likewise,

2r2δ

d2
=

6r2x

r2(x2 + 3)− 3k2
= 3β.

Consequently, by Lemma 3.2 the given point G is the centroid of the unique triangle
in the (C,K)-locus having the point A as a vertex. �
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Remark 4.1. Finding the roots of (4.7) and in turn illustrating Lemma 4.3 are done
using basic complex variables and the fact that 4p3 + 27q2 < 0 . Let

z = −q
2

+ i

√
−
(
p3

27
+
q2

4

)
= x+ iy

= |z|(cos θ + i sin θ)

where |z| = −p
3

√
−p

3 since p < 0 . Let θ be the principal polar angle of z . Then

θ = cos−1(x/|z|) = cos−1
(

3q
2p

√
−3
p

)
.

On the other hand, the number

3q

2p

√
−3

p
=
r[r2k2 − g2(4r2 − 3k2)]

k3(r2 − g2)
.

Finally, in symbolic form the roots of (4.7) are

x− 1 = 3
√
z + 3
√
z = 2|z|1/3 cos(θ/3)

=
2k

r
cos(θ/3)

where 3
√
z is understood to mean an arbitrary cube root of z . Consequently, using

x = 1 + 2k
r cos(θ/3) , α, β, and

−→
OA = 1

α

−−→
OG− β

α

−−→
OK

are determined.
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