Vol. 12 (2023), No. 2, 5-13

MINIMAL NUMBER OF POINTS ON A GRID FORMING LINE SEGMENTS OF EQUAL LENGTH

CHAI WAH WU

Abstract

We consider the minimal number of points on a regular grid on the plane that generates n line segments of points of exactly length k. We illustrate how this is related to the n-queens problem on the toroidal chessboard and show that this number is upper bounded by $k n / 3$ and approaches $k n / 4$ as $n \rightarrow \infty$ when $k+1$ is coprime with 6 or when k is large.

1. Introduction

We consider points on a regular grid on the plane which form horizontal, vertical or diagonal line segments of exactly k points ${ }^{1}$. For example, the set of 12 points in Fig. 1 form many line segments and form exactly 3 (overlapping) line segments of length 5 . Note that since a line segment of length k consists of exactly k points and no more ${ }^{2}$, the set of points in Fig. 1 contains 4 line segments of length 2 and does not contain any line segments of length 4 or of length 3 . Our motivation for studying this problem is the Bingo- 4 problem proposed by Sun et al. and described in OEIS [6] sequence A273916 where the case $k=4$ is considered. This problem can be considered a type of orchard-planting problem [3] restricted to a grid.

Let $a_{k}(n)$ denote the minimal number of points needed to form n line segments of length k. Fig. 1 shows that $a_{5}(3)=12$ as any constellation of 11 points will not generate 3 segments of length 5 . Note that the constellation of points achieving $a_{k}(n)$ is typically not unique. Finding the exact value of $a_{k}(n)$ appears to be difficult and currently not feasible for large n. The purpose of this paper is to provide an analysis on the asymptotic behavior of $a_{k}(n)$.

Keywords and phrases: n-Queens problem, grid patterns (2020) Mathematics Subject Classification: 52-XX, 05BXX Received: 14.05.2022. In revised form: 25.11.2022. Accepted: 19.11.2022.

[^0]

Figure 1. A constellation of 12 points on a grid. Among the line segments formed by these points are 3 (overlapping) line segments of length 5 as shown by the dashed boundaries.

2. Bounds and asymptotic Behavior of $a_{k}(n)$

It is easy to show that $a_{k}(1)=k, a_{k}(2)=2 k-1$ and $a_{k}(3)=3(k-1)$ as 2 line segments overlap in at most one point and 3 line segments overlaps in at most 3 points, as illustrated in Fig. 2 for $k=5$. Note that $a_{k}(3)$ can be obtained with points forming a right isosceles triangle.

Lemma 2.1 (Fekete's subadditive Lemma [4]). If the sequence $a(n)$ is subadditive, i.e. $a(n+m) \leq a(n)+a(m)$, then $\lim _{n \rightarrow \infty} \frac{a_{n}}{n}$ exists and is equal to $\inf _{n} \frac{a_{n}}{n}$.

Figure 2. Sets of points illustrating $a_{k}(n)$ for $n=1,2,3$.

Theorem 2.1. For all $k, a_{k}(n)$ is subadditive, and $f(k)=\lim _{n \rightarrow \infty} \frac{a_{k}(n)}{n}$ exists and satisfies $\frac{k}{4} \leq f(k) \leq \frac{k}{3}$.
Proof. Since each line segment takes k points and each point can be part of at most 4 line segments (horizontal, vertical or diagonal), $a_{k}(n) \geq \frac{k n}{4}$. Since the set of points for $a_{k}(n)$ and $a_{k}(m)$ separated apart leads to $m+n$ line segments of length k, it is clear that $a_{k}(n)$ is subadditive. Lemma 2.1implies that $f(k)$ exists and is equal to $\inf _{n} \frac{a_{k}(n)}{n}$. Consider a k by m rectangular array of points with $k \leq m$. There are m vertical line segments and $m-k+1$ diagonal line segments of each orientation and thus there are $3 m-2 k+2$ length k line segments. This shows that $a_{k}(3 m-2 k+2) \leq k m$ which implies that $\frac{k}{4} \leq f(k) \leq \frac{k}{3}$.

3. Constellations where each point is part of 4 Different line SEGMENTS

The upper bound $\frac{k}{3}$ on $f(k)$ in Theorem 2.1 shows that for large n we can construct a constellation of n points such that most points are part of 3 different line segments. Is it possible to construct a constellation such that most points are part of 4 different line segments (a horizontal, a vertical and two diagonal line segments) and thus achieve the lower bound $\frac{k}{4}$? The case $k=1$ is simple. Since $a_{1}(4 n)=n$ as exhibited by the constellation of n isolated points, this implies that $f(1)=\frac{1}{4}$.

Let $\sigma \in S_{k+1}$ be a permutation on the integers $\{0,1, \cdots, k\}$. Consider a $k+1$ by $k+1$ square grid and place a point on each position (i, j) except when it is of the form $(i, \sigma(i))$. It is clear that tiling this grid on the plane results in a constellation where every point is part of a horizontal and a vertical line segment of length k. The shear maps $(i, j) \rightarrow(i, i+j)$ and $(i, j) \rightarrow(i, i-j)$ map the two diagonal line segments to a vertical line segment. Thus in order to also have every point be part of two diagonal line segments of exactly k points, we want $\{i+\sigma(i) \bmod (k+1)\}$ and $\{i-\sigma(i)$ $\bmod (k+1)\}$ to be permutations of $\{0,1, \cdots, k\}$ as well. If this is the case, consider a N by N subgrid of this tiling and let n be the number of points in this subgrid. Except for points near the edges which is on the order of $k N \propto k \sqrt{n}$, all points belong to 4 line segments of length k. Thus we have proved the following:

Theorem 3.1. If there is a permutation σ of the numbers $\{0,1, \cdots, k\}$ such that $\sigma_{1}=\{i+\sigma(i) \bmod (k+1)\}$ and $\sigma_{2}=\{i-\sigma(i) \bmod (k+1)\}$ are both permutations, then $f(k)=\frac{k}{4}$. In particular, $\frac{a_{k}(n)}{n}$ converges to $f(k)$ on the order of $O\left(\frac{1}{\sqrt{n}}\right)$.

If σ satisfies the conditions of Theorem 3.1, then so does σ^{-1}. For a fixed integer m, the permutation $\sigma(i)+m \bmod (k+1)$ also satisfies these conditions. We will use this to partition the set of admissible permutations into equivalent classes. More specifically,

Definition 3.1. Let S_{k+1} be the set of permutations on $\{0,1, \cdots, k\} . T_{k+1} \subset$ S_{k+1} is defined as the set of permutations σ such that $\{i+\sigma(i) \bmod (k+1)\}$
and $\{i-\sigma(i) \bmod (k+1)\}$ are in S_{k+1}. The equivalence relation \sim is defined on T_{k+1} as follows. If $\sigma, \tau \in T_{k+1}$, then $\sigma \sim \tau$ if $\tau=\sigma^{-1}$ or there exist an integer m such that $\sigma(i)=\tau(i)+m \bmod (k+1)$ for all i.

Thus Theorem 3.1 implies that if $T_{k+1} \neq \varnothing$, then $f(k)=\frac{k}{4}$.

4. Modular n-Queens Problem

In this section we show that the above constellation is related to an n-queens problem on a toroidal chessboard. The n-queens problem asks whether n nonattacking queens can be placed on an n by n chessboard. The answer is yes and is first shown by Pauls [7, 1]. Next consider a toroidal n by n chessboard, where the top edge is connected to the bottom edge and the left edge is connected to the right edge. The corresponding n-queens problem is called a modular n-queens problem. For the $k+1$ by $k+1$ square grid above, if we put a queen on each position $(i, \sigma(i))$, then it is easy to see that $\sigma \in T_{k+1}$ if and only if it provides a solution to the modular $(k+1)$-queens problem. For instance, for $k=4$, consider the permutation $\sigma=(0,2,4,1,3)$. Figure 3 shows a 5 by 5 grid where all the points are part of 4 line segments if the grid tiles the plane (or equivalently, the grid lives on a torus). This means that each point in the center of a finite tiling are part of 4 line segments. If we put a queen on each of the 5 empty locations, we obtain a solution to the modular 5 -queens problem.

Figure 3. Points where the empty locations are of coordinates $(i, \sigma(i))$. Putting a queen at each empty location results in a solution to the modular 5 -queen problem.

Pólya [8] showed that a solution to the modular n-queens problem exists if and only if n is coprime with 6 . Thus Pólya's result is equivalent to the following:

Theorem 4.1. $T_{k+1} \neq \varnothing$ if and only if $k+1$ is coprime with 6 .
Corollary 4.1. If $k+1$ is coprime with 6 , then $f(k)=\frac{k}{4}$.

Figure 4. A lattice constellation. Points in the center of the grid are part of 4 different patterns, showing that $\frac{a_{4}(n)}{n} \rightarrow 1$ as $n \rightarrow \infty$.

Monsky [5] shows that $n-2$ nonattacking queens can be placed on an n by n toroidal chess board and $n-1$ queens can be placed if n is not divisible by 3 or 4 . This implies the following which shows that for k large, $f(k)$ approaches the lower bound $\frac{k}{4}$:

Theorem 4.2. $f(k) \leq \frac{k(k+1)+2}{4(k-1)}$. If $k+1$ is not divisible by 3 or 4 , then $f(k) \leq \frac{k(k+1)+1}{4 k}$.

Proof. Consider a $k+1$ by $k+1$ array with $k+1-r$ nonattacking queens. By placing a point only on the locations where there are no queens we obtain a constellation with $(k+1)^{2}-(k+1-r)$ points. Each point then is part of 4 line segments of length k. Thus when this array is tiled, we get for a large
number of points a ratio $\frac{a_{k}(n)}{n}$ approaching $\frac{(k+1)^{2}-(k+1-r)}{4(k+1-r)}=\frac{k(k+1)+r}{4(k+1-r)}$. The conclusion follows by setting $r=1$ or $r=2$.

Corollary 4.2. $\lim _{k \rightarrow \infty} \frac{f(k)}{k}=\frac{1}{4}$.
4.1. Lattice construction. As in the n-queens problem, we can construct permutations in T_{k+1} via a lattice construction.

Definition 4.1. Given two vectors v_{1} and v_{2}, the lattice construction is defined as a constellation of points such that a point is on the grid if and only if the point is not a linear combination of v_{1} and v_{2}.

Figure 5. A lattice constellation for $k=12$ generated by vectors $(1,2)$ and $(0,13)$.

For instance with the lattice points generated by the vectors $(1,2)$ and $(2,-1)$, the set of points with $N=15$ is shown in Fig. 4. In particular, this configuration shows that $f(4)=1$.

The following result appears to be well-known [1] , but we include it here for completeness.

Theorem 4.3. If there exists $1<m<k$ such that $m-1, m$ and $m+1$ are all coprime with $k+1$, then the lattice construction with $v_{1}=(1, m)$ and $v_{2}=(0, k+1)$ corresponds to a permutation σ in T_{k+1}.
Proof. Consider the lattice construction generated by $(1, m)$ and $(0, k+1)$. If m is coprime with $k+1$, then $(m, 2 m, \cdots,(k+1) m) \bmod (k+1)$ is a permutation σ in S_{k+1} and thus we find in a $k+1$ by $k+1$ subarray empty locations of the form $(i, \sigma(i)) \cdot i+\sigma(i) \equiv(m+1) i \bmod (k+1)$ and $\{i+\sigma(i)$ $\bmod (k+1)\}$ is again a permutation since $m+1$ and $k+1$ are coprime. Similarly, $i-\sigma(i) \equiv-(m-1) i \bmod (k+1)$ and $\{i-\sigma(i) \bmod (k+1)\}$ is a permutation since $m-1$ and $k+1$ are coprime. Thus the conditions of Theorem 3.1 are satisfied and the conclusion follows.

Figure 6. A constellation for $k=12$ corresponding to the permutation ($0,2,4,6,11,9,12,5,3,1,7,10,8$) and it is not generated by a lattice.

Theorem 4.3 also provides a proof of Corollary 4.1 since if $k+1$ is coprime with 6 , then 1,2 and 3 are all coprime with $k+1$ and we can choose $m=2$. In particular the lattice construction with $v_{1}=(1,2)$ and $v_{2}=(0, k+1)$ generates a permutation σ in T_{k+1}. Fig. 5shows the construction for $k=12$.

For $k=4$, there is only one equivalence class $(0,2,4,1,3)$ in T_{k+1} that satisfies the conditions of Theorem 3.1. For $k=6$, there are two equivalent classes $(0,2,4,6,1,3,5)$ and $(0,3,6,2,5,1,4)$. For $k=10$, there are 4 equivalent classes. In particular, Theorem 4.3 shows that if $k+1>4$ is prime, then there are at least $\frac{k-2}{2}$ equivalent classes in T_{k+1}. This is because each $2 \leq m \leq k-1$ is coprime with $k+1$ and the permutation generated by m is the inverse of the permutation generated by $k-1-m$ which are equivalent ${ }^{3}$. It is possible to have more than $\frac{k-2}{2}$ equivalent classes as there are permutations in T_{k+1} not generated by a lattice. For $k+1$ coprime with 6 , if $k=4,6$ and 10 , all permutations in T_{k+1} are generated by a lattice. For $k=12$, there are permutations in T_{k+1} that are not generated by a lattice. One such example is shown in Fig. 6. Such solutions are referred to as nonlinear solutions [1].

5. Conclusions

We studied the asymptotic behavior of the minimal number of points needed to generate n line segments of length k using a construction based on permutations of $\{0,1, \cdots, k\}$ with certain properties. We showed that this construction allows us to create constellations of points where asympotically most points are part of 4 line segments. This construction is equivalent to the modular $(k+1)$-queens problem and thus $f(k)=\frac{k}{4}$ for $k+1$ coprime with 6. If $k+1$ is even or $k+1$ is divisible by 3 , this construction fails to provide such a constellation. However, results in the modular n-queens problem can still provide an upper bound on $f(k)$ which shows that $\lim _{k \rightarrow \infty} \frac{f(k)}{k}=\frac{1}{4}$. Even though these constructions for the modular n-queens problem provide limiting values of $\frac{a_{k}(n)}{n}$ as $n \rightarrow \infty$, for a fixed n the optimal constellation to achieve $a_{k}(n)$ can be quite different and difficult to compute (see for example https://oeis.org/A273916/a273916.png).

6. Acknowledgements

We are indebted to Don Coppersmith for stimulating discussions and for providing many insights during the preparation of this paper.

References

[1] Bell, J. and Stevens, B. A survey of known results and research areas for n-queens, Discrete Mathematics, 309 (2009), 1-31.
[2] Burger, A., Mynhardt, C. and Cockayne, E. Regular solutions of the n-queens problem on the torus, Utilitas Mathematica, 65 (2004), 219-230.
[3] Burr, S. A., Grünbaum, B. and Sloane, N. J. A., The orchard problem, Geometriae Dedicata, 2 (1974), 397-424.
[4] Fekete, M, Über die verteilung der wurzeln bei gewissen algebraischen gleichungen mit ganzzahligen koeffizienten, Mathematische Zeitschrift, 17 (1923), 228-249.
[5] Monsky, P. E3162, American Mathematical Monthly, 96 (1989) 258-259.
[6] OEIS Foundation Inc., The On-line Encyclopedia of Integer Sequences, published electronically at http://oeis.org, 2022.
[7] Pauls, E. Das maximalproblem der damen auf dem schachbrete, II, deutsche schachzeitung, Organ für das Gesammte Schachleben, 29 (1874), 257-267.

[^1][8] Pólya, G. Über die "doppelt-periodischen" losüngen des n-damen-problems, Mathematische Unterhaltungen und Spiele (W. Ahrens, ed.), 2 (1918), 364-374.

IBM RESEARCH AI
IBM T. J. WATSON RESEARCH CENTER
YORKTOWN HEIGHTS, NY 10598, USA
E-mail address: cwwu@us.ibm.com

[^0]: ${ }^{1}$ We use the convention that an isolated point corresponds to 4 line segments of length 1 ; a horizontal, a vertical and 2 diagonal line segments.
 ${ }^{2}$ This implies that two line segments of the same orientation (horizontal, vertical or diagonal) must not overlap.

[^1]: ${ }^{3}$ For general k, see Ref. [2] for a formula of the number of such permutations.

