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TWO NON-CONGRUENT REGULAR

POLYGONS HAVING VERTICES

AT THE SAME DISTANCES

FROM THE POINT

Mamuka Meskhishvili

Abstract. For the given regular plane polygon and an arbitrary point in
the plane of the polygon, the distances from the point to the vertices of the
polygon are defined. We proved that there is one more non-congruent regu-
lar polygon having the vertices at the same distances from the point. The
sizes of both regular polygons are uniquely determined by these distances.
In general case, geometrical construction of the second regular polygon is
given. It is proved that there are two points in the plane, which separately
have the same set of the distances to the vertices of two non-congruent
regular polygons with a shared vertex.

1. Introduction

The concept of the cyclic averages are introduced in [5], [6]. For a regular
polygon with n vertices Pn, there are an n−1 number of the cyclic averages:

S(2)
n , S(4)

n , . . . , S(2n−2)
n .

For an arbitrary point M in the plane of the regular polygon Pn, we use
the notation M(d1, d2, . . . , dn, L) where di are the distances from this point
to the vertices Ai of the regular polygon Pn and L is the distance between
the point and the center O of the polygon. If the radius of the circumcircle
Ω of the regular polygon Pn is R, we denote such polygon by Pn(R).
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The cyclic averages are defined as sums of the like even powers of distances
di to the vertices of Pn(R):

S(2)
n =

1

n

n∑
i=1

d2i , S
(4)
n =

1

n

n∑
i=1

d4i , . . . , S
(2m)
n =

1

n

n∑
i=1

d2mi ,

where m = 1, 2, . . . , n− 1.

The cyclic averages can be expressed only in terms of R and L:

(1.1) S(2m)
n = (R2 + L2)m +

bm
2
c∑

k=1

(
m

2k

)(
2k

k

)
R2kL2k(R2 + L2)m−2k.

If we are given no more than the distances d1, d2, . . . , dn from a point to
the vertices of an n-gon, there obviously is an infinity of n-gons determined
by the n distances. If, however, the polygon is required to be regular, can
the n distances uniquely determine the sizes of the polygon? In the present
article we investigate this problem.

2. General case. Existence

Let us fix the n distances

d1, d2, . . . , dn

and consider the L and R as unknowns.
The number of the cyclic averages is characteristic of the regular polygon

but each regular polygon has at least two cyclic averages – S
(2)
n and S

(4)
n .

From (1.1) they equal:

S(2)
n = R2 + L2,(2.1)

S(4)
n = (R2 + L2)2 + 2R2L2.(2.2)

Substituting (2.1) into (2.2):

(2.3) 2R2L2 = S(4)
n − (S(2)

n )2.

The relations (1.1), (2.1) and (2.3) give us the conditions, which must be
satisfied by the d1, d2, . . . , dn if they serve as the distances from the point
to the vertices of the regular polygon

S(2m)
n = (S(2)

n )m +

bm
2
c∑

k=1

1

2k

(
m

2k

)(
2k

k

)(
S(4)
n − (S(2)

n )2
)k

(S(2)
n )m−2k,

where m = 3, . . . , n − 1. But we initially assumed they are such distances,
so we consider (2.1) and (2.2) only.

From (2.1) and (2.3) R2 and L2 are the solutions of the equation

X2 − S(2)
n X +

1

2

(
S(4)
n − (S(2)

n )2
)

= 0,
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so we get two pairs of the solutions:

I. R2
1 =

1

2

(
S(2)
n +

√
3(S

(2)
n )2 − 2S

(4)
n

)
,

L2
1 =

1

2

(
S(2)
n −

√
3(S

(2)
n )2 − 2S

(4)
n

)
;

II. R2
2 =

1

2

(
S(2)
n −

√
3(S

(2)
n )2 − 2S

(4)
n

)
,

L2
2 =

1

2

(
S(2)
n +

√
3(S

(2)
n )2 − 2S

(4)
n

)
.

If one of them exists, automatically exists another one. Algebraically, it
means the following inequalities must be held:

3(S(2)
n )2 − 2S(4)

n ≥ 0,(∗)

S(2)
n −

√
3(S

(2)
n )2 − 2S

(4)
n ≥ 0.(∗∗)

Indeed,

3(S(2)
n )2 − 2S(4)

n = 3(R2 + L2)2 − 2
(
(R2 + L2)2 + 2R2L2

)
= (R2 − L2)2,

and from (2.3) follows

S(4)
n ≥ (S(2)

n )2,

which proves (∗∗).
Denote by Ω1 and Ω2 the circumcircles of the regular polygons Pn(R1)

and Pn(R2), by O1 and O2 their centers, respectively. Therefore

L1 = MO1 and L2 = MO2.

From the solutions I and II follows:

R1 > R2 and L1 < L2,

so the first solution corresponds to the larger regular polygon, while the
second solution corresponds to the smaller one. The distances from the M
point to the centers is longer for the smaller polygon.

If
3(S(2)

n )2 = 2S(4)
n ,

the point M lies on the circumcircle,

R1 = L1 = R2 = L2.

This is degenerate case – both regular polygons are congruent. We obtain:

Theorem 2.1. If the point of the distances d1, d2, . . . , dn to the vertices of
the regular polygon Pn(R1), does not lie on the circumcircle Ω1 of Pn(R1),
there is one more non-congruent regular polygon Pn(R2) having the vertices
at the same d1, d2, . . . , dn distances from the point. If the point lies on the
circumcircle Ω1 of Pn(R1) there is no more non-congruent regular polygon
having the vertices at the same distances from the point.

For the first solution (larger polygon) L1 < R1 i.e. the point M lies inside
the circumcircle Ω1, while for the second solution (smaller polygon) L2 > R2

i.e point M lies outside the circumcircle Ω2.
Let us summarize the obtained results.
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Theorem 2.2. If the arbitrary point M(d1, d2, . . . , dn, L1) lies inside the
circumcircle Ω1 of the regular polygon Pn(R1), there is one more regular
polygon Pn(R2) having the vertices at the same distances from the point
M(d1, d2, . . . , dn, L2) and holds:√

1

2

(
S
(2)
n +

√
3(S

(2)
n )2 − 2S

(4)
n

)
= R1 = L2

> R2 = L1 =

√
1

2

(
S
(2)
n −

√
3(S

(2)
n )2 − 2S

(4)
n

)
,

i.e. the point M lies outside the circumcircle Ω2 of the regular polygon
Pn(R2).

Theorem 2.3. If the arbitrary point M(d1, d2, . . . , dn, L1) lies outside the
circumcircle Ω1 of the regular polygon Pn(R1), there is one more regular
polygon Pn(R2) having the vertices at the same distances from the point
M(d1, d2, . . . , dn, L2) and holds:√

1

2

(
S
(2)
n −

√
3(S

(2)
n )2 − 2S

(4)
n

)
= R1 = L2

< R2 = L1 =

√
1

2

(
S
(2)
n +

√
3(S

(2)
n )2 − 2S

(4)
n

)
,

i.e. the point M lies inside the circumcircle Ω2 of the regular polygon
Pn(R2).

3. Equilateral triangle

Algebraic Backround

The well-known the Pompeiu theorem states [8]:
let given an equilateral triangle and any point in its plane. Then the

distances from the point to the vertices d1, d2, d3 are lengths of the sides of
a triangle.

We call a triangle with sides d1, d2, d3 a Pompeiu triangle [9]. The
Pompeiu triangle is degenerate if the point lies on the circumcircle of the
equilateral triangle, because by Van Schooten’s theorem the largest distance
equals to the sum of the others.

According to Theorem 2.1, for the given Pompeiu triangle there are two
equilateral triangles – the larger and the smaller. In [1], [3], [4], [9] are
investigated case of the larger equilateral triangle i.e. the point lies inside
of the circumcircle, both equilateral triangles are considered by H. Eves [7].

For the equilateral triangle P3(R) and the point M(d1, d2, d3, L) the S
(2)
3

and S
(4)
3 cyclic averages equal:

S
(2)
3 =

1

3
(d21 + d22 + d23), S

(4)
3 =

1

3
(d41 + d42 + d43).
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The inequality (∗) gives

3(S(2)
n )2 − 2S(4)

n =
1

3

(
(d21 + d22 + d23)

2 − 2(d41 + d42 + d43)
)

=
16

3
∆2(d1, d2, d3),

the symbol – ∆(d1,d2,d3) denotes the area of the triangle whose sides have
lengths d1, d2, d3. Then the inequality (∗∗) turns into will-known
Weitzenböck’s inequality [2]

d21 + d22 + d23 ≥ 4
√

3 ∆(d1,d2,d3).

Two equilateral triangles are:

I. The larger triangle, M lies inside Ω1;

R2
1 =

1

6

(
d21 + d22 + d23 + 4

√
3 ∆(d1,d2,d3)

)
,

L2
1 =

1

6

(
d21 + d22 + d23 − 4

√
3 ∆(d1,d2,d3)

)
.

II. The smaller triangle, M lies outside Ω2;

R2
2 =

1

6

(
d21 + d22 + d23 − 4

√
3 ∆(d1,d2,d3)

)
,

L2
2 =

1

6

(
d21 + d22 + d23 + 4

√
3 ∆(d1,d2,d3)

)
.

Geometrical Construction

We perform the constructions in two ways:

A. Given the Pompeiu triangle and construct both equilateral triangles.

B. Given one of the equilateral triangle and the point and construct the
second one.

Figure 1
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Figure 2

Figure 3

A. If given the Pompeiu triangle we take one vertex as the point M , see
Fig. 1 and Fig. 2. If MCA1 is the Pompeiu triangle we construct around
one side, for example MC, two auxiliary equilateral triangles MCA2 and
MCB2. Obtained the auxiliary points A2 and B2 connect to the third vertex
A1. Two line segments A2A1 and B2A1 serve as the sides of the desired two
equilateral triangles – A1A2A3 and A1B2B3. Indeed,

MA3 = CA1 = MB3;

because of the congruency of the triangles:

MA2A3 = CA2A1 and CB2A1 = MB2B3.
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Figure 4

B. If the point M inside of the circumcircle Ω1, it means the triangle
A1A2A3 is the larger, see Fig. 3. We construct around one distance, for
example MA2, one auxiliary equilateral triangle MA2C obtained the auxil-
iary point C. Again around line segment MC construct the second auxiliary
equilateral triangle – MCB2. Connect the obtained point B2 to the vertex
A1. The line segment B2A1 serve as the side of the desired smaller equila-
teral triangle A1B2B3.

If the point M outside of the circumcircle Ω1, it means the triangle
A1A2A3 is the smaller, see Fig. 4. Repeat above-mentioned steps, we obtain
the larger equilateral triangle – A1B2B3.

4. General case. Construction

For the regular polygon Pn, when n > 3 constructions by using the auxil-
iary triangles are impossible. In general case Theorem 2.2 and Theorem 2.3
give us the method of construction for the second regular polygon from the
given one and the point. From these theorems:

(∗∗∗) R2 = L1 and L2 = R1.

Conditions (∗∗∗) are necessary but not sufficient for the construction.
Let us consider the distances from the given point M to the vertices of

the second regular polygon as unknowns:

x1, x2, . . . , xn.
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From (1.1) and (∗∗∗) they satisfy

(4.1)
n∑

i=1

x2mi =
n∑

i=1

d2mi , where m = 1, 2, . . . , n− 1.

We have the n − 1 equations, so to determine the unknowns uniquely,
let us consider one unknown as one of the distances – di. Without loss of
generality take

(4.2) x1 = d1.

Then, from the elementary properties of the symmetric functions, from (4.1)
it follows that

d22, . . . , d
2
n and x22, . . . , x

2
n

are roots of the same equation of degree n− 1. Consequently x2, . . . , xn are
a permutation of the d2, . . . , dn; therefore both of them are the same set of
the distances: {

x2, . . . , xn
}

=
{
d2, . . . , dn

}
.

So, the conditions (∗∗∗) and (4.2) are the sufficient conditions to identify
the second regular polygon having the vertices at the same distances from
the point.

Constructions for a square and a regular pentagon are given in Fig. 5 and
Fig. 6, respectively. We describe the method of construction, which is true
for any regular polygon.

Figure 5
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If given regular polygon A1A2 · · ·An and the point M in its plane, draw
the circle Ω1 with center M and the radius R1. Choose the point O2 on the
Ω1, which is the center of the second desired regular polygon – B1B2 · · ·Bn.
Construct the circle Ω2, whose center is O2 and the radius equals R2 = O1M .
From the point M as the center draw the auxiliary circle with radius MA1.
The intersection points of the auxiliary and Ω2 circles – B1 and C1 are the
vertices of the desired polygon separately. In fact, we construct two regular
polygons – B1B2 · · ·Bn and C1C2 · · ·Cn which have the same set of the
distances from the point M to the vertices of original A1A2 · · ·An polygon:{

MAi

}
=
{
MBi

}
=
{
MCi

}
,

where i = 1, 2, . . . , n.

For the square case, see Fig. 5, by corresponding enumeration of the vertices:

MAi = MBi = MCi, where i = 1, . . . , 4.

For the regular pentagon case, see Fig. 6:

MAi = MBi = MCi, where i = 1, . . . , 5.

Figure 6
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5. Two regular polygons and two points theorem

Until now we consider the case when the regular polygon and the point
were given. Let us consider the case when two non-congruent regular poly-
gons (with the same number of vertices) are given initially. Is there a point in
the plane of two non-congruent regular polygons, from where the distances to
the vertices of these polygons are the same? From the construction method
it is clear – such point exists, if

|R1 −R2| ≤ O1O2 ≤ R1 + R2,

and one of the distances MAi and MBi must be equal to each other (4.2).
If two polygons have one shared vertex this equality automatically holds.
From the construction method the point M must be at distance R1 from
the O2, and at distance R2 from the O1, i.e. intersection of two circles –
Ω1(O2, R1) and Ω2(O1, R2). But in general case, there are two points of such
properties. So we obtain – two regular polygons and two points theorem.

Figure 7
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Theorem 5.1. If two non-congruent regular polygons A1A2 · · ·An and
B1B2 · · ·Bn have one shared vertex, there are two points M1 and M2 in
the plane, separately having the same set of the distances to the vertices of
the polygons:{

M1Ai

}
=
{
M1Bi

}
,
{
M2Ai

}
=
{
M2Bi

}
, where i = 1, . . . , n.

The M1 and M2 are intersection points of two circles – Ω1(O2, R1) and
Ω2(O1;R2), where O1 and O2 are the centers of the circumcircles of
A1A2 · · ·An and B1B2 · · ·Bn, R1 and R2 their radii, respectively.

The construction of M1 and M2 is given for the squares in Fig. 7, the
shared vertex is A1.

The same distances are:

M1A2 = M1B2, M1A3 = M1B3, M1A4 = M1B4

and
M2A2 = M2B4, M2A3 = M2B3, M2A4 = M2B2.

If the shared vertex and the centers of the circumcircles are collinear, there
is only one point having the same set of the distances to the vertices of two
non-congruent regular polygons.
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of Ionescu–Weitzenböck type, International Journal of Geometry, 2(1)(2013) 68–74.

[3] Erickson, M., Aha! Solutions, Mathematical Association of America (MAA), Spec-
trum, Washington, DC, 2009.

[4] Gardner, M., Mathematical Circus. More Puzzles, Games, Paradoxes, and other Math-
ematical Entertainments from Scientific American, Revised reprint of the 1981 edition.
With a preface by Donald Knuth. MAA Spectrum. Mathematical Association of Amer-
ica, Washington, DC, 1992.

[5] Meskhishvili, M., Cyclic averages of regular polygons and platonic solids, Communica-
tions in Mathematics and Applications, 11(2)(2020) 335–355.

[6] Meskhishvili, M., Cyclic averages of regular polygonal distances, International Journal
of Geometry, 10(1)(2021) 58–65.
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