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!ON CYCLOTOMIC ARRANGEMENTS OF LINES IN THE PLANE

PHILIPPE RYCKELYNCK and LAURENT SMOCH

Abstract. In this paper, we consider the seemingly simple problem of
describing and enumerating the set of connected components delimited by
the cyclotomic arrangement of straight lines in the plane generated from the
edges of a regular n-gon. Knowing the exact position of each intersection
point of the arrangement, an exhaustive study of the different areas of the
components is also provided.

1. Introduction and notation

We address mainly in this work the problem of providing a detailed list of
the various connected components generated and bounded by a particular
cyclotomic arrangement of straight lines in the plane which coincide with
the edges of a regular n-gon.

The very first result related to this subject, valid for any arrangement, is
the Jacobus Steiner’s bound for the number of connected components in the
plane, that is to say 1

2(n
2 + n + 2) where n denotes the cardinality of the

arrangement and which is easy to prove by induction (see for example [5, 9]).
However, this result does not give insight in some features of interest includ-
ing listing the number of triangles, quadrilaterals and so on, generated by the
arrangement, nor prove the existence of some relationships between those
amounts, or even provide the numbers of compact or non-compact compo-
nents. In [8], Wetzel gave an historical account of the Steiner’s problem and
focus on generalization of Broussaud’s formula for the defect number, that
is the difference between the Steiner’s upperbound 1

2(n
2 + n + 2) and the

actual value of the number of connected components. Wetzel highlighted
the multiplicities of the intersection points as well as the existence of paral-
lel straight lines but did not use symmetries of the arrangements. For their
part, Poonen and Rubinstein [7] got interested in the number of intersection
points formed inside a regular n-gon by its diagonals while making clear
the distinct multiplicities. While Poonen and Rubinstein focused mostly on
formulas describing the various situations, some other authors worked on
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efficient deterministic algorithms to report and to count geometric intersec-
tions convex polygons, inducing naturally time and storage constraints (see
for example [1], [4]).

We emphasize on the fact that none of the authors mentioned previously
nor those who are cited in their respective bibliographies have studied the
distribution of connected components according to their shape, character-
ized by the numbers of vertices or the property of being compact or not
compact. It should be however specified that the question of counting spe-
cial shapes among those connected components has been discussed from an
algorithmic point of view in [4] and literature therein. Nevertheless, the
computation of the areas of these shapes is not considered contrary to what
is being done in the present paper. Indeed, providing an exhaustive de-
scription of the straight lines and the intersection points generated by the
arrangement, we are able to specify the exact area of each polygon as well
as an asymptotic expansion of it.

To state our results and the convenient formulation, let us give notation
used hereafter. First, we identify R2 and C and we denote by I the complex
number I =

√
−1. As usual, if x ∈ R then [x] denotes the greatest integer

function. Given an integer n, let us set

(1) cα = cos
(απ

n

)
and sα = sin

(απ
n

)
, ∀α ∈ R,

provided the value of n is obvious from the context.
Let A = (L0, . . . ,Ln−1) be an arrangement of n lines in the euclidean plane,
with Li : aix + biy + ci = 0. If Lk ∩ Lℓ ̸= ∅ for k, ℓ ∈ {0, . . . , n − 1},
k ̸= ℓ, we denote by zk,ℓ this intersection point. We suppose throughout
the paper that n ≥ 3 and that at least two lines are not parallel. The
space Z = R2 −

⋃n−1
i=0 Li that we may denote Z = R2 − A, is locally com-

pact and locally arcwise connected. The set π0(Z) of arcwise connected
components is finite with cardinality ♯π0(Z). By Steiner’s bound, we have
♯π0(Z) ≤ 1

2(n
2 + n+ 2). At last, we will denote by πC(Z) and πNC(Z) the

respective sets of compact and non-compact components of Z.
In the remainder of the paper we call chamber the closure of any connected
component of a space R2−A, this terminology is justified as in the theory of
Lie groups (see [3][Lie, chap 5, §3]) and in differential topology. Chambers
correspond to intersections of a finite number of closed half-planes, they are
all convex and may be compact or non-compact.

The rest of this paper is organized as follows. In section 2, we present some
preliminaries on arrangements of lines in the plane. We remind Robert’s
formula and we present the defects of the arrangements. We define the
boundification Ab of the complement R2 − A of an arrangement of lines
A = (L0, . . . ,Ln−1) and we provide some results on the numbers of con-
nected components of Ab whether or not they are compact. In Section 3,
we introduce for any integer n ≥ 3 the cyclotomic minimal arrangement
R(n) containing the regular n-gon Pn (see for example Figure 1) and we get
interested in the exhaustive description of R2 −R(n). In Section 4, taking
into account the rich symmetry of the space R(n)b, we provide some nice
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results for the areas of each kind of chambers of R(n)b and especially the
value of the sums

ν−1∑
m=2

sin
(mπ

n

)
sec
(
(m− 1)

π

n

)
sec
(
m
π

n

)
sec
(
(m+ 1)

π

n

)
.

Figure 1. A partial geometric view of the cyclotomic ar-
rangement of lines constructed from the regular 50-gon to-
gether with its circular orbits

2. Preliminaries on arrangements of lines in the plane.

The final result of Samuel Robert in 1889, that we quote from Wetzel [8]
is stated as follows

Proposition 2.1 (Robert’s formula). Let A = (L0, . . . ,Ln−1) be an ar-
rangement of n lines in the euclidean plane. Let p be the number of points
of multiplicity ≥ 3 and, for each 1 ≤ i ≤ p, let λi ≥ 3 be the multiplicity
of any multiple intersection point. Let q be the number of parallel straight
lines in A and, for each 1 ≤ j ≤ q, let µj ≥ 2 be the number of parallel lines
in some direction. Then the number of connected components of R2 −A is
equal to

(2) ♯(π0(R2 −A)) = 1 + n+

(
n

2

)
−

p∑
i=1

(
λi − 1

2

)
−

q∑
j=1

(
µj

2

)
.

It is interesting to observe that the proof given in [8] proceeds by sub-
tracting the various degeneracies in connected components being lost due
to multiplicities of intersection points or parallelism of lines, while, on the
contrary, we will obtain our main results of the next section by adding the
various numbers of connected components of several shapes. We may use
the phrasing of Wetzel to speak of the sum δM (A) =

∑p
i=1

(
λi−1
2

)
as the

number of regions lost because of the multiple points and to speak of the
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sum δP (A) =
∑q

j=1

(µj

2

)
as the number of regions lost because of parallel-

lism. We will call hereafter those two sums δM (A), δP (A) defects of the
arrangements of type M and P respectively and call defect of the arrange-
ment A the quantity δ(A) = δM (A) + δP (A).

Let A be an arrangement of lines. There exists a real number R such that
the compact disk DR of radius R, centered at the origin, contains all the
intersection points from A in its interior. Let κ : C → C defined as follows:
if |z| ≥ R, then κ(z) = Rz/|z|, and κ(z) = z otherwise. The mapping κ is a
retraction of R2 on the disk DR. Moreover, κ preserves the nature and the
number of connected components of the complement of the arrangement A
in R2. However, the mapping κ does not preserve convexity. For instance
for any ε > 0, the triangle T with vertices {γ(1 + I), a+ bI, b+ aI}, a, b >
1, a ̸= b, γ ∈]0,

√
2
2 [, has a non convex range κ(T ). We may define the

boundification of A as the relatively compact subset Ab = κ(R2 − A), and
the topology of this space does not depend on R.

If one really wants to obtain a compact space, it will be preferable to con-
sider an open tubular neighborhood B of A, of width ε > 0 small enough, and
then the space (R2 −B) ∩D(0, R). In that way, it is possible to compactify
the complement set of an arrangement of lines. A naive illustration of this
is depicted in [9]. We warn the reader not to confuse this compactification
with the Alexandrov usual compactification; this last one indeed maps the
complement of the whole “finite” space to one point at infinity, while the
retraction κ maps on a given large circle all points at infinity on rays em-
anating from the origin. For illustrative purpose, let us mention that we
may substitute to the circle |z| = R “at infinity” any convex polygon, say a
square or a lozenge, which contains all the intersection points in its interior.
Doing so, some constructions given hereafter do not use smooth polygons
inducing circular segments but ordinary polygons instead.

We easily prove that the connected components of the complement R2−A
of a general arrangement A are convex. We may distinguish among them
compact and non-compact components, and in the first category bounded
polygonal components of which the boundary has k = 3, 4, . . . vertices. If we
consider the images of the various components by the retraction κ, we see
that the images of bounded polygonal components remain compact while the
images of non-compact components become polygonal components implying
only one curvilinear arc along their boundary.

Lemma 2.1. If the arrangement A = (L0, . . . ,Ln−1) contains at least one
intersection point, we have

♯(πNC(Ab)) = 2n and ♯(πC(Ab)) ≤ 1

2
(n2 − 3n+ 2).

Proof. Let us consider R large enough to ensure that the disc x2+y2 < R2

contains all the intersection points Li ∩ Lj . Due to this hypothesis, each
straight line Li has some points belonging to the interior of the disc and
cuts the circle in two distinct points because Li cannot be tangent to the
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circle. Let us define (R cos ηi,1, R sin ηi,1) and (R cos ηi,2, R sin ηi,2) as the two
intersection points between Li and x2 + y2 = R2, with 0 ≤ ηi,1 < ηi,2 ≤ 2π.
Let us consider the sequence obtained by rearranging in ascending order the
roots ηi,1, ηi,2, 0 ≤ i ≤ n− 1, i.e.

(3) 0 ≤ η1 < η2 < . . . < η2n < 2π.

Since the arrangement contains at least two secant straight lines, we do
not have ηi = ηj,1 and ηi+1 = ηj,2 for some index j. Therefore, if >uv
denotes the arc between points u and v along the circle DR, each non-

compact component is partially defined through a circular arc
>
RiRi+1, where

Ri = (R cos ηi, R sin ηi), together with the two straight lines Lj and Lk the
two points Ri and Ri+1 belong to respectively. We have in this way 2n
non-compact components. Next, Steiner’s bound becomes

♯(πC(Ab)) ≤ 1

2
(n2 + n+ 2)− ♯(πNC(Ab)) =

1

2
(n2 − 3n+ 2),

which ends the proof. Let us mention that when the arrangement consists
exclusively of parallel straight lines, ♯(πNC(Ab)) = n+ 1.

To conclude this section, let us discuss the compacity of the chambers.
Each chamber, say Y, of R2 −A becomes a chamber κ(Y) of Ab. Moreover,
the boundary of Y is sent to the boundary of the chamber κ(Y). Lastly,
the number of points of intersection lying on the boundary of a chamber
Y of R2 − A is preserved under the retraction κ since R is large enough
such that DR contains all the intersection points of A. Hence, the space
Ab has a set of connected components π0(Ab) in 1-to-1 correspondence with
the set π0(R2 − A). The number of vertices and edges of each chamber
of R2 − A remains conserved through the retraction κ. By the way, we
warn the reader that some chambers are not anymore polygonal, but have
boundary consisting of zero or one arc of circle DR and of several segments.
Although all connected components of Ab are compact, we speak anyway of
non-compact components when considering components of Ab intersecting
the boundary ∂DR.

As a consequence of the Krein-Milman theorem (see [2]), the chambers are
the convex hulls of the sets of their extremal points, i.e. Y = Conv(Ext(Y))
where Conv and Ext denote respectively the convex hull of a set and the set
of extremal points. For non-compact chambers Y, Y and Ext(Y) contain
circular arcs of DR.

3. The cyclotomic arrangement R(n).

In this and following sections, we deal with the regular arrangement of
n ≥ 3 lines R(n) constructed from the regular polygon with n vertices.
Let us remark that in the particular case where n = 2, the arrangement
R(2) consists only in a single straight line passing through the center of the
unit circle which yields that R(2)b has two connected components all being
(non-compact) half-planes.

Given an integer n ≥ 3, let us construct the regular polygon Pn with n
vertices zk = exp

(
2Ikπ
n

)
, 0 ≤ k < n, uniformly distributed on the unit circle.

As a geometric graph, the vertices of Pn are the points zk and each vertex
zk of Pn is connected to the next one zk+1 where k+1 is computed modulo
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n. For any index 0 ≤ i < n, let Li be the affine straight line passing through
zi and zi+1 (indices being computed modulo n). Then R(n) is the union of
all lines Li.

Before introducing the main result of this paper, let us recall that if Sn

denotes the symmetric group on the set {1, 2, . . . , n}, then, to each per-
mutation σ ∈ Sn, we may associate in a 1-to-1 way an invertible boolean
matrix µ(σ) ∈ Mn(R). For all σ ∈ Sn, the transpose of µ(σ) is obvi-
ously the matrix µ(σ)T = µ(σ−1). For instance, if we consider the n-cycle
τn = (1 2 3 . . . n) ∈ Sn, then τ ′n = (n . . . 3 2 1) ∈ Sn is nothing but the
reverse n-cycle of τn.

Theorem 3.1. Let n ≥ 5 and R(n) be the regular arrangement of n lines
constructed from the regular polygon Pn with n vertices. We set ν =

[
n−1
2

]
and we denote P = µ(τn) ∈ Mn(R). The number of vertices of R(n)b is
equal to N = n(ν + 2) while the distribution of cardinalities of chambers of
R(n)b is given as follows

Vertices 3 3 4 5 n
Type C NC C NC C
♯ n n n(ν − 2) n 1

Table 1. Types and cardinalities of the chambers of R(n)b

Moreover, there is a convenient numbering of the N vertices of R(n)b so
that the adjacency matrix A of the unoriented geometric graph R(n)b may
be written as the following boolean symmetric square block matrix of size N

(4) A =



P + PT P + In 0n . . . 0n 0n 0n

PT + In 0n P + In
. . .

...

0n(ν−2)×2n
0n PT + In 0n

. . . 0n
...

. . .
. . .

. . . P + In
0n . . . 0n PT + In 0n In In
0n 02n×n(ν−2)

In 0n PT + In
0n In P + In 0n


where 0n and In stand respectively for the usual zero and identity matrices
of size n and 0J denotes the zero matrix of order J .

Proof. Clearly, the matrix A consists of ν + 2 rows of boolean blocks of
size n × n. Since the matrix P = µ(τn) ∈ Mn(R) is the adjacency matrix
of the path consisting of the n points zk = exp(2Ikπn ) for k from 0 to n− 1

with edges (zk, zk+1), the(1, 1)-block P+P T stands for the adjacency matrix
of the circular chain consisting of the n points zk, k ∈ {0, . . . , n − 1} with
unoriented edges {zk, zk+1}.

Using notation (1), a bit of computations gives for all k ∈ {0, . . . , n− 1}
the equation

(5) Lk : y =
1

s2k+1
(−c2k+1x+ c1) .
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Because of the nonzero y-intercept, none of those n straight lines emanate
from the origin. In order to determine the intersection point between Lk

and Lℓ where k, ℓ ∈ {0, . . . , n− 1} and k ̸= ℓ, we have to solve the following
system

(6)

{
c2k+1x+ s2k+1y = c1
c2ℓ+1x+ s2ℓ+1y = c1

.

Since the determinant of (6) is equal to s2(k−ℓ), Lk and Lℓ are parallel if
and only if |k − ℓ| = n

2 , which occurs only when n is even. Since δP (R(n))
is zero when n is odd and is equal to n

2 when n is even, it rewrites as

δP (R(n)) = n
(
n−1
2 − ν

)
which provides, for any integer n ≥ 5, the number

of directions admitting parallel lines in the arrangement R(n). When the
determinant of (6) is nonzero, the coordinates zk,ℓ = zℓ,k = (xk,ℓ, yk,ℓ) of
Lk ∩ Lℓ are equal to

(7)

{
xk,ℓ = c1

ck−ℓ
ck+ℓ+1

yk,ℓ = c1
ck−ℓ

sk+ℓ+1
.

Throughout this paper, it is further assumed that zk,ℓ is mentioned if and
only if |k − ℓ| ≠ n

2 . Moreover, the indices of z have always to be considered
modulo n. Clearly, ∀k ∈ {0, . . . , n− 1}, zk,k−1 = zk. The number of distinct
couples (k, ℓ) satisfying the conditions k, ℓ ∈ {0, . . . , n − 1}, k ̸= ℓ and
|k − ℓ| ≠ n

2 , that is to say the number of points of intersection zk,ℓ, is
obviously N ′ = nν. Since there exist 2n points at infinity as mentioned in
Lemma 2.1, we conclude that the number of vertices of R(n)b is equal to
N = N ′ + 2n = n(ν + 2).

Let us consider the sequence of real numbers (rm) =
(

c1
cm

)
, with 1 ≤

m ≤ n − 1 and m ̸= n
2 , which occurs in (7). We may easily prove that the

sequence (rm) contains actually ν distinct values since rn−m = rm. Due to
the behaviour of the cosinus mapping over [0, π2 ], the sequence (rm)1≤m≤ν is
positive and strictly increasing.

In polar coordinates, the point zk,ℓ = xk,ℓ + Iyk,ℓ has a modulus and an
argument given respectively by

(8) |zk,ℓ| = r|k−ℓ|, θk+ℓ = (k + ℓ+ 1)
π

n
.

Let Cm be the circle of radius rm centered at the origin, C1 defining naturally
the unit circle. Let ρ be the rotation with center the origin and angle of
rotation 2π

n . Since ρ preserves R(n), each point zk,ℓ ∈ Cm gives rise to
homologous points ρp(zk,ℓ) = zk+p,ℓ+p for all integers p modulo n, and where
the indices k + p and ℓ+ p have also to be considered modulo n. Thus, all
these points are, at the same time, intersection points of the arrangement
as well as points distributed along a same circle Cm for some m. In other
words, the nν points zk,ℓ are regularly distributed on the ν circles Cm. Now
each circle Cm contains at least one point zk,ℓ and thus at least n such points
because of rotation invariance. The amount of points being nν, we conclude
that each circle Cm contains exactly n points zk,ℓ. We call those circles the
orbits of the arrangement R(n).

Now, let us prove that the points Lk ∩Lℓ = zk,ℓ are simple, that is to say
each multiplicity is equal to 2. In other words, if (x, y) is given as in (7), let
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us prove that the integers k and ℓ are unique up to permutation. Indeed,
we deduce easily from (8) a system to recover the indices k and ℓ from the
polar coordinates (r, θ) of any intersection point zk,ℓ and which provides two
couples (k, ℓ) and (ℓ, k) uniquely defined modulo n. Since no multiple point
occurs, δM (R(n)) = 0 holds for all n.

Let S be the segment in N defined as S = J1, n(ν + 2)K. We may reindex
the intersection points zk,ℓ using lexicographical ordering with respect first
to radius and next to polar angles. The points zk = zk,k−1, 0 ≤ k ≤ n − 1,
which are located on the circle C1, keep naturally their original labels shifted
by one unit. For all the other orbits characterized by 2 ≤ m ≤ ν, we proceed
as follows. Let m ∈ {2, . . . , ν}, then the points zk,ℓ belonging to Cm are
indexed by g(k, ℓ) = (m− 1)n+ ℓ+1, ℓ ∈ {0, . . . , n− 1}, m = |k− ℓ|. What
preceeds defines without ambiguity a 1-to-1 mapping from the set of vertices
not lying at infinity to the segment J1, nνK.

From now on, let us assume that R > rν = c1
cν

in compliance with Section

2. In such a way, the points at infinity Ri = (R cos ηi, R sin ηi) located on
the circle |z| = R may also be renumbered. Using formulas in the proof of
Lemma 2.1, we show that the polar angles of the two points Lk ∩ DR are
equal to

η′k =
(2k + 1)π

n
+ arccos

(c1
R

)
and η′′k =

(2k + 1)π

n
− arccos

(c1
R

)
,

modulo 2π, 0 ≤ k < n. Then, we collect these angles η′k and η′′k in an
ascending order sequence (ηi) as in (3). Next, we gather into a first class
CR,ν+1 the points Ri with i even and into a second class CR,ν+2 the other
Ri with i odd (or vice versa). In this way, we may extend the numbering
g to include the 2n points at infinity, first the “even” points, and next the
others, respectively indexed by

g(R2i) = nν + i and g(R2i−1) = n(ν + 1) + i, 1 ≤ i ≤ n.

This explains the appearance in the lower right corner of (4) of the adjacency

matrix of the subgraph consisting of points at infinity, that is

(
0n P T + In

P + In 0n

)
.

For any index k ∈ {0, . . . , n − 1}, we define R′
k and R′′

k as the two points
among the collection {R1, . . . , R2n} that belong to Lk. Let us remark that
when n is odd, all straight lines Li and Lj intersect, so that all circular

angles
>
R′

k, R
′′
k contain one and only one point R′

j or R′′
j for any other index

j ̸= k. Hence, in this particular case, the preceding numbering satisfies
g(R′′

k) = g(R′
k) + n for all indices k.

Now we are interested in the closest neigbours of each vertex zk,ℓ. In this
respect, we introduce for each index j, 0 ≤ j ≤ n− 1, the linear form

ξj(x, y) = −xs2j+1 + yc2j+1.

This mapping describes the abscissa along the straight line Lj computed in
an orthogonal frame. What is important here is the fact that ξj is injective
on Lj . For each k ∈ {0, . . . , n− 1}, we get

(9) ξk(zk,ℓ) =
c1ck−ℓ

sk−ℓ
, ∀ℓ ∈ {0, . . . , n− 1}, ℓ ̸= k, |k − ℓ| ≠ n

2
.
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For sake of conciseness, let us denote τj =
c1sj
cj

for all integers j such that

j ̸= n
2 mod n. The increasing re-arrangement of the sequence (ξk(zk,ℓ)) gives

rise to the antisymmetric sequence of length 2ν

(τ−ν , . . . , τ−1, τ1, . . . , τν) = (−τν , . . . ,−τ1, τ1, . . . , τν).

We notice that the sequence of abscissas along Lk does not depend on k.
Now, for each j ∈ {2, . . . , ν−1}, the closest points of τj in this sequence are

τj−1 and τj+1. This amounts to saying that in the geometric graph R(n)b,
the closest neighbours of zk,ℓ on Lk are thus zk,ℓ−1 and zk,ℓ+1. So we are led
to the crucial fact:

Lemma 3.1. Let k, ℓ two integers in {0, . . . , n − 1} such that k ̸= ℓ and
|k− ℓ| ≠ n

2 , then the four closest neighbours of zk,ℓ, if applicable, are zk−1,ℓ,
zk+1,ℓ, zk,ℓ−1 and zk,ℓ+1.

Proof. Indeed, the indices p, q of a neighbour zp,q of a given point zk,ℓ
must satisfy {k, ℓ} ∩ {p, q} ̸= ∅ and the requirement that abscissas ξj(zk,ℓ)
and ξj(zp,q) along the straight line Lj containing zk,ℓ and zp,q cannot be
intertwinned by any other value ξk(zs,t). Since this second condition is
equivalent to max(|k − ℓ| , |p− q|) = 1, the result of the lemma holds.

If |k−ℓ| = m, the closest neighbours of the point zk,ℓ lie on one of the two
circles Cm−1 and Cm+1. It amounts to saying that two adjacent points zk,ℓ
and zp,q in the geometric graph R(n)b lie on two successive circles. In the

(k, ℓ)-representation, the geometric graph R(n)b is mapped to a “diamond
lattice” (see Figure 2). The opposite vertical sides correspond to the half-
lines θ = 0 and θ = 2π and must be identified as usual to catch R∗×[0, 2π]/ ∼
as R2 − {(0, 0)}. This explains the distinct oblique crossing edges.

Figure 2. “Diamond lattice” associated to R(50)

Let us give three consequences of the Lemma 3.1. First, the adjacency
matrix contains two upper and lower triangular arrays of size n(ν − 1) con-
sisting of zero blocks 0n located at entries (i, j) with 2 ≤ |i− j| ≤ ν. Second,
if two points zk,ℓ and zp,q lie on the same circle, i.e. |zk,ℓ| = |zp,q| = rm with
m ≥ 2, they are not adjacent. In other words, two points zk,ℓ and zp,q,
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neither at infinity nor on the unit circle, such that |k − ℓ| ̸= |p − q| and
which are connected, do not lie on a same circle Cm. Indeed, otherwise, we
would have for instance |k − ℓ| = |p− q| = m, and {k, ℓ} ∩ {p, q} ≠ ∅ which
is impossible. As a consequence, the adjacency matrix (4) has zero blocks
0n at entries (i, i) with 2 ≤ i ≤ ν. Third and last result, since each point
zk,ℓ lying on some circle Cm (2 ≤ m ≤ ν − 1) has valency equal to 4, we

obtain the blocks P +In and P T +In in (4) respectively located at positions
(m,m + 1) and (m − 1,m), which highlights the connectivity between the
various four neighbours.

So far, we have specified the locations of the different intersection points
of the arrangement and discussed about their closest neighbours. At this
point, the structure of the adjacency matrix A defined by (4) has been
totally detailed and explained. The next step consists in characterizing the
chambers generated by the arrangement and, in order to do this, we shall
repetitively use the following trick:

Scholia 3.1. To prove that a convex subset Y of Ab is a chamber, we proceed
as follows. We give the finite sequence of vertices (v1, v2, . . . , vp, v1) of Y
then, help to the crucial lemma 3.1 and its consequences, we verify that ∀j,
{vj , vj+1} shares one index k so that {vj , vj+1} ⊂ Lk, and lastly that no
straight line Li cuts Y.

Let k ∈ {0, 1, . . . , n}, then the triangle with vertices {zk, zk+1, zk−1,k+1}
is a chamber. Indeed, this triangle exists, that is to say all segments of
the boundary are included in straight lines Lj . Because of the indices of
its vertices, the convex hull Conv({zk, zk+1, zk−1,k+1}) does not contain any
auxiliary vertex, so that no straightline Lj cuts this triangle. Then we

obtain, by rotation, n compact triangles as chambers of R(n)b.
Let k, ℓ be two integers such that k, ℓ ∈ {0, . . . , n−1}, k ̸= ℓ and |k− ℓ| ≠

n
2 then the quadrilateral Conv({zk,ℓ, zk+1,ℓ, zk+1,ℓ−1, zk,ℓ−1}) is a chamber.
Indeed, this quadrilateral exists in R(n) and no straightline Lj cuts this
quadrilateral because of the indices of its vertices. While the requirement
|k − ℓ| ≠ n

2 avoids singular system when determining Lk ∩ Lℓ, the two
following conditions |k − ℓ| ≥ 1 and |(k + 1) − (ℓ − 1)| ≤ ν ensure the
existence of the four connected edges that characterize the quadrilateral.
The first condition being obviously satisfied, we easily prove that the number
of those quadrilaterals is equal to n(ν − 2).

Let k, ℓ ∈ {0, . . . , n− 1} such that |k − ℓ| = ν, then zk,ℓ ∈ Cν . According
to previous notation, let CR ∩ Lk = {R′

k, R
′′
k} for all k. Straightforward

computations show that the coordinates of these two points are equal to(
c1c2k+1 + εs2k+1

√
R2 − c21, c1s2k+1 − εc2k+1

√
R2 − c21

)
,

where ε ∈ {−1, 1}. We define R′
k as the closest neighbour of zk,ℓ on CR along

Lk, that is to say

(10) |ξk(R′
k)− ξ(zk,ℓ)| < |ξk(R′′

k)− ξ(zk,ℓ)|,
where ξ(zk,ℓ) is given by (9), and we choose R′

ℓ similarly. We remind that
R′

k and R′
ℓ are two points that belong necessarily to {R1, . . . , R2n}. Since
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R > c1, there exists β ∈ [0, n2 ] such that c1
R = cβ. We may prove that

(11) ∀R >
c1
cν

, 0 < β − ν =
n

π
arccos

(c1
R

)
−
[
n− 1

2

]
< 1.

This results from applying the cosinus mapping to cν+1 < 0 < c1
R < cν . Next

we may state that for any couple of indices (k, ℓ) such that |k − ℓ| = ν, the
euclidean distance dk,ε between zk,ℓ and R′

k or R′′
k may be expressed as

d2k,ε =

(
c1
cν

)2

+R2 − 2

(
c1
cν

)
Rcβ+εν =

(
R

cν

)2

s2β+εν ,

while the distance dε,ℓ between zk,ℓ and R′
ℓ or R

′′
ℓ writes as

d2ε,ℓ =

(
c1
cν

)2

+R2 − 2

(
c1
cν

)
Rcβ−εν =

(
R

cν

)2

s2β−εν = d2ℓ,−ε.

Since β π
n and ν π

n belong to [0, π2 ], sβ+ν−sβ−ν = 2cβsν > 0. Because of (11),

sβ−ν > 0 and thus, d2k,1 > d2k,−1. It occurs that the distances dk,ε and dε,ℓ
are minimal if and only if ε is equal to −1 and 1 respectively. Therefore,

R′
k =

(
c1c2k+1 − s2k+1

√
R2 − c21

c1s2k+1 + c2k+1

√
R2 − c21

)
= R

(
cβ+(2k+1)

sβ+(2k+1)

)
= ReI(β+(2k+1))π

n

and

R′′
k =

(
c1c2k+1 + s2k+1

√
R2 − c21

c1s2k+1 − c2k+1

√
R2 − c21

)
= R

(
cβ−(2k+1)

sβ−(2k+1)

)
= ReI(β−(2k+1))π

n .

The non-compact triangle with vertices zk,ℓ, R
′
k and R′

ℓ exists and is a
chamber. Indeed, if a straight line Lj cut this triangle, we would have an
intersection point beyond Cν and this is impossible. So R′

k and R′
ℓ are closest

neighbours on the circle CR and the polar angles of the two points R′
k and

R′
ℓ are consecutive terms of the sequence (η1, . . . , η2n). At this point, since

k ∈ {0, . . . , n− 1} determines ℓ, we obtain n such non-compact triangles.
Next, let us consider zk,ℓ such that |k − ℓ| = ν − 1, then we know that

zk+1,ℓ and zk,ℓ−1 belong to Cν . As before, we define R′
k+1 ∈ CR ∩ Lk+1 and

R′
ℓ−1 ∈ CR ∩Lℓ−1 as the closest neighbours of zk+1,ℓ and zk,ℓ−1 on CR along

Lk+1 and Lℓ−1 respectively. Then, the non-compact pentagon

Conv({zk,ℓ, zk+1,ℓ,
>
R′

k+1R
′
ℓ−1, zk,ℓ−1})

is a chamber. Indeed, by the crucial fact mentioned above, no straight
line Lj cuts this pentagonal region. Therefore, R′

k+1 and R′
ℓ−1 are closest

neighbours on CR and lie in separate classes CR,ν+1 or CR,ν+2. So, since n
vertices lie on Cν−1, we obtain n non-compact pentagonal regions.

At last, taking into account the central n-gon, we see that the enumeration
of chambers is complete. Let us note to conclude that Robert’s formula (2)
allows to write that

1 + n+

(
n

2

)
− 0− n

(
n− 1

2
− ν

)
= n(ν + 1) + 1,

which states a mathematical equivalence between the number of connected
components of R2 −R(n) and the amount of chambers given in the table of
Theorem 3.1.
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Remark 3.1. Although the previous theorem holds only for n ≥ 5, we may
state some results for n = 3 and n = 4 by invoking simple geometric consid-
erations.

• R2−R(3) consists in one compact triangle, 3 non-compact triangles
and 3 non-compact quadrilaterals.

• R2 −R(4) consists in one compact quadrilateral, 4 non-compact tri-
angles and 4 non-compact quadrilaterals.

Remark 3.2. Let sn = n(ν + 1) + 1 be the total number of chambers of
R(n)b. This sequence is referred as A249333 in [6] and is attributed to
Richard Stanley. In contrast, the specific sequence which counts the number
of quadrilaterals in R(n)b is not referenced in OEIS.

Remark 3.3. The angular diameters of the circular arcs bounding “at in-
finity” any non-compact triangle and any non-compact pentagon of R(n) are
respectively equal to

βT = ̂R′
k+1ORℓ =

2π

n
(ν − β) and βP = ̂R′

ℓ−1OR′
k+1 =

2π

n
(ν + 1− β).

We may then observe that the sequence of angles (ηj+1 − ηj) is a 2-periodic
sequence with terms alternatively equal to βT and βP . More accurately, we
have

η2p − η2p−1 =

{
βP if n ≡ 0, 3
βT if n ≡ 1, 2

and η2p+1 − η2p =

{
βT if n ≡ 0, 3
βP if n ≡ 1, 2

for all integers n computed modulo 4 and for all convenient indices p.

Remark 3.4. Instead of using the adjacency matrix A, we could use a
boolean mapping B : V (R(n)b)2 → {0, 1} detecting the connectivity of the
pairs of vertices in the geometric graph R(n)b. For the “finite” points, we
would have

B((ℓ− 1, ℓ); (ℓ′ − 1, ℓ′)) = 1 iff |ℓ− ℓ′| = 1,

B((k, ℓ); (k′, ℓ′)) = 1 iff |k − k′|+ |ℓ− ℓ′| = 1, |k − ℓ| ≥ 1, |k′ − ℓ′| ≥ 1.

Unfortunately, the 2n points at infinity are difficult to handle because they
involve transcendental extraneous conditions and not only diophantine ones.

4. About the areas of the chambers

In this last section, we give the formulas for the areas of the chambers of
the space R(n)b. Let An,0 = n

2 s2 be the area of the central regular n-gon.
Let us denote by An,T the area of a compact triangle, by An,Q(m) the area
of a compact quadrilateral of which two vertices lie on Cm, and by An,P and
An,S the respective areas of the non-compact pentagonal and non-compact
triangular chambers. Invoking the distribution given in Theorem 3.1, we
have

πR2 = An,0 + nAn,T + n

ν∑
m=2

An,Q(m) + n(An,P +An,S).

The two hand-sides of this equation are polynomials of degree 2 w.r.t. R,
provided R > rν , while An,P and An,S are algebraic functions of R. In
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the following, we repetitively use the rotation ρ to deduce from one partic-
ular calculus, the area of congruent chambers of R(n)b. Using geometric
considerations, we may provide the following interesting result

Theorem 4.1. For all integers n ≥ 5, we have

ν−1∑
m=2

sin
(
mπ
n

)
cos
(
(m− 1)πn

)
cos
(
mπ

n

)
cos
(
(m+ 1)πn

)
=

1

2 sin
(
π
n

)
 1

cos
(
(ν−1)π

n

)
cos
(
νπ
n

) − 1

cos
(
π
n

)
cos
(
2π
n

)
 .(12)

Proof. The proof proceeds from the exact computation of the explicit values
of the areas found in the regular n-gon homothetic to the central regular n-
gon of ratio rν = c1

cν
. This regular n-gon is partitioned in a series of convex

polygons with pairwise disjoint interiors, including the central regular n-gon,
the compact triangles, the whole sequence of compact quadrilaterals, as well
as the triangular parts An,P,1 extracted from the non-compact pentagonal
chambers and characterized exclusively by some vertices zk,ℓ. All these terms
will be defined shortly and allow to state

(13) An,0r
2
ν = An,0 + nAn,T + n

ν−1∑
m=2

An,Q(m) + nAn,P,1,

or what amounts to the same thing

(14)
ν−1∑
m=2

An,Q(m) =
s2
2
(r2ν − 1)−An,T −An,P,1.

As will be explained below, this formula is the exact replica of the result
mentioned in the theorem up to a multiplicative factor 2

ns22
.

So, to begin, the area of a triangle is given as 1
2 |(x2−x1)(y3− y1)− (x3−

x1)(y2 − y1)| when the coordinates of all vertices are known. We consider
the triangle Conv({zk, zk+1, zk−1,k+1}), see Figure 3, and we deduce from its
area, the area of any compact triangle

(15) An,T =
s21s2
c2

.

Now, let m be an integer such that 2 ≤ m ≤ ν−1, and let us consider the
quadrilateral in R(n)b whose vertices zk,ℓ, zk+1,ℓ, zk,ℓ−1, zk+1,ℓ−1 are such
that |k + 1− ℓ| = m, see Figure 4.

As seen previously, two vertices lie on Cm, one is on Cm−1 and the last is
on Cm+1. Since the polar angles of zk,ℓ and zk+1,ℓ−1 are equal, the straight
line ∆′ joining zk,ℓ and zk+1,ℓ−1 passes through the origin. Furthermore, the
straight line ∆′′ from zk+1,ℓ to zk,ℓ−1 is orthogonal to ∆′. The orthogonal
symmetry w.r.t the straight line ∆′′ shows that the area An,Q(m) is the half
of the area of the rectangle with two sides parallel to straight line ∆′′ and
having on its boundary the four vertices zk,ℓ, zk+1,ℓ, zk,ℓ−1, zk+1,ℓ−1. By
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Figure 3. Area An,T of a compact triangle

Figure 4. Area An,Q(m) of a compact quadrilateral

the way, the length of one side of this rectangle is rm+1 − rm−1 =
s2sm

cm+1cm−1

while the length of the other side is given by the distance between zk+1,ℓ

and zk,ℓ−1 that is to say s2
cm

. Hence we get the area

(16) An,Q(m) =
s22sm

2cm−1cmcm+1
,

with the usual restriction on the integer m characterizing the three circles
Cm−1, Cm, Cm+1, i.e. m,m ± 1 ̸= n

2 . Next, we may state that the area of
Conv({zℓ+ν−1,ℓ, zℓ+ν,ℓ, zℓ+ν−1,ℓ−1}), see Figure 5, is equal to

(17) An,P,1 =
c21s

2
1sν−1

c2νcν−1
.

Gathering together (14), (15), (16) and (17), we get

s22
2

ν−1∑
m=2

sm
cm−1cmcm+1

=
s2
2

(
c21
c2ν

− 1

)
− s21s2

c2
− c21s

2
1sν−1

c2νcν−1

or equivalently

ν−1∑
m=2

sm
cm−1cmcm+1

=
c21
s2c2ν

− 1

s2
− 2s21

s2c2
− 2c21s

2
1sν−1

s22c
2
νcν−1

=
c21
s2c2ν

− 1

s2c2
− c1s1sν−1

s2c2νcν−1
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which provides after a few simplification the formula (12).

Remark 4.1. The area Qn =
∑ν

m=2An,Q(m) of the whole cohort of quadri-
laterals may be, as a function of n, expressed as an interesting algebraic
number in the cyclotomic field Q

(
exp

(
2Iπ
n

))
. For n = 5 and n = 6, the two

sums are void and thus are equal to 0. One obtains also for example

Q8 =
1

2

√
2, Q12 =

√
3

6
+

(
5

6

√
6−

√
2

2

)
cos

π

12
,

while Q16 is an explicit rational expression involving surds and cos π
8 .

We provide now a synopsis of the areas of the chambers of R(n)b.

Theorem 4.2. Notation being as above, the areas of the different chambers
of R(n)b and their asymptotics as n tends to +∞ are given by

Polygon Area of the polygon Asymptotic equivalent

An,0
n
2 s2 π

An,T
s21s2
c2

2π3

n3

An,Q(m)
s22sm

2cm−1cmcm+1

2mπ3

n3 (m fixed)

Qn s22
4s1

(
1

cν−1cν
− 1

c1c2

) n
2π if n is even

4n
3π if n is odd

An,P,1
c21s

2
1sν−1

c2νcν−1

n
2π if n is even

8n
3π if n is odd

An,P,2

(
Rsν+1−β + c1s1

cν

)
R

sν+1sβ−ν

cν

2R− 2n
π if n is even

πR2

2n − 6n
π + 2R if n is odd

An,P,3 R2(ν + 1− β)πn − R2

2 s2(ν+1−β)

4
3R if n is even

4
3R

2
(
π
n

)3 (1
2 + n

πR

)3
if n is odd

An,S,1 R2s2β−ν
sν
cν

πR2

n − 2R+ n
π if n is even

πR2

2n − 2R+ 2n
π if n is odd

An,S,2 R2(β − ν)πn − R2

2 s2(β−ν)

4
3R

2
(
π
n

)3 (
1− n

πR

)3
if n is even

4
3R

2
(
π
n

)3 (1
2 − n

πR

)3
if n is odd

Table 2. Areas of the chambers of R(n)b and their asymp-
totics as n tends to +∞

Proof. The first half of the results presented in this array has already been
proved in the previous theorem. Before embarking on the asymptotic ex-
pansions of these areas, it remains to focus on the areas of the non-compact
chambers which are characterized by vertices lying on the two last orbits
Cν−1, Cν and the circle CR and that we formalize below through the rela-
tionships k = ℓ+ ν − 1, 0 ≤ ℓ < ν, k > ℓ.
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In order to determine the area An,P of any pentagon, all others being con-
gruent modulo ρ and thus having the same area, we split it into

a triangle Conv({zℓ+ν−1,ℓ, zℓ+ν,ℓ, zℓ+ν−1,ℓ−1}),
a quadrilateral Conv({zℓ+ν,ℓ, zℓ+ν−1,ℓ−1, R

′
ℓ−1, R

′
ℓ+ν}),

a disk segment R′
ℓ+ν R′

ℓ−1.

The area An,P,1 of Conv({zℓ+ν−1,ℓ, zℓ+ν,ℓ, zℓ+ν−1,ℓ−1}), see Figure 5, has al-
ready been computed and is given in (17). Let us remind next that the
intersection points R′

ℓ−1 and R′
ℓ+ν obtained by intersecting CR with the

straight lines Lℓ−1 and Lℓ+ν have the following coordinates

R′
ℓ−1 = R(c2ℓ−1+β, s2ℓ−1+β) and R′

ℓ+ν = R(c2ℓ+2ν+1−β, s2ℓ+2ν+1−β).

Figure 5. Area An,P of a non-compact pentagon

We remark next that the quadrilateral Conv({zℓ+ν,ℓ, zℓ+ν−1,ℓ−1, R
′
ℓ−1, R

′
ν+ℓ})

is a trapezoid since the straight lines (zℓ+ν,ℓzℓ+ν−1,ℓ−1) and (R′
ℓ−1R

′
ℓ+ν) are

parallel, their slope being equal to − c2ℓ+ν

s2ℓ+ν
. In order to determine the height

between these two bases, we note that the origin O of the coordinate sys-
tem and the respective middles P1 and P2 of the sides zℓ+ν,ℓzℓ+ν−1,ℓ−1 and
R′

ℓ−1R
′
ℓ+ν are colinear. Indeed,

P1 =
c21
cν

(c2ℓ+ν , s2ℓ+ν) and P2 = Rcν+1−β(c2ℓ+ν , s2ℓ+ν).

Therefore, the height of the trapezoid is simply equal to the euclidean dis-
tance between P1 and P2 that is to say

0 < dist(P1, P2) =
c21
cν

−Rcν+1−β = R
sν+1sβ−ν

cν
,

the positive sign being obtained using (11). We may then compute the
lengths of the two bases zℓ+ν,ℓzℓ+ν−1,ℓ−1 and R′

ℓ−1R
′
ℓ+ν which are respec-

tively equal to 2 c1s1
cν

and 2(c1sν+1−cν+1

√
R2 − c21) = 2Rsν+1−β. We deduce

that

An,P,2 =

(
Rsν+1−β +

c1s1
cν

)
R
sν+1sβ−ν

cν
.

In order to determine the area of the circular segment R′
ℓ+ν R′

ℓ−1, we
use Al-Kashi’s law of cosines which states that the distance between R′

ℓ−1
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and R′
ℓ+ν checks the relationship

dist(R′
ℓ−1, R

′
ℓ+ν)

2 = 4R2s2ν+1−β = 2R2 − 2R2 cos ̂R′
ℓ+νOR′

ℓ−1

which yields

̂R′
ℓ+νOR′

ℓ−1 = arccos
(
1− 2s2ν+1−β

)
= arccos c2(ν+1−β) = 2(ν + 1− β)

π

n
.

Then,

An,P,3 = R2(ν + 1− β)
π

n
− R2

2
s2(ν+1−β).

Using the distinct areas presented above, we find
(18)

An,P =
c21s

2
1sν−1

c2νcν−1
+R2

((
sν+1−β +

cβs1
cν

)
sν+1sβ−ν

cν
+

(
(ν + 1− β)− 1

2
s2(ν+1−β)

))
.

The last step consists in computing the areas of the non-compact triangles
which are all identical and may identified to Conv({zℓ+ν,ℓ, R

′
ℓ, R

′
ℓ+ν}), see

Figure 6.

Figure 6. Area An,S of a non-compact triangle

By introducing the middle point P = Rcν−β(c2ℓ+ν+1, s2l+ν+1) of the
side R′

ℓR
′
ℓ+ν , it is obvious that O, zℓ+ν,ℓ = c1

cν
(c2ℓ+ν+1, s2l+ν+1) and P

are colinear, which means that the area An,S,1 of the triangular part of
Conv({zℓ+ν,ℓ, R

′
ℓ, R

′
ℓ+ν}) is twice the area of the triangle Conv({zℓ+ν,ℓ, R

′
ℓ, P}).

We deduce easily that

An,S,1 =
1

2
(2Rsβ−ν)

(
R

cν
sβ−νsν

)
= R2s2β−ν

sν
cν

.

At last, we proceed as before to determine the area of the circular segment
R′

ℓ+ν R′
ℓ, i.e.

An,S,2 = R2(β − ν)
π

n
− R2

2
s2(β−ν).

Therefore,

(19) An,S = R2s2β−ν

sν
cν

+R2(β − ν)
π

n
− R2

2
s2(β−ν).
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It remains then to prove the asymptotics. First we have R > n
π since R > c1

cν
,

then when n tends to +∞, so does R. Next we use the following simple
results

Quantities n even n odd

ν n
2 − 1 n

2 − 1

cν
π
n

π
2n

rν
n
π

2n
π

β − ν 1− n
πR

1
2 − n

πR

sβ−ν 1− n
πR

1
2 − n

πR

ν + 1− β n
πR

1
2 + n

πR

sν+1−β
n
πR

1
2 + n

πR
Table 3. Asymptotics as n tends to +∞ of several parameters

In this way we obtain the asymptotics of all the areas except An,P,3 and
An,S,2. To obtain these last ones, we use the asymptotic expansion R2(θ −
1
2 sin(2θ)) ∼

4
3R

2θ3. Here, θ tends to 0, R tends to +∞ and θ is chosen as
(β − ν)πn or (ν + 1− β)πn , these two angles being positive and less than π

n .

Remark 4.2. Let us consider the ratios of areas in formula (13) w.r.t. the
total area πr2ν . An interesting feature arises from the asymptotics. The
subsequence with n odd or even of the preceding sequence of ratios have the
following behaviour

1

πr2ν

ν−1∑
m=2

An,Q(m) →
+∞

{
1
2 , n ≡ 0 mod 2
1
3 , n ≡ 1 mod 2

,
1

πr2ν
nAn,P,1 →

+∞

{
1
2 , n ≡ 0 mod 2
2
3 , n ≡ 1 mod 2

.

Remark 4.3. Let us consider the function f(t) = sin(t)
cos(t)3

on
[
0, π2

[
whose

integral on this interval is divergent. Let us denote by Sn the left Riemann
sum of f over the interval

[
0, π2

[
. Using the relationship sm−1sm+1 − s2m =

−s21 < 0, for all 2 ≤ m ≤ ν, we easily get s22Sn ≤ nQ2n. Comparison the-
orem between integrals and Riemann sums for monotonic functions implies
that the sums Pn = 2n

π Sn lie in O(n2) as n tends to +∞. It would be in-

teresting to study the link between Pn and
∑ν−1

m=2
cm

sm−1smsm+1
as well as to

obtain the explicit value of the limit of the sequence
(
Pn
n2

)
.
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