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MORE NEW CHARACTERIZATIONS OF

EXTANGENTIAL QUADRILATERALS

MARTIN JOSEFSSON and MARIO DALCÍN

Abstract. We prove an additional 16 new necessary and sufficient con-
ditions for when a convex quadrilateral can have an excircle.

1. Introduction

This paper is the second part in our study of new characterizations of
extangential quadrilaterals. The first part was [4], and we recommend the
reader to study that paper before continuing with this one. Earlier studies
were conducted by the first author in [1, 2].

Before we start proving more new necessary and sufficient conditions for
when a convex quadrilateral can have an excircle (a circle tangent to the
extensions of all four sides), we remind the reader of the following three
very useful characterizations that will be applied in several of the proofs: A
convex quadrilateral ABCD can have an excircle outside the biggest of the
two vertex angles at A or C if and only if either

(1) AB +BC = CD +DA

or

(2) AJ + JC = CK +KA,

where J = AB ∩ CD and K = BC ∩ DA (here only non-trapezoids are
considered so that these points exist), or

(3) BJ + JD = DK +KB.

There are similar conditions for an excircle outside of B or D, but like in
the previous paper [4], we almost exclusively study the case with an excircle
outside of A or C.
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2. Tangent circles

We begin by reviewing a few triangle formulas that will be used in several
of the proofs. They are well-known, so their derivations are left as an exercise
for readers to whom whey are unfamiliar. The proofs are based on the two

tangent theorem, which states that the two tangents to a circle from an
external point have equal lengths (AE = AF in Figure 1).

Figure 1. Tangent points for the incircle and one excircle to a triangle

Lemma 2.1. In triangle ABC, suppose the incircle is tangent to AB at D,

and that the excircle tangent to AB is tangent to the extension of CA at E.

Then

AD = 1
2
(AB −BC + CA), AE = 1

2
(AB +BC − CA),

CE = 1
2
(AB +BC + CA).

The first characterization has somewhat different formulations for an ex-
circle outside of A and C, so we only state it in the latter case.

Theorem 2.1. In a convex quadrilateral ABCD that is not a trapezoid, let

J = AB ∩ CD and K = BC ∩ DA. Then the excircle to triangles ADJ

and ABK that are tangent to DJ and BK respectively are tangent to the

extension of AB at the same point if and only if ABCD is an extangential

quadrilateral with an excircle outside of C.

Proof. Suppose the considered excircles to triangles ADJ and ABK are
tangent to the extension of AB at L1 and L2 respectively (see Figure 2).
Applying the third formula in the lemma yields

AL1 =
1
2
(AJ + JD +DA), AL2 =

1
2
(AK +KB +BA)

so

2(AL1−AL2) = AJ+JD+DA−AK−KB−BA = BJ+JD−DK−KB.

The two triangle excircles are tangent on the extension of AB if and only if

L1L2 = 0 ⇔ AL1 = AL2 ⇔ BJ + JD = DK +KB

which proves the theorem according to (3). �



More new characterizations of extangential quadrilaterals 7

Figure 2. ABCD is extangential ⇔ L1L2 = 0

Thus the quadrilateral is extangential if and only if the two circles in
Figure 2 coincide, in which case that is the excircle to the quadrilateral.

There were several potential tangent circles in Section 3 of [4]. Now we
prove that these are also characterizations of extangential quadrilaterals.

Theorem 2.2. Two excircles belonging to each of the two triangles created

by a diagonal in a convex quadrilateral, which are tangent to two adjacent

sides of the quadrilateral, are tangent to each other on the extension of that

diagonal if and only if it is an extangential quadrilateral.

Figure 3. X1X4 = 0 ⇔ ABCD is extangential ⇔ X2X3 = 0

Proof. There are two possible pairs of excircles that fit the description in
the theorem. The proof in each case is the same, so we only study one of
them.

Suppose the two excircles are tangent to the extension of diagonal AC at
X1 and X4 (see Figure 3). From the second formula in the lemma, we get

AX1 =
1
2
(AB +BC −AC), AX4 =

1
2
(CD +DA−AC)
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so

2(AX1 −AX4) = AB +BC − CD −DA.

Hence

AX1 = AX4 ⇔ AB +BC = CD +DA

which proves that the two circles are tangent to each other at X1 = X4 if
and only if the quadrilateral can have an excircle outside A or C according
to (1). �

Another pair of tangent excircles appears in the following theorem.

Theorem 2.3. In a convex quadrilateral ABCD that is not a trapezoid, let

J = AB ∩CD and K = BC ∩DA. Then there is one excircle from each of

triangles ACJ and ACK that are tangent to each other on the extension of

diagonal AC if and only if ABCD is an extangential quadrilateral with an

excircle outside of A or C.

Figure 4. ABCD is extangential ⇔ X5X6 = 0

Proof. Suppose the two excircles are tangent to the extension of diagonal
AC at X5 and X6 (see Figure 4). We have

CX5 =
1
2
(−AC +AJ + CJ), CX6 =

1
2
(−AC +AK + CK)

so

2(CX5 − CX6) = AJ + CJ −AK − CK

and we get that

CX5 = CX6 ⇔ AJ + CJ = AK + CK

which proves that the two circles are tangent to each other at X5 = X6 if
and only if the quadrilateral can have an excircle outside A or C according
to (2).

We note that there is another pair of excircles to the same triangles that
are tangent at the same point on the extension of AC outside of A if and
only if ABCD is an extangential quadrilateral. The proof in that case is
the same except that A ↔ C. �
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Next we have a pair of circles that are tangent on the other diagonal.

Theorem 2.4. Consider the two triangles created by diagonal BD in a

convex quadrilateral ABCD. The incircle in one of the triangles and the

excircle to the other triangle that is tangent to BD are tangent to each

other on BD if and only if ABCD is extangential with an excircle outside

of A or C.

Figure 5. ABCD is extangential ⇔ X7X8 = 0

Proof. There are two possible cases with similar proofs, so we only study
one of them.

Suppose the incircle in ABD and the excircle to BCD are tangent to BD

at X7 and X8 respectively (see Figure 5). It holds that

BX7 =
1
2
(AB +BD −DA), BX8 =

1
2
(CD +BD −BC).

Then

2(BX7 −BX8) = AB −DA+BC − CD

and so

BX7 = BX8 ⇔ AB +BC = CD +DA

which proves that the two circles are tangent to each other at X7 = X8 if
and only if the quadrilateral is extangential according to (1). �

3. Concurrent lines

In this section we prove five characterizations regarding concurrent lines.
The first is about the same configuration as in the previous theorem.

Theorem 3.1. In a convex quadrilateral ABCD, suppose the incircle in

triangle ABC is tangent to AB and DA at G and F respectively, and the

excircle to triangle BCD that is tangent to BD is tangent to the extensions

of BC and CD at H and I respectively. Then GH and FI intersect on

AC if and only if ABCD is an extangential quadrilateral with an excircle

outside of A or C.
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Figure 6. ABCD is extangential ⇔ GH,FI,AC are concurrent

Proof. (⇒) In an extangential quadrilateral, applying Menelaus’ theorem
(with non-directed distances, see Figure 6) in triangles ABC and ADC,
where transversals GH and FI intersect AC at points P ′ and P ′′ respec-
tively, we get

(4)
AG

GB
·
BH

HC
·
CP ′

P ′A
= 1 =

AF

FD
·
DI

IC
·
CP ′′

P ′′A

where GB = BX7 = BH and FD = DX7 = DI according to the two
tangent theorem and X7 denote the point where the incircle and excircle
are tangent to BD according to Theorem 2.4. Thus (4) is simplified into

CP ′

P ′A
=

CP ′′

P ′′A

which implies that P ′ = P ′′, since these two points divide AC in the same
ratio.

(⇐) We do a contrapositive proof of the converse. If ABCD is not ex-
tangential, assume without loss of generality that BX7 > BX8 where X7

and X8 are the points where the incircle and excircle are tangent to BD

respectively (see Figure 5). Then

GB = BX7 > BX8 = BH, FD = DX7 < DX8 = DI.

Applying Menelaus’ theorem twice as in the proof of the direct theorem and
combining those equalities, we get by using AG = AF and HC = IC and
the inequalities just observed that

GB

GB
·
CP ′

P ′A
>

BH

GB
·
CP ′

P ′A
=

DI

FD
·
CP ′′

P ′′A
>

FD

FD
·
CP ′′

P ′′A
.

Hence
CP ′

P ′A
>

CP ′′

P ′′A

so P ′ 6= P ′′, completing the proof. �

Next we have two excircles and two concurrent lines on diagonal AC.
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Theorem 3.2. In a convex quadrilateral ABCD, suppose the excircles to

triangles ABC and ADC outside of BC and CD are tangent to the sides

AB, BC, CD, DA or their extensions at L, M , N , O respectively. Then

LM and ON intersect on AC if and only if ABCD is an extangential quadri-

lateral with an excircle outside of A or C.

Figure 7. If ABCD is extangential ⇒ LM,ON,AC are concurrent

Proof. (⇒) Applying Menelaus’ theorem (see Figure 7) in triangles ABC

and ADC, where transversals LM and ON intersect AC at points P1 and
P2 respectively, we get

(5)
AL

LB
·
BM

MC
·
CP1

P1A
= 1 =

AO

OD
·
DN

NC
·
CP2

P2A
.

The two tangent theorem states that OD = DN and LB = BM . When
ABCD is extangential, we also have AL = AX2 = AO and MC = CX2 =
NC according to Theorem 2.2, where X2 is the point on the extension of
AC where the two excircles are tangent to each other. Then (5) is simplified
as

CP1

P1A
=

CP2

P2A

which means that P1 = P2 since these two points divide AC in the same
ratio.

(⇐) We do a contrapositive proof of the converse. Suppose without loss of
generality that the excircles to triangles ABC and ADC are tangent to the
extension of AC at pointsX2 andX3 respectively such that CX2 > CX3 (see
Figure 8). Applying Menelaus’ theorem twice as in the proof of the direct
theorem and simplifying each equality using LB = BM and OD = DN , we
get by combining the remaining equalities that

AL

MC
·
CP1

P1A
=

AO

NC
·
CP2

P2A
,

which we rewrite as

(6)
AL

AO
·
NC

MC
=

P1A

CP1

·
CP2

P2A
.
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Figure 8. Here LM,ON,AC are not concurrent

According to the two tangent theorem, the left hand side can be expressed
as

(7)
AL

AO
·
NC

MC
=

AX2

AX3

·
CX3

CX2

=
AC + CX2

AC + CX3

·
CX3

CX2

=
AC

CX2
+ 1

AC

CX3
+ 1

.

Since CX2 > CX3, it follows that
1

CX2
< 1

CX3
, and thus

(8)
AC

CX2

<
AC

CX3

⇒
AC

CX2

+ 1 <
AC

CX3

+ 1 ⇒
AC

CX2
+ 1

AC

CX3
+ 1

< 1.

Combining (6), (7) and (8) yields

P1A

CP1

·
CP2

P2A
=

AL

AO
·
NC

MC
=

AC

CX2
+ 1

AC

CX3
+ 1

< 1

so
CP2

P2A
<

CP1

P1A

and it follows that P1 6= P2. This completes the proof of the converse. �

In the next theorem there are two excircles tangent to the extensions of
two adjacent sides.

Theorem 3.3. In a convex quadrilateral ABCD that is not a trapezoid, let

J = AB ∩ CD and K = BC ∩DA. Suppose the excircles to triangles ACJ

and ACK outside of CJ and CK are tangent to the extensions of the sides

AB, CD, BC, DA at P , Q, R, S respectively. Then PQ and RS intersect

on AC if and only if ABCD is an extangential quadrilateral with an excircle

outside of A or C.

Proof. Applying Menelaus’ theorem in triangles AJC and AKC with
transversals PQ and SR respectively (see Figure 9) yields

AP

PJ
·
JQ

QC
·
CP3

P3A
=

AS

SK
·
KR

RC
·
CP4

P4A
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Figure 9. ABCD is extangential ⇔ PQ,RS,AC are concurrent

where P3 and P4 are the points where PQ and SR intersect AC respectively.
By the two tangent theorem and Theorem 2.3, this is simplified into

CP3

P3A
=

CP4

P4A

which means that P3 = P4.
The converse can be proved with a contrapositive proof in the same way

as in the previous theorem. We let the reader write down the proof as an
exercise. �

There is also the following concurrency related to the configuration in the
previous theorem:

Theorem 3.4. In a convex quadrilateral ABCD that is not a trapezoid, let

J = AB ∩ CD and K = BC ∩DA. Suppose the excircles to triangles ACJ

and ACK outside of CJ and CK are tangent to the extensions of the sides

AB, CD, BC, DA at P , Q, R, S respectively. Then SP and RQ intersect

on the extension of JK if and only if ABCD is an extangential quadrilateral

with an excircle outside of A or C.

Proof. (⇒) Applying Menelaus’ theorem in triangles CJK and AJK with
transversals RQ and SP respectively (see Figure 10), we get

CQ

QJ
·
JP5

P5K
·
KR

RC
=

AP

PJ
·
JP6

P6K
·
KS

SA

where P5 and P6 are the points where RQ and SP intersect JK respectively.
Here QJ = PJ and KR = KS according to the two tangent theorem. When
ABCD is extangential, we also have CQ = CX5 = RC and AP = AX5 =
SA according to Theorem 2.3, where X5 is the point on the extension of AC
where the two excircles are tangent to each other. Then we get

JP5

P5K
=

JP6

P6K

which means that P5 = P6.
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Figure 10. ABCD is extangential ⇔ SP,RQ, JK are concurrent

(⇐) If ABCD is not extangential, suppose without loss of generality that
the excircles to triangles AJC and AKC are tangent to the extension of
AC at points X5 and X6 respectively such that CX5 > CX6. Menelaus’
theorem used twice yields after simplification

CQ

RC
·
JP5

P5K
=

AP

SA
·
JP6

P6K

which via the two tangent theorem can be rewritten as

CX5

CX6

·
AX6

AX5

=
P5K

JP5

·
JP6

P6K

since CQ = CX5, RC = CX6, AP = AX5 and SA = AX6. Now using
AX6 = AC + CX6 and AX5 = AC + CX5 and also CX5 > CX6, we get

P5K

JP5

·
JP6

P6K
=

AC

CX6
+ 1

AC

CX5
+ 1

> 1.

Hence
JP6

P6K
>

JP5

P5K

which proves that P6 6= P5. �

Finally there is the following variant of the previous theorem, illustrated
in Figure 11. The proof is very similar, so it is omitted.

Theorem 3.5. In a convex quadrilateral ABCD that is not a trapezoid, let

J = AB ∩ CD and K = BC ∩DA. Suppose the excircles to triangles ACJ

and ACK outside of CJ and CK are tangent to the extensions of the sides



More new characterizations of extangential quadrilaterals 15

AB, CD, BC, DA at P , Q, R, S respectively. Then PR and QS intersect

on JK if and only if ABCD is an extangential quadrilateral with an excircle

outside of A or C.

Figure 11. ABCD is extangential ⇔ PR,QS, JK are concurrent

4. Cyclic quadrilaterals

In this section we shall prove three necessary and sufficient conditions
for when a convex quadrilateral can have an excircle that concerns cyclic
quadrilaterals, that is, quadrilaterals whose vertices all lie on a circle. We
start with one characterization featuring an isosceles trapezoid (which is a
special case of a cyclic quadrilateral).

Theorem 4.1. In a convex quadrilateral ABCD, let the incircles in trian-

gles ABD and BCD be tangent to AB and BC at G and G′ respectively,

and the excircles to the same triangles that are tangent to BD be tangent to

the extensions of AB and BC at H ′ and H respectively. Then GHH ′G′ is

an isosceles trapezoid if and only if ABCD is an extangential quadrilateral

with an excircle outside of A or C.

Proof. (⇒) In an extangential quadrilateral ABCD, one of the incircles
and one of the excircles are tangent to each other on BD in pairs according
to Theorem 2.4. Let those tangent points be X8 and X9, see Figure 12.
Then BH ′ = BX9 = BG′ and BG = BX8 = BH, so triangles BH ′G′ and
BGH are isosceles. With the vertical angles at B, this proves that GH and
G′H ′ are parallel and the diagonals GH ′ = HG′, so GHH ′G′ is an isosceles
trapezoid.

(⇐) When GHH ′G′ is an isosceles trapezoid, BH ′ = BG′. Suppose the
incircle in BCD and the excircle to ABD are tangent to BD at X9 and X10

respectively. Then BG′ = BX9 and BH ′ = BX10. Hence BX9 = BX10 and
the converse is true according to Theorem 2.4. �
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Figure 12. ABCD is extangential ⇔ GHH ′G′ is an isosceles trapezoid

There is of course a second isosceles trapezoid associated with the four
tangent points belonging to the other two extended sides of the quadrilateral.

The next characterization is about the same configuration that appeared
in Theorem 2.4.

Theorem 4.2. Suppose the incircle in triangle ABD and the excircle to

triangle BCD that are tangent to BD in a convex quadrilateral ABCD are

also tangent to the sides DA, AB, BC, CD or their extensions at F , G, H,

I respectively. Then FGHI is a cyclic quadrilateral if and only if ABCD

is an extangential quadrilateral with an excircle outside of A or C.

Proof. (⇒) In all convex quadrilaterals ABCD, we have ∠AGF = 1
2
(π −

∠A) and ∠CIH = 1
2
(π − ∠C) since triangles AGF and CIH are isosceles

according to the two tangent theorem (see Figure 13). When ABCD is
extangential, then the incircle and the considered excircle to triangles ABD

and BCD are tangent to BD at the same point X7 (by Theorem 2.4). Thus
BH = BX7 = BG and DI = DX7 = DF according to the two tangent
theorem. We get ∠BGH = 1

2
∠B and ∠FID = 1

2
∠D by applying the

isosceles triangle theorem and the exterior angle theorem. Then

∠FGH = π − ∠AGF + ∠BGH =
π

2
+

∠A+ ∠B

2

and

∠FIH = ∠FID − ∠HIC =
∠C + ∠D

2
−

π

2
.
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Figure 13. ABCD is extangential ⇔ FGHI is cyclic

Hence

∠FGH + ∠FIH =
∠A+ ∠B + ∠C + ∠D

2
= π

which proves that FGHI is a cyclic quadrilateral.
(⇐) We do a contrapositive proof of the converse. In a convex quadri-

laterals ABCD that is not extangential, suppose without loss of generality
that the incircle and the considered excircle to triangle ABD are tangent
to BD at points X7 and X8 respectively such that BX7 > BX8. Then we
have

BH = BX8 < BX7 = BG, DF = DX7 < DX8 = DI.

Thus ∠BGH < 1
2
∠B and ∠FID < 1

2
∠D since a shorter side is opposite a

smaller angle in a triangle. We get

∠FGH = π − ∠AGF + ∠BGH <
π

2
+

∠A+ ∠B

2

and

∠FIH = ∠FID − ∠HIC <
∠C + ∠D

2
−

π

2
.

Hence

∠FGH + ∠FIH <
∠A+ ∠B + ∠C + ∠D

2
= π

which proves that FGHI is not a cyclic quadrilateral. �

The following theorem is about the same configuration as in Theorem 2.2.

Theorem 4.3. Suppose the two excircles belonging to the triangles created

by a diagonal that are tangent to two adjacent sides of a convex quadrilateral

ABCD, the extension of that diagonal, and the extensions of the other two

sides of the quadrilateral, are tangent to the sides AB, BC, CD, DA or

their extensions at L, M , N , O respectively. Then LMNO is a cyclic
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quadrilateral if and only if ABCD is an extangential quadrilateral with an

excircle outside of A or C.

Figure 14. ABCD is extangential ⇔ LMNO is cyclic

Proof. (⇒) In an extangential quadrilateral, we have

∠MLO =
π − ∠A

2
−

π − (π − ∠B)

2
=

π

2
−

∠A+ ∠B

2

(see Figure 14) and

∠MNO =
π − ∠C

2
+ π −

π − (π − ∠D)

2
=

3π

2
−

∠C + ∠D

2
.

Hence

∠MLO + ∠MNO =
4π

2
−

∠A+ ∠B + ∠C + ∠D

2
= π

which proves that LMNO is a cyclic quadrilateral.
(⇐) When ABCD is not extangential, then using the same method as in

the proof of the converse of Theorem 4.2, we either have

∠MLO + ∠MNO >
4π

2
−

∠A+ ∠B + ∠C + ∠D

2
= π

or

∠MLO + ∠MNO <
4π

2
−

∠A+ ∠B + ∠C + ∠D

2
= π

depending on the order of the tangency points for the triangle excircles on
the extension of AC (which are different points by Theorem 2.2). In either
case, LMNO is not a cyclic quadrilateral. �

Next we return to the configuration of Theorem 2.3.

Theorem 4.4. In a convex quadrilateral ABCD that is not a trapezoid, let

J = AB ∩ CD and K = BC ∩ DA. Suppose an excircle from each of the

triangles ACJ and ACK are tangent to the extensions of AB, CD, BC,

DA at P , Q, R, S respectively. Then PQRS is a cyclic quadrilateral if and
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only if ABCD is an extangential quadrilateral with an excircle outside of A

or C.

Figure 15. ABCD is extangential ⇔ PQRS is cyclic

Proof. (⇒) In an extangential quadrilateral, we have according to Theo-
rem 2.3 that the two triangle excircles are tangent to AC at the same point,
say X5. Then AP = AX5 = AS, so ∠APS = 1

2
(π − ∠A) since triangle

APS is isosceles (see Figure 15). Triangle PJQ is also isosceles accord-
ing to the two tangent theorem, so by the exterior angle theorem we have
∠PJQ = ∠A+ ∠D. Then ∠JPQ = 1

2
(π − ∠A− ∠D) and we get

∠QPS =
π − ∠A

2
−

π − ∠A− ∠D

2
=

∠D

2
.

By similar arguments, we now have ∠CRQ = 1
2
(π − ∠C) and ∠KRS =

1
2
(π − ∠A− ∠B). Thus

∠QRS = π −
π − ∠A− ∠B

2
−

π − ∠C

2
=

∠A+ ∠B + ∠C

2
.

Finally

∠QPS + ∠QRS =
∠A+ ∠B + ∠C + ∠D

2
= π

confirming that PQRS is a cyclic quadrilateral.
(⇐) When ABCD is not extangential, assume without loss of generality

that AS = AX5 < AX6 = AP where X5 and X6 are the points where the
excircles to triangles ACK and ACJ are tangent to AC. Then ∠APS <
1
2
(π −∠A) since a shorter side in a triangle is opposite a smaller angle. We

still have ∠PJQ = ∠A+ ∠D and ∠JPQ = 1
2
(π − ∠A− ∠D), so

∠QPS = ∠APS − ∠JPQ < ∠D

2
.

Since ∠CRQ > 1
2
(π − ∠C) and ∠KRS = 1

2
(π − ∠A− ∠B), we get

∠QRS = π − ∠KRS − ∠CRQ <
∠A+ ∠B + ∠C

2
.
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Hence

∠QPS + ∠QRS <
∠A+ ∠B + ∠C + ∠D

2
= π

which proves that PQRS is not cyclic. �

We note that there is another case in Theorem 4.2 when the triangle incir-
cle and excircle change roles, and there is also another case in Theorem 4.3
when the two triangle excircles are tangent to sides DA and AB instead of
BC and CD. Even Theorem 4.4 has a second case with excircles tangent to
AJ and AK instead of CJ and CK. The six cases in these three theorems
yield a total of six circles, and outside an extangential quadrilateral there is
its excircle. We leave it as an exercise for the reader to prove that all these
seven circles are in fact concentric with center E when the quadrilateral is
extangential (and otherwise non of those circles exist). This is illustrated in
Figure 16.

Figure 16. Six circles concentric with the excircle (dotted)

5. Miscellaneous characterizations

Here we prove three characterizations that did not fit into any of the
previous sections.

Theorem 5.1. In a convex quadrilateral ABCD, suppose the excircles to

triangles ABC and ACD that are tangent to AB, BC, CD, DA are tangent

to AB and AD or their extensions at T1, T2, T3, T4 respectively. Then T1T4
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is parallel to T2T3 if and only if ABCD is an extangential quadrilateral with

an excircle outside of A or C.

Figure 17. ABCD is extangential ⇔ T1T4 ‖ T2T3

Proof. We have (see Figure 17)

AT1 =
1
2
(AB +BC −AC), AT4 =

1
2
(CD +DA−AC)

and

AT2 =
1
2
(AB +BC +AC).

Then

T1T2 = AT2 −AT1 =
1
2
(AB +BC +AC)− 1

2
(AB +BC −AC) = AC

and in the same way T4T3 = AC. The lines T1T4 and T2T3 are parallel if
and only if

AT1

T1T2

=
AT4

T4T3

according to the intercept theorem, which is equivalent to
1
2
(AB +BC −AC)

AC
=

1
2
(CD +DA−AC)

AC
.

This in turn is equivalent to AB +BC = CD+DA, which is the necessary
and sufficient condition (1) for an excircle outside of A or C. �

In [5, p. 133] it was proved that a convex quadrilateral with consecutive
sides a, b, c, d and diagonals p, q is tangential (has an incircle) if and only if
ac−bd = pq cos θ where θ is the angle between the diagonals that is opposite
side a. This theorem is attributed to Simionescu. We have the following
related condition for the existence of an excircle.

Theorem 5.2. Let a convex quadrilateral have consecutive sides a, b, c, d

and diagonals p, q. Then

bd− ac = pq cos θ
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if and only if it is an extangential quadrilateral, where θ is the angle between

the diagonals that is opposite side a.

Figure 18. ABCD is extangential ⇔ bd− ac = pq cos θ

Proof. Suppose the diagonals divide each other in parts with lengths p1,
p2 and q1, q2 (see Figure 18). Applying the law of cosines, we get

a2 = p21 + q21 − 2p1q1 cos θ, b2 = p22 + q21 + 2p2q1 cos θ,

c2 = p22 + q22 − 2p2q2 cos θ, d2 = p21 + q22 + 2p1q2 cos θ

since cos (π − θ) = − cos θ. Then

b2 + d2 − a2 − c2 = 2 cos θ(p2q1 + p1q2 + p1q1 + p2q2)

= 2 cos θ(p2(q1 + q2) + p1(q2 + q1))

= 2 cos θ(p2 + p1)(q1 + q2)

= 2pq cos θ

where p = p1 + p2 and q = q1 + q2. We can rewrite this equality as

pq cos θ =
(b− d)2 − (a− c)2

2
+ bd− ac.

Hence

bd− ac = pq cos θ ⇔ (b− d)2 = (a− c)2.

This equation has the two solutions b − d = a − c and b − d = −(a − c),
which are equivalent to a + d = b + c and a + b = c + d. These are the
characterizations for an excircle outside the biggest of the angles {B,D}
and {A,C} respectively. �

In the last characterization we have two similar triangles.

Theorem 5.3. In a convex quadrilateral ABCD where the external angle

bisectors at B and D intersect at E, let T , U , V , W be the centers of the

excircles to triangles ABC and ACD that are tangent to AB, BC, CD, DA

respectively. Then

ET · EV = EU · EW

if and only if ABCD is an extangential quadrilateral with an excircle outside

of A or C.
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Proof. (⇒) In an extangential quadrilateral, the excircles tangent to BC,
CD and DA, AB are tangent to the extension of AC in pairs according to
Theorem 2.2. Thus UV is parallel to TW , and since ET and EW are the
external angle bisectors at B and D, we have that triangles EUV and ETW

are similar. Then
EU

ET
=

EV

EW
and the equality in the theorem follows.

Figure 19. ABCD is extangential ⇔ ET · EV = EU · EW

(⇐) When ABCD is not extangential, assume without loss of generality
that CD + DA > AB + BC. If the excircles tangent to DA, AB, BC,
CD are tangent to the extension of AC at X4, X1, X2, X3 respectively (see
Figure 19), then

AX4 =
1
2
(DA−AC + CD) = CX3,

AX1 =
1
2
(BC −AC +AB) = CX2

and it follows directly that AX4 > AX1. This means that angle EV U now is
greater than in the proof of the direct theorem, while angle EWT is smaller,
so triangles EUV and ETW are no longer directly similar. Then

EU

ET
6=

EV

EW

which completes the proof. �

From the equality in the previous theorem we can derive a nice formula
for the exradius ρ of an extangential quadrilateral expressed in terms of the
four exradii of the two subtriangles created by a diagonal that are tangent
to the four sides of the quadrilateral.
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Theorem 5.4. In an extangential quadrilateral ABCD with an excircle

outside of A or C, suppose the excircles to triangles ABC and ACD that

are tangent to AB, BC, CD, DA have radii Ra, Rb, Rc, Rd respectively.

Then the radius of the excircle to the quadrilateral is given by

ρ =

∣

∣

∣

∣

RaRc −RbRd

Ra +Rb −Rc −Rd

∣

∣

∣

∣

.

Figure 20. The five exradii

Proof. First we consider the case with an excircle outside of C. We have
(see Figure 20) that

sin
π −B

2
=

ρ

EB
⇒ EB =

ρ

cos B

2

.

Then

ET = EB +BT =
ρ

cos B

2

+
Ra

cos B

2

=
ρ+Ra

cos B

2

and

EU =
ρ−Rb

cos B

2

.

In the same way

EW =
ρ+Rd

cos D

2

, EV =
ρ−Rc

cos D

2

.
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Inserting these four expressions into ET · EV = EU · EW yields

(ρ+Ra)

cos B

2

·
(ρ−Rc)

cos D

2

=
(ρ−Rb)

cos B

2

·
(ρ+Rd)

cos D

2

which we simplify into

ρ(Ra −Rc −Rd +Rb) = RaRc −RbRd.

Hence

ρ =
RaRc −RbRd

Ra +Rb −Rc −Rd

.

There are situations when both the numerator and the denominator are
negative (when Rd is big in comparison to Ra), but the quotient still gives
a positive radius.

In the case with an excircle outside of A, the only difference is that all
the terms in the denominator change signs. In order to get a formula that
always work for both cases with an excircle outside A or C, we put an
absolute value around the entire quotient. �

The formula does not work in all extangential quadrilaterals. For example
in a kite, it gives the undefined expression 0/0 for the exradius.

6. Concluding remarks

This paper together with [1, 2, 4] review or prove a total of 59 characteri-
zations of extangential quadrilaterals. When having such a large collection,
the reader might get the impression that all properties (necessary conditions)
of these quadrilaterals are also sufficient conditions for their existence. But
that is not true. Let us conclude by studying one example where the con-
verse is not true since it also includes the possibility of another class of
quadrilaterals.

Figure 21. The four subtriangle radii
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In a convex quadrilateral ABCD with sides AB = a, BC = b, CD = c,
and DA = d, we denote the inradii of triangles ABD and BCD by r1 and
r3, and the radii of their excircles that are tangent to BD by r2 and r4
respectively (see Figure 21). It is well-known that the radius of the incircle
r and the radius of the excircle rz that is tangent to side z of a triangle with
sides x, y, z are given by the formulas

r =
1

2

√

(−x+ y + z)(x− y + z)(x+ y − z)

x+ y + z

and

rz =
1

2

√

(x+ y + z)(−x+ y + z)(x− y + z)

x+ y − z
.

Then 4r1r2 is equal to
√

(−a+ q + d)(a− q + d)(a+ q − d)

(a+ q + d)
·
(a+ q + d)(−a+ q + d)(a+ q − d)

(a− q + d)

where BD = q, which is simplified into

4r1r2 = (−a+ d+ q)(a− d+ q).

In the same way it holds that

4r3r4 = (−b+ c+ q)(b− c+ q).

Using basic algebra, we get

4(r1r2 − r3r4) = (b− c+ a− d)(b− c− a+ d).

Hence r1r2 = r3r4 is equivalent to either a + b = c + d (an extangential
quadrilateral) or a + c = b + d (a tangential quadrilateral), so this radii
equality is a necessary but not a sufficient condition for the existence of an
excircle to ABCD.

There are at least 100 published characterizations of tangential quadri-
laterals, as listed at the end of our recent paper [3], the third part of an
extensive study of new characterizations of quadrilaterals that can have an
incircle. Since tangential and extangential quadrilaterals have very similar
properties, we make the prediction that there are dozens of yet unpublished
characterizations of the latter of these classes of quadrilaterals awaiting to
be discovered and proved.
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