INTERNATIONAL JOURNAL OF GEOMETRY Vol. 12 (2023), No. 2, 5 - 13

MINIMAL NUMBER OF POINTS ON A GRID FORMING LINE SEGMENTS OF EQUAL LENGTH

CHAI WAH WU

Abstract. We consider the minimal number of points on a regular grid on the plane that generates n line segments of points of exactly length k. We illustrate how this is related to the n-queens problem on the toroidal chessboard and show that this number is upper bounded by kn/3 and approaches kn/4 as $n \to \infty$ when k+1 is coprime with 6 or when k is large.

1. Introduction

We consider points on a regular grid on the plane which form horizontal, vertical or diagonal line segments of exactly k points 1 . For example, the set of 12 points in Fig. 1 form many line segments and form exactly 3 (overlapping) line segments of length 5. Note that since a line segment of length k consists of exactly k points and no more 2 , the set of points in Fig. 1 contains 4 line segments of length 2 and does not contain any line segments of length 4 or of length 3. Our motivation for studying this problem is the Bingo-4 problem proposed by Sun et al. and described in OEIS [6] sequence A273916 where the case k=4 is considered. This problem can be considered a type of orchard-planting problem [3] restricted to a grid.

Let $a_k(n)$ denote the minimal number of points needed to form n line segments of length k. Fig. 1 shows that $a_5(3) = 12$ as any constellation of 11 points will not generate 3 segments of length 5. Note that the constellation of points achieving $a_k(n)$ is typically not unique. Finding the exact value of $a_k(n)$ appears to be difficult and currently not feasible for large n. The purpose of this paper is to provide an analysis on the asymptotic behavior of $a_k(n)$.

Keywords and phrases: *n*-Queens problem, grid patterns **(2020) Mathematics Subject Classification:** 52-XX, 05BXX Received: 14.05.2022. In revised form: 25.11.2022. Accepted: 19.11.2022.

¹We use the convention that an isolated point corresponds to 4 line segments of length 1; a horizontal, a vertical and 2 diagonal line segments.

²This implies that two line segments of the same orientation (horizontal, vertical or diagonal) must not overlap.

6 Chai Wah Wu

FIGURE 1. A constellation of 12 points on a grid. Among the line segments formed by these points are 3 (overlapping) line segments of length 5 as shown by the dashed boundaries.

2. Bounds and asymptotic behavior of $a_k(n)$

It is easy to show that $a_k(1) = k$, $a_k(2) = 2k - 1$ and $a_k(3) = 3(k - 1)$ as 2 line segments overlap in at most one point and 3 line segments overlaps in at most 3 points, as illustrated in Fig. 2 for k = 5. Note that $a_k(3)$ can be obtained with points forming a right isosceles triangle.

Lemma 2.1 (Fekete's subadditive Lemma [4]). If the sequence a(n) is sub-additive, i.e. $a(n+m) \leq a(n) + a(m)$, then $\lim_{n\to\infty} \frac{a_n}{n}$ exists and is equal to $\inf_n \frac{a_n}{n}$.

FIGURE 2. Sets of points illustrating $a_k(n)$ for n = 1, 2, 3.

Theorem 2.1. For all k, $a_k(n)$ is subadditive, and $f(k) = \lim_{n \to \infty} \frac{a_k(n)}{n}$ exists and satisfies $\frac{k}{4} \le f(k) \le \frac{k}{3}$.

Proof. Since each line segment takes k points and each point can be part of at most 4 line segments (horizontal, vertical or diagonal), $a_k(n) \geq \frac{kn}{4}$. Since the set of points for $a_k(n)$ and $a_k(m)$ separated apart leads to m+n line segments of length k, it is clear that $a_k(n)$ is subadditive. Lemma 2.1 implies that f(k) exists and is equal to $\inf_n \frac{a_k(n)}{n}$. Consider a k by m rectangular array of points with $k \leq m$. There are m vertical line segments and m-k+1 diagonal line segments of each orientation and thus there are 3m-2k+2 length k line segments. This shows that $a_k(3m-2k+2) \leq km$ which implies that $\frac{k}{4} \leq f(k) \leq \frac{k}{3}$.

3. Constellations where each point is part of 4 different line segments

The upper bound $\frac{k}{3}$ on f(k) in Theorem 2.1 shows that for large n we can construct a constellation of n points such that most points are part of 3 different line segments. Is it possible to construct a constellation such that most points are part of 4 different line segments (a horizontal, a vertical and two diagonal line segments) and thus achieve the lower bound $\frac{k}{4}$? The case k=1 is simple. Since $a_1(4n)=n$ as exhibited by the constellation of n isolated points, this implies that $f(1)=\frac{1}{4}$.

Let $\sigma \in S_{k+1}$ be a permutation on the integers $\{0,1,\cdots,k\}$. Consider a k+1 by k+1 square grid and place a point on each position (i,j) except when it is of the form $(i,\sigma(i))$. It is clear that tiling this grid on the plane results in a constellation where every point is part of a horizontal and a vertical line segment of length k. The shear maps $(i,j) \to (i,i+j)$ and $(i,j) \to (i,i-j)$ map the two diagonal line segments to a vertical line segment. Thus in order to also have every point be part of two diagonal line segments of exactly k points, we want $\{i+\sigma(i) \mod (k+1)\}$ and $\{i-\sigma(i) \mod (k+1)\}$ to be permutations of $\{0,1,\cdots,k\}$ as well. If this is the case, consider a N by N subgrid of this tiling and let n be the number of points in this subgrid. Except for points near the edges which is on the order of $kN \propto k\sqrt{n}$, all points belong to 4 line segments of length k. Thus we have proved the following:

Theorem 3.1. If there is a permutation σ of the numbers $\{0, 1, \dots, k\}$ such that $\sigma_1 = \{i + \sigma(i) \mod (k+1)\}$ and $\sigma_2 = \{i - \sigma(i) \mod (k+1)\}$ are both permutations, then $f(k) = \frac{k}{4}$. In particular, $\frac{a_k(n)}{n}$ converges to f(k) on the order of $O\left(\frac{1}{\sqrt{n}}\right)$.

If σ satisfies the conditions of Theorem 3.1, then so does σ^{-1} . For a fixed integer m, the permutation $\sigma(i) + m \mod (k+1)$ also satisfies these conditions. We will use this to partition the set of admissible permutations into equivalent classes. More specifically,

Definition 3.1. Let S_{k+1} be the set of permutations on $\{0, 1, \dots, k\}$. $T_{k+1} \subset S_{k+1}$ is defined as the set of permutations σ such that $\{i+\sigma(i) \mod (k+1)\}$

8 Chai Wah Wu

and $\{i - \sigma(i) \mod (k+1)\}$ are in S_{k+1} . The equivalence relation \sim is defined on T_{k+1} as follows. If $\sigma, \tau \in T_{k+1}$, then $\sigma \sim \tau$ if $\tau = \sigma^{-1}$ or there exist an integer m such that $\sigma(i) = \tau(i) + m \mod (k+1)$ for all i.

Thus Theorem 3.1 implies that if $T_{k+1} \neq \emptyset$, then $f(k) = \frac{k}{4}$.

4. Modular n-queens problem

In this section we show that the above constellation is related to an n-queens problem on a toroidal chessboard. The n-queens problem asks whether n nonattacking queens can be placed on an n by n chessboard. The answer is yes and is first shown by Pauls [7, 1]. Next consider a toroidal n by n chessboard, where the top edge is connected to the bottom edge and the left edge is connected to the right edge. The corresponding n-queens problem is called a modular n-queens problem. For the k+1 by k+1 square grid above, if we put a queen on each position $(i, \sigma(i))$, then it is easy to see that $\sigma \in T_{k+1}$ if and only if it provides a solution to the modular (k+1)-queens problem. For instance, for k=4, consider the permutation $\sigma=(0,2,4,1,3)$. Figure 3 shows a 5 by 5 grid where all the points are part of 4 line segments if the grid tiles the plane (or equivalently, the grid lives on a torus). This means that each point in the center of a finite tiling are part of 4 line segments. If we put a queen on each of the 5 empty locations, we obtain a solution to the modular 5-queens problem.

FIGURE 3. Points where the empty locations are of coordinates $(i, \sigma(i))$. Putting a queen at each empty location results in a solution to the modular 5-queen problem.

Pólya [8] showed that a solution to the modular n-queens problem exists if and only if n is coprime with 6. Thus Pólya's result is equivalent to the following:

Theorem 4.1. $T_{k+1} \neq \emptyset$ if and only if k+1 is coprime with 6.

Corollary 4.1. If k+1 is coprime with 6, then $f(k) = \frac{k}{4}$.

FIGURE 4. A lattice constellation. Points in the center of the grid are part of 4 different patterns, showing that $\frac{a_4(n)}{n} \to 1$ as $n \to \infty$.

Monsky [5] shows that n-2 nonattacking queens can be placed on an n by n toroidal chess board and n-1 queens can be placed if n is not divisible by 3 or 4. This implies the following which shows that for k large, f(k) approaches the lower bound $\frac{k}{4}$:

Theorem 4.2. $f(k) \leq \frac{k(k+1)+2}{4(k-1)}$. If k+1 is not divisible by 3 or 4, then $f(k) \leq \frac{k(k+1)+1}{4k}$.

Proof. Consider a k+1 by k+1 array with k+1-r nonattacking queens. By placing a point only on the locations where there are no queens we obtain a constellation with $(k+1)^2 - (k+1-r)$ points. Each point then is part of 4 line segments of length k. Thus when this array is tiled, we get for a large

number of points a ratio $\frac{a_k(n)}{n}$ approaching $\frac{(k+1)^2-(k+1-r)}{4(k+1-r)}=\frac{k(k+1)+r}{4(k+1-r)}$. The conclusion follows by setting r=1 or r=2.

Corollary 4.2. $\lim_{k\to\infty} \frac{f(k)}{k} = \frac{1}{4}$.

4.1. Lattice construction. As in the *n*-queens problem, we can construct permutations in T_{k+1} via a lattice construction.

Definition 4.1. Given two vectors v_1 and v_2 , the lattice construction is defined as a constellation of points such that a point is on the grid if and only if the point is not a linear combination of v_1 and v_2 .

FIGURE 5. A lattice constellation for k = 12 generated by vectors (1, 2) and (0, 13).

For instance with the lattice points generated by the vectors (1,2) and (2,-1), the set of points with N=15 is shown in Fig. 4. In particular, this configuration shows that f(4)=1.

The following result appears to be well-known [1], but we include it here for completeness.

Theorem 4.3. If there exists 1 < m < k such that m-1, m and m+1 are all coprime with k+1, then the lattice construction with $v_1 = (1,m)$ and $v_2 = (0, k+1)$ corresponds to a permutation σ in T_{k+1} .

Proof. Consider the lattice construction generated by (1,m) and (0,k+1). If m is coprime with k+1, then $(m,2m,\cdots,(k+1)m) \mod (k+1)$ is a permutation σ in S_{k+1} and thus we find in a k+1 by k+1 subarray empty locations of the form $(i,\sigma(i))$. $i+\sigma(i)\equiv (m+1)i \mod (k+1)$ and $\{i+\sigma(i)\mod (k+1)\}$ is again a permutation since m+1 and k+1 are coprime. Similarly, $i-\sigma(i)\equiv -(m-1)i \mod (k+1)$ and $\{i-\sigma(i)\mod (k+1)\}$ is a permutation since m-1 and k+1 are coprime. Thus the conditions of Theorem 3.1 are satisfied and the conclusion follows.

FIGURE 6. A constellation for k = 12 corresponding to the permutation (0, 2, 4, 6, 11, 9, 12, 5, 3, 1, 7, 10, 8) and it is not generated by a lattice.

Theorem 4.3 also provides a proof of Corollary 4.1 since if k+1 is coprime with 6, then 1, 2 and 3 are all coprime with k+1 and we can choose m=2. In particular the lattice construction with $v_1=(1,2)$ and $v_2=(0,k+1)$ generates a permutation σ in T_{k+1} . Fig. 5 shows the construction for k=12.

12 Chai Wah Wu

For k=4, there is only one equivalence class (0,2,4,1,3) in T_{k+1} that satisfies the conditions of Theorem 3.1. For k=6, there are two equivalent classes (0,2,4,6,1,3,5) and (0,3,6,2,5,1,4). For k=10, there are 4 equivalent classes. In particular, Theorem 4.3 shows that if k+1>4 is prime, then there are at least $\frac{k-2}{2}$ equivalent classes in T_{k+1} . This is because each $2 \le m \le k-1$ is coprime with k+1 and the permutation generated by m is the inverse of the permutation generated by k-1-m which are equivalent³. It is possible to have more than $\frac{k-2}{2}$ equivalent classes as there are permutations in T_{k+1} not generated by a lattice. For k+1 coprime with 6, if k=4,6 and 10, all permutations in T_{k+1} that are not generated by a lattice. For k=12, there are permutations in T_{k+1} that are not generated by a lattice. One such example is shown in Fig. 6. Such solutions are referred to as nonlinear solutions [1].

5. Conclusions

We studied the asymptotic behavior of the minimal number of points needed to generate n line segments of length k using a construction based on permutations of $\{0,1,\cdots,k\}$ with certain properties. We showed that this construction allows us to create constellations of points where asymptoically most points are part of 4 line segments. This construction is equivalent to the modular (k+1)-queens problem and thus $f(k) = \frac{k}{4}$ for k+1 coprime with 6. If k+1 is even or k+1 is divisible by 3, this construction fails to provide such a constellation. However, results in the modular n-queens problem can still provide an upper bound on f(k) which shows that $\lim_{k\to\infty} \frac{f(k)}{k} = \frac{1}{4}$. Even though these constructions for the modular n-queens problem provide limiting values of $\frac{a_k(n)}{n}$ as $n\to\infty$, for a fixed n the optimal constellation to achieve $a_k(n)$ can be quite different and difficult to compute (see for example https://oeis.org/A273916/a273916.png) .

6. Acknowledgements

We are indebted to Don Coppersmith for stimulating discussions and for providing many insights during the preparation of this paper.

References

- [1] Bell, J. and Stevens, B. A survey of known results and research areas for n-queens, Discrete Mathematics, **309** (2009), 1–31.
- [2] Burger, A., Mynhardt, C. and Cockayne, E. Regular solutions of the n-queens problem on the torus, Utilitas Mathematica, 65 (2004), 219–230.
- [3] Burr, S. A., Grünbaum, B. and Sloane, N. J. A., The orchard problem, Geometriae Dedicata, 2 (1974), 397–424.
- [4] Fekete, M, Über die verteilung der wurzeln bei gewissen algebraischen gleichungen mit ganzzahligen koeffizienten, Mathematische Zeitschrift, 17 (1923), 228–249.
- [5] Monsky, P. E3162, American Mathematical Monthly, 96 (1989) 258–259.
- [6] OEIS Foundation Inc., The On-line Encyclopedia of Integer Sequences, published electronically at http://oeis.org, 2022.
- [7] Pauls, E. Das maximalproblem der damen auf dem schachbrete, II, deutsche schachzeitung, Organ für das Gesammte Schachleben, 29 (1874), 257–267.

³For general k, see Ref. [2] for a formula of the number of such permutations.

[8] Pólya, G. Über die "doppelt-periodischen" losüngen des n-damen-problems, Mathematische Unterhaltungen und Spiele (W. Ahrens, ed.), **2** (1918), 364–374.

IBM RESEARCH AI IBM T. J. WATSON RESEARCH CENTER YORKTOWN HEIGHTS, NY 10598, USA

 $E ext{-}mail\ address: cwwu@us.ibm.com}$