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A geometric inequality in triangles and its applications

Jian Liu

Abstract. In this paper, we establish a new geometric inequality in
triangles and give its some applications. We also present some interesting
conjectures, which are new sharpened versions of the famous Erdös-Mordell
inequality.

1. Introduction

Given a triangle ABC, let a, b, c be the side lengths of ABC, ma,mb,mc

the corresponding medians, ha, hb, hc the altitudes, wa, wb, wc the angle-
bisectors, and ra, rb, rc the radii of excircles. And, let s,R, r and S be its
semi-perimeter, radius of circumcircle, radius of incircle and area, respective-
ly. In addition, denote cyclic sums and products by

∑
and

∏
, respectively.

In a Chinese paper [5], the author gave the following simple acute triangle
inequality:

(1.1) rb + rc ≥ 2ma,

which can be obtained from the following identity:

(1.2) (rb + rc)
2 − 4m2

a =
2(b− c)2(b2 + c2 − a2)

(c+ a− b)(a+ b− c)
.

Clearly, equality in (1.1) holds if and only if b = c or A = π/2.
In the monograph [7], the author gave some applications of inequality

(1.1). For example, by using (1.1) the author proved that for the acute
triangle ABC the following two inequalities hold (see [7, pp.52-53]):

(1.3) cosB + cosC ≤ 2ra
ma + ra

,

(1.4) cosB + cosC ≤ 2ra
mb +mc

.

We note that the later actually holds for any triangle ABC. This actuates
the author to study upper bounds of the single median ma for any triangle
ABC and finds the following result:
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Theorem 1.1. In any triangle ABC we have

(1.5) ma ≤ ha +R

(
b− c

a

)2

,

with equality if and only if b = c or A = π/2.

By the well known relation:

(1.6) R =
abc

4S
,

and the formula ha = 2S/a, one can see that inequality (1.5) has the follow-
ing equivalent forms:

(1.7) ma ≤ ha +
bc(b− c)2

4aS
,

(1.8) ma ≤ 8S2 + bc(b− c)2

4aS
,

(1.9)
ma

ha
≤ 1 +

bc(b− c)2

8S2
.

In fact, we can easily prove inequality (1.5). However, it is worth noticing
that a lot of inequalities involving medians of a triangle can be proved by
applying inequality (1.5). In Section 3, we shall give some examples.

Inspired by the first proof of (1.5) given in the next section, the author
presented some interesting conjectures related to the famous Erdös-Mordell
inequality, we shall introduce them in the last section.

2. Two proofs of Theorem 1.1

In this section, we shall give two proofs of Theorem 1.1. The first proof
is as follows:
Proof. Firstly, by the simplest arithmetic-geometric mean inequality, we
get

(2.1)
1

4

(
rb + rc +

4m2
a

rb + rc

)
≥ ma.

Again, by the formula ra = S/(s− a) we get

(2.2) rb + rc =
aS

(s− b)(s− c)
.

Consequently, using the known median formula:

(2.3) 4m2
a = 2(b2 + c2)− a2,

Heron’s formula:

(2.4) S =
√

s(s− a)(s− b)(s− c)

and its equivalent form

(2.5) 2
∑

b2c2 −
∑

a4 = 16S2,
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we have

ma ≤ aS

4(s− b)(s− c)
+

(s− b)(s− c)
[
2b2 + 2c2 − a2

]
4aS

=
a2S2 + (2b2 + 2c2 − a2)(s− b)2(s− c)2

4a(s− b)(s− c)S

=
a2s(s− a) + (s− b)(s− c)(2b2 + 2c2 − a2)

4aS

=
a2

[
(b+ c)2 − a2

]
+ (2b2 + 2c2 − a2)

[
a2 − (b− c)2

]
16aS

=
2
∑

b2c2 −
∑

a4 + 2bc(b2 + c2)− 4b2c2

8aS

=
16S2 + 2bc(b− c)2

8aS

=
2S

a
+

2bc(b− c)2

4aS

= ha +R

(
b− c

a

)2

,

where the last step used ha = 2S/a and relation (1.6). Thus, inequality
(1.5) is proved. Note that the equality in (2.1) occurs if and only if

rb + rc =
4m2

a

rb + rc
,

i.e.,rb+rc = 2ma. Further, by the identity (1.2), we deduce that the equality
in (1.5) holds if and only if b = c or A = π/2. This completes the proof of
Theorem 1.1.

In the above proof, we actually have proved the following identity:

(2.6)
1

4

(
rb + rc +

4m2
a

rb + rc

)
= ha +R

(
b− c

a

)2

,

which together with (2.1) shows that inequality (1.5) holds.
Now, we give the second proof of Theorem 1.1 as follows:

Proof. Firstly, we use the median formula (2.3) and aha = 2S to obtain

(2.7) 4a2(m2
a − h2a) = a2(2b2 + 2c2 − a2)− 16S2.

But

a2(2b2 + 2c2 − a2)− 16S2 = (b2 − c2)2,

which is equivalent to identity (2.5). Then, we get

(2.8) m2
a − h2a =

(b2 − c2)2

4a2
.
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Using this identity, the known relation 2Rha = bc and (1.6), we have[
ha +R

(
b− c

a

)2
]2

−m2
a

= h2a −m2
a + 2Rha

(
b− c

a

)2

+R2

(
b− c

a

)4

= −(b2 − c2)2

4a2
+ bc

(
b− c

a

)2

+R2

(
b− c

a

)4

=

(
b− c

a

)2
[
−1

4
(b+ c)2 + bc+R2

(
b− c

a

)2
]

=
(b− c)4(4R2 − a2)

4a4
.

Note that a = 2R sinA, we obtain the following identity:

(2.9)

[
ha +R

(
b− c

a

)2
]2

−m2
a =

(b− c)4

a4
R2 cos2A,

which clearly implies that inequality (1.5) holds and its equality if and only
if b = c or cosA = 0, i.e., A = π/2. This completes the proof of Theorem
1.1.

Remark 2.1. For inequality (1.5), we have the following reverse inequality:

(2.10) ma ≥ ha + 2r

(
b− c

a

)2

,

which could be proved easily.

Remark 2.2. For the acute triangle ABC, the author proved the following
reverse inequality (1.5):

(2.11) ma ≥ ha +
24

25
R

(
b− c

a

)2

.

3. Applications of Theorem 1.1

In this section, we discuss applications of inequality (1.5) and its equiv-
alent forms. The following corollaries are our results of applying inequality
(1.5).

For simplicity, we shall omit the details of deducing some identities in a
triangle.

Corollary 3.1. In an acute triangle ABC, we have

(3.1) ma ≤ (hb + hc)
2

2a2 − (b− c)2
R,

with equality if and only if b = c or A = π/2.
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Proof. By Theorem 1.1, we need to show that the following inequality

(3.2) ha +R

(
b− c

a

)2

≤ (hb + hc)
2

2a2 − (b− c)2
R

holds for the acute triangle ABC. Using the formula ha = 2S/a, the previous
identity (1.6) and Heron’s formula (2.4), we can easily obtain the following
identity:

(hb + hc)
2

2a2 − (b− c)2
R− ha −R

(
b− c

a

)2

=
(b2 + c2 − a2)(b− c)2D0

16abcS(2a2 + 2bc− b2 − c2)
,(3.3)

where

D0 = a4 − (a2 + 2bc)(b− c)2.

Since D0 can be rewritten as

D0 =
1

2
(c2 + a2 − b2)(a2 + b2 − c2) +

1

2
(c+ a− b)2(a+ b− c)2,

which can be verified by expanding. Thus, D0 > 0 holds for the acute
triangle ABC. Hence, inequality (3.2) follows from (3.3) and inequality
(3.1) is proved. Also, from (3.3) we see that the equality condition of (3.1)
is the same as that of (1.1). This completes the proof of Corollary 3.1.

Remark 3.1. It is easy to prove that inequality (3.1) is stronger than in-
equality (1.1). In fact, for the acute triangle ABC we have the following
inequality chain:

ma ≤ (hb + hc)
2

2a2 − (b− c)2
R ≤

√
1

2
(b2 + c2) cos

A

2

≤ R

(
1 + cosA cos2

B − C

2

)
≤ 1

2
(rb + rc),(3.4)

in which the inequality

(3.5) ma ≤ R

(
1 + cosA cos2

B − C

2

)
was first proved by Z.Y.Deng in [3].

Corollary 3.2. For any triangle ABC, inequality (1.4) holds.

Proof. Adding two inequalities similar to (1.8), we get

(3.6) mb +mc ≤ hb + hc +
ca(c− a)2

4bS
+

ab(a− b)2

4cS
.

Using hb = 2S/b, hc = 2S/c and Heron’s formula, we further obtain

(3.7) mb +mc ≤
E0

8bcS
,

where

E0 =− (b+ c)a4 + 2(b2 + c2)a3 − 2(b+ c)(b− c)2a2

+ 2(b4 + c4)a− (b− c)2(b+ c)3.
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On the other hand, by using the law of cosine we easily get

(3.8) cosB + cosC =
(b+ c)(c+ a− b)(a+ b− c)

2abc
.

Thus, to prove inequality (1.4) we need to show that

2ra ≥ (b+ c)(c+ a− b)(a+ b− c)

2abc
· E0

8bcS
.

Since ra = 2S/(b+ c− a), the above inequality is equivalent to

64a(bc)2S2 − (b+ c)(b+ c− a)(c+ a− b)(a+ b− c)E0 ≥ 0.

And, by Heron’s formula and s = (a+ b+ c)/2, we only need to prove

4a(a+ b+ c)(bc)2 − (b+ c)E0 ≥ 0.

Substituting the expression of E0 into this inequality and arranging gives

E1 ≡ (b+ c)2a4 − 2(b+ c)(b2 + c2)a3 + 2(b4 + c4)a2

− 2(b− c)2(b+ c)3a+ (b− c)2(b+ c)4 ≥ 0,(3.9)

which is required to prove. But it is easy to verify the following identity:

(3.10) E1 = (b+ c)2(b− c)2(b+ c− a)2 + a2(b2 + c2 − ab− ac)2,

which shows that inequality (3.9) is true. Hence, Corollary 3.2 is proved.

Corollary 3.3. In any triangle ABC, we have

(3.11)
1

ha
− 1

ma
≤ 1

2r
− 1

R
.

Proof. The above inequality is equivalent to

1

ma
≥ 1

ha
− 1

2r
+

1

R
.

In view of inequality (1.8), ha = 2S/a, r = S/s and identity (1.6), we only
need to prove

4aS

8S2 + bc(b− c)2
≥ a− s

2S
+

4S

abc
,

that is

F0 ≡ 8bca2S2 −
[
(a− s)abc+ 8S2

] [
8S2 + bc(b− c)2

]
≥ 0,

Using Heren’s formula and s = (a+ b+ c)/2, we easily get

(3.12) F0 =
1

4
(b+ c− a)F1,

where

F1 = a7 + (b+ c)a6 − 3(b2 − bc+ c2)a5 − (b+ c)(3b2 − 4bc+ 3c2)a4

+ (3b4 − 6b3c+ 10b2c2 − 6bc3 + 3c4)a3 + (b+ c)(3b2 − 2bc

+ 3c2)(b− c)2a2 − (b2 + c2)(b2 − bc+ c2)(b− c)2a

− (b+ c)(b2 + c2)(b− c)4.

Thus, we only need to show that F1 ≥ 0. Letting b+ c− a = 2x, c+ a− b =
2y, a + b − 2c = z, then a = y + z, b = z + x, c = x + y. Substituting them
into F1, we obtain

(3.13) F1 = 2F2,
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where

F2 =(y + z)(y2 + 6yz + z2)x4 + (2y4 + 16y3z − 4y2z2 + 16yz3 + 2z4)x3

+ (y + z)(y4 + 10y3z − 46y2z2 + 10yz3 + z4)x2 + 2(y4 − 12y3z

− 10y2z2 − 12yz3 + z4)yzx+ (y + z)(y2 + 30yz + z2)y2z2.

Through analysis, we obtain the following identity:

F2 =2yz(x+ y + z)
[
x(y + z)(y + z − 2x)2 + 4(xy + xz − 2yz)2

]
+

[
(y + z)x4 + 2(y2 + 6yz + z2)x3 + (y + z)(y2 + 10yz + z2)x2

+y2z2(y + z)
]
(y − z)2.(3.14)

Since x, y, z > 0, we have F2 ≥ 0. This completes the proof of Corollary 3.3.

Remark 3.2. Note that the known identity:

(3.15)
1

ra
+

2

ha
=

1

r
,

we know that inequality (3.11) is equivalent to

(3.16)
1

ra
+

2

ma
≥ 2

R
,

which was proposed by Liu B.Q. and proved by Zhang X.M. (see [19, p.570]).

Corollary 3.4. In any triangle ABC, the following inequality holds:

(3.17)
mb

hc
+

mc

hb
≤ R

r
.

Proof. Using the two inequalities corresponding to (1.8), hb = 2S/b and
hc = 2S/c, we get

mb

hc
+

mc

hb
≤ 8S2 + ca(c− a)2

8S2
· c
b
+

8S2 + ab(a− b)2

8S2
· b
c
.

Further, using the previous formula (2.5) we obtain

(3.18)
mb

hc
+

mc

hb
≤ G0

16bcS2
,

where

G0 =− (b2 + c2)a4 + 2(b+ c)(b2 − bc+ c2)a3 − 2(b− c)2(b+ c)2a2

+ 2(b+ c)(b4 − b3c+ b2c2 − bc3 + c4)a− (b2 + c2)(b− c)2(b+ c)2.

Thus, to prove (3.17) we need to show that

G0

16bcS2
≤ R

r
.

Note that Hereon’s formula and the following known identity:

(3.19)
R

r
=

abc

4(s− a)(s− b)(s− c)
.

The claimed inequality becomes

(3.20) G1 ≡ 2a(a+ b+ c)(bc)2 −G0 ≥ 0.
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But it is easy to obtain the following identity:

G1 ≡ (b2 + c2)a4 − 2(b+ c)(b2 − bc+ c2)a3 + (2b4 − 2b2c2

+ 2c4)a2 − 2(b+ c)(b2 + bc+ c2)(b− c)2a

+ (b2 + c2)(b− c)2(b+ c)2 ≥ 0.(3.21)

Through analysis, we find that G1 can be rewritten as

(3.22) G1 =
1

2
(b− c)2(b+ c− a)4+

1

2

[
(b+ c)a2 − 2bca− (b+ c)(b− c)2

]2
,

which is easily verified by expanding and shows that inequality (3.20) holds.
This completes the proof of Corollary 3.4.

Remark 3.3. Inequality (3.17) was proposed as a conjecture by Liu B.Q.
in his book [15]. The author [8] first gave a proof, which is more complicated
than the above proof. In addition, by using Potlemy’s inequality (see [18]) we
can prove that inequality (3.17) is stronger than the following Panaitopol’s
inequality (see [16, p.216]):

(3.23) 2
ma

ha
≤ R

r
.

Corollary 3.5. In any triangle ABC, the following inequality holds:

(3.24) ma − ha ≤ 4

3
(R− 2r).

Proof. By Theorem 1.1, we need to show that

R

(
b− c

a

)2

≤ 4

3
r

(
R

r
− 2

)
.

Using identity (3.19), we easily know that the claimed inequality is equiva-
lent to

4bca2 − 32a(s− a)(s− b)(s− c)− 3bc(b− c)2 ≥ 0.(3.25)

Putting s−a = x, s− b = y, s− c = z, then we have a = y+ z, b = z+x, c =
x+y(x, y, z > 0). Substituting them into (3.25) gives the following algebraic
inequality:

4(z + x)(x+ y)(y + z)2 − 32(y + z)xyz − 3(z + x)(x+ y)(y − z)2 ≥ 0,

that is

(3.26) (y2+14yz+z2)x2+(y+z)(y2−18yz+z2)x+yz(y2+14yz+z2) ≥ 0.

If y2−18yz+z2 ≥ 0, then the above inequality is clearly true. If y2−18yz+
z2 < 0, then it is easy to compute the discriminant Fx of quadratic function
(in x) of the left hand side of (3.26), which is given by

Fx = (y2 − 34yz + z2)(y − z)4.

And we have Fx ≤ 0 under the the condition y2− 18yz+ z2 < 0. Therefore,
inequality (3.26) holds for all positive real numbers x, y, z. So inequality
(3.25) is proved. This completes the proof of Corollary 3.5.

Next, we shall prove another linear inequality similar to (3.24).

Corollary 3.6. In any triangle ABC, the following inequality holds:

(3.27) mb +mc − (hb + hc) ≤ 2(R− 2r).
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Proof. By Theorem 1.1, to prove (3.27) we need to show that

2(R− 2r) ≥ ca(c− a)2

4bS
+

ab(a− b)2

4cS
.

Multiplying both sides of this inequality by 4S, and then using the previous
relation (1.6), the known identity:

(3.28) (s− a)(s− b)(s− c) = rS,

and s = (a+ b+ c)/2, it becomes

2abc− 2(b+ c− a)(c+ a− b)(a+ b− c) ≥ ca(c− a)2

b
+

ab(a− b)2

c
.

i.e.,

H0 ≡ 2a(bc)2 − 2bc(b+ c− a)(c+ a− b)(a+ b− c)

− ac2(c− a)2 − ab2(a− b)2 ≥ 0.(3.29)

But H0 can be rewritten as

(3.30) H0 =
1

2
(b+ c− a)(b− c)2

[
(c+ a− b)(a+ b− c) + (b+ c− a)2

]
,

which implies the claimed inequality (3.29) holds. This completes the proof
of inequality (3.27).

Corollary 3.7. In any triangle ABC, the following inequality holds:

(3.31)
∑ ra

mb +mc
a2 ≥ 1

2

∑
a2.

Proof. According to inequality (3.27), to prove (3.31) it is enough to show
that

(3.32)
∑ ra

hb + hc + 2(R− 2r)
a2 ≥ 1

2

∑
a2.

Also, we easily prove the following two identities:∏
[hb + hc + 2(R− 2r)] =

M1

2R2
,(3.33) ∑

a2ra[hc + ha + 2(R− 2r)][ha + hb + 2(R− 2r)] =
4s2

R
N1,(3.34)

where

M1 = Rs4 + (8R3 − 16R2r + 6Rr2 − 2r3)s2 + (R− 2r)(2R− r)4,

N1 = (R− r)Rs2 + 4R4 − 12R3r + 15R2r2 − 6Rr3 + 2r4.

It follows from (3.33) and (3.34) that

(3.35)
∑ ra

hb + hc + 2(R− 2r)
a2 =

8Rs2N1

M1
.

By identity (3.33) and Euler’s inequality:

(3.36) R ≥ 2r,

one sees that that M1 > 0. Hence, by the well known identity:

(3.37)
∑

a2 = 2(s2 − 4Rr − r2),
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to prove inequality (3.32) we have to prove that

8Rs2N1 − (s2 − 4Rr − r2)M1 ≥ 0.

Using the expressions of M1 and N1, we further know that the above in-
equality is equivalent to

I0 ≡ −Rs6 + (12R2 − 5Rr + 2r2)rs4 + (2R+ 3r)(2R− r)3Rs2

+ (4R+ r)(R− 2r)(2R− r)4r ≥ 0.(3.38)

Now, recall that for any triangle ABC we have the following fundamental
triangle inequality (see [1] and [16, pp.1-10]):

(3.39) t0 ≡ −s4 + (4R2 + 20Rr − 2r2)s2 − r(4R+ r)3 ≥ 0,

and Gerretsen’s inequality (see [1]):

(3.40) g2 ≡ 4R2 + 4Rr + 3r2 − s2 ≥ 0.

Based on the above two inequalities, we rewrite I0 as follows:

(3.41) I0 = m1t0 + g2m2 +m3,

where

m1 = Rs2 + 4R3 + 8R2r + 3Rr2 − 2r3,

m2 = 4(12R4 + 35R3r + 2R2r2 − 11Rr3 + r4)r,

m3 = 8(R− 2r)(16R5 − 4R4r + 14R3r2 − 9R2r3 − 6Rr4 + r5)r.

By Euler’s inequality (3.36), one sees that m1 > 0,m2 > 0 and m3 ≥ 0
are valid. Thus, from (3.39)-(3.41), we conclude that (3.38) holds. This
completes the proof of Corollary 3.7.

Remark 3.4. Inequalities (3.31), (3.66) and (3.78) below were given in the
monographs [7], where the author only proved that these three inequalities
are valid for the acute triangle ABC.

The following acute inequality (3.42) was established by the author in [6].
Here, we shall use Theorem 1.1 to give a new proof.

Corollary 3.8. In the acute triangle ABC, we have

(3.42)

∑
ha∑
ma

≥ 1

2
+

r

R
.

Proof. By Theorem 1.1 we have

(3.43)
∑

ma ≤
∑

ha +R
∑(

b− c

a

)2

.

Thus, to prove inequality (3.42) we need to show∑
ha ≥

(
1

2
+

r

R

)[∑
ha +R

∑(
b− c

a

)]2
,

i.e.,

(3.44) J0 ≡
(
1

2
− r

R

)∑
ha −

(
1

2
+

r

R

)
R
∑(

b− c

a

)2

≥ 0,
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But we have the following known identity:

(3.45)
∑

ha =
s2 + 4Rr + r2

2R
,

and it is easy to prove the following identity:

(3.46)
∑(

b− c

a

)2

=
−s4 + 2(6R2 + 2Rr − r2)s2 − r(4R+ r)3

4R2s2
.

Substituting (3.45) and (3.46) into J0, we further obtain

(3.47) J0 =
J1

8s2R2
,

where

J1 = (3R− 2r)s4 − 4(3R2 + 5Rr + 5r2)Rs2 + (R+ 2r)(4R+ r)3r.

Also, we can rewrite J1 as

J1 =2rt0 + 3R
[
s2 − (2R+ r)2

] [
s2 − (2R2 + 8Rr + 3r2)

]
+ J2,(3.48)

where t0 is the same as in (3.39) and

J2 =(6R3 + 8R2r − 48Rr2 + 4r3)s2 − 24R5 − 56R4r

+ 166R3r2 + 144R2r3 + 40Rr4 + 4r5.

Note that in the acute (non-obtuse) triangle ABC we have Ciamberlini’s
inequality (see [2]):

(3.49) s ≥ 2R+ r

(with equality if and only if △ABC is a right triangle) and Walker’s in-
equality (cf. [16] and [9]):

(3.50) s2 ≥ 2R2 + 8Rr + 3r2,

with equality if and only if △ABC is equilateral or right isosceles. Also,
for any triangle ABC we have the fundamental inequality (3.39). Hence, by
(3.48) it remains to show that J2 ≥ 0 holds for the acute triangle ABC. We
consider two cases to finish the proof of this inequality.

Case 1. 6R3 + 8R2r − 48Rr2 + 4r3 ≥ 0.
In this case, by (3.49) and Euler’s inequality we have

J2 ≥ (6R3 + 8R2r − 48Rr2 + 4r3)(2R+ r)2 − 24R5

− 56R4r + 166R3r2 + 144R2r3 + 40Rr4 + 4r5

= 4r2(3R3 − 6R2r + 2Rr2 + 2r3) > 0.

Case 2. 6R3 + 8R2r − 48Rr2 + 4r3 < 0.
In this case, by Gerretsen’s inequality (3.40) and Euler’s inequality we

have

J2 ≥ (6R3 + 8R2r − 48Rr2 + 4r3)(4R2 + 4Rr + 3r2)− 24R5

− 56R4r + 166R3r2 + 144R2r3 + 40Rr4 + 4r5

= 8(R− 2r)(3R2 + 5Rr − r2)r2 ≥ 0.

Combining the arguments of the above two cases, we conclude that J2 ≥ 0
holds for all acute triangles. This completes the proof of inequality (3.42).
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Remark 3.5. In [6], the author established the following linear inequality:

(3.51)
∑

ma −
∑

ha ≤ 2(R− 2r).

Comparing this inequality with (3.43), the author finds that the following
inequality

(3.52)
∑(

b− c

a

)2

≥ 2

(
1− 2r

R

)
is equivalent to the fundamental triangle inequality (3.39). In fact, this
statement can be showed by using identity (3.46). The author also gave two
other equivalent forms of the fundamental triangle inequality in the recent
paper [14].

Corollary 3.9. In any triangle ABC, the following inequality holds:

(3.53)
∑ 1

ma
≥ 5

2R+ r
.

Proof. We set

(3.54)



qa = ha +R

(
b− c

a

)2

,

qb = hb +R

(
c− a

b

)2

,

qc = hc +R

(
a− b

c

)2

.

By Theorem 1.1, to prove (3.53) we only need to show that

(3.55)
∑ 1

qa
≥ 5

2R+ r
.

It is not difficult to prove the following two identities:∏
qa =

M2

4Rs2
,(3.56) ∑

qbqc =
N2

2Rs2
,(3.57)

where

M2 =(R+ 2r)2s4 + 4(R2 − 3Rr − r2)(R+ r)2s2 − (4R+ r)3R2r,

N2 =(R+ 2r)s4 + 2(R+ r)(3R2 −Rr − r2)s2 − (4R+ r)3Rr.

It follows from (3.56) and (3.57) that

(3.58)
∑ 1

qa
=

2N3

M2
.

Therefore, to prove (3.55) we need to show

2N2

M2
− 5

2R+ r
≥ 0,

i.e.,

2(2R+ r)N2 − 5M2 ≥ 0.
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Using the expression of M2 and N2 gives

− (R+ 8r)(R+ 2r)s4 + 4(R+ r)(R3 + 11R2r + 17Rr2 + 4r3)s2

+Rr(R− 2r)(4R+ r)3 ≥ 0,

which is required to prove. Dividing both sides of this inequality by s2 and
applying the known result (see [1]):

(3.59) (4R+ r)2 ≥ 3s2,

we only need to prove

− (R+ 8r)(R+ 2r)s2 + 4(R+ r)(R3 + 11R2r + 17Rr2 + 4r3)

+ 3Rr(R− 2r)(4R+ r) ≥ 0,

which can be written as

(R+ 8r)(R+ 2r)(4R2 + 4Rr + 3r2 − s2)

+ 16(R− 2r)(R2 +Rr + r2)r ≥ 0.

By Euler’s inequality R ≥ 2r and Gerretsen’s inequality (3.40), one sees that
the above inequality holds. This completes the proof of inequality (3.53).

Remark 3.6. Ciamberlini’s inequality (3.49) shows that for the acute tri-
angle ABC inequality (3.53) is better than the following Janous’s inequality
(see [4]):

(3.60)
∑ 1

ma
>

5

s
,

which is valid for any triangle ABC.

Corollary 3.10. In any triangle ABC, the following inequality holds:

(3.61)
∑ rb + rc

ma + ra
≥ 3.

Proof. Applying Cauchy’s inequality, we have

∑ rb + rc
ma + ra

≥

[∑
(rb + rc)

]2
∑

(rb + rc)(ma + ra)
=

4
(∑

ra

)2

∑
(rb + rc)(ma + ra)

.

Thus, to prove (3.61) we need to show that

4
(∑

ra

)2
− 3

∑
(rb + rc)(ma + ra) ≥ 0,

i.e.,

4
(∑

ra

)2
− 3

∑
(rb + rc)ma − 6

∑
rbrc ≥ 0.

By Theorem 1.1 and the following two known identities:∑
ra = 4R+ r,(3.62) ∑
rbrc = s2,(3.63)

we only need to prove

(3.64) 4(4R+ r)2 − 6s2 − 3
∑

(rb + rc)qa ≥ 0,
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where qa, qb, qc are given by (3.54). One can easily prove the following iden-
tity:

(3.65)
∑

(rb + rc)qa = s2 + 8R2 − 2Rr − r2.

Thus, it remains to show that

4(4R+ r)2 − 6s2 − 3(s2 + 8R2 − 2Rr − r2) ≥ 0,

i.e.,

2(2R+ 5r)(R− 2r) + 9(4R2 + 4Rr + 3r2 − s2) ≥ 0,

which follows from Euler’s inequality R ≥ 2r and Gerretsen’s inequality
(3.40). This completes the proof of inequality (3.61).

Corollary 3.11. In any triangle ABC, the following inequality holds:

(3.66)
∑

(ma + ra) cosA ≤
∑

ha.

Proof. Since 1+cosA = 2 cos2
A

2
, we see that inequality (3.67) is equivalent

to

2
∑

ma cos
2 A

2
+

∑
ra cosA ≤

∑
ma +

∑
ha.

By Theorem 1.1, to prove this inequality we need to prove

2
∑[

ha +R

(
b− c

a

)2
]
cos2

A

2
+

∑
ra cosA−

∑
ha ≤

∑
ma,

which is equivalent to∑
ma ≥

∑
(ra + ha) cosA−

∑
ha

+ 2R
∑(

b− c

a

)2

cos2
A

2
.(3.67)

Again, it is easy to prove the following identities:∑
(ra + ha) cosA =

3s2 − 8R2 − 6Rr − r2

2R
,(3.68) ∑(

b− c

a

)2

cos2
A

2
=

8R2 − 2Rr − r2 − s2

4R2
.(3.69)

Using these two identities and (3.45), inequality (3.67) can be simplified to

(3.70)
∑

ma ≥ s2 − 4Rr − r2

R
.

From the previous identity (3.37), one sees this inequality is equivalent to
the known result (see [16, p.213]):

(3.71)
∑

ma ≥ 1

2R

∑
a2.

Therefore, inequality (3.66) is proved.

Corollary 3.12. In any triangle ABC, the following inequality holds:

(3.72)
∑ a2

mara
≥ 4.



148 Jian Liu

Proof. By Theorem 1.1, we need to show that

(3.73)
∑ a2

raqa
≥ 4.

where qa, qb, qc are given by (3.54). It is easy to obtain the following identi-
ties: ∏

raqa =
r

4R
M3,(3.74) ∑

a2rbrcqbqc =
r

R
N3,(3.75)

where

M3 =(R+ 2r)2s4 + 4(R2 − 3Rr − r2)(R+ r)2s2 − (4R+ r)3R2r,

N3 =(R2 + 5Rr + 3r2)s4 + (4R4 − 4R3r − 48R2r2 − 26Rr3

− 4r4)s2 − (R2 −Rr − r2)(4R+ r)3r.

Thus, it follows from (3.74) and (3.75) that

(3.76)
∑ a2

raqa
=

4N3

M3
.

And, we see that inequality (3.73) is equivalent to N3 −M3 ≥ 0, which can
be simplified to

(R− r)s4 − 6(4R+ r)s2Rr + (R+ r)(4R+ r)3r ≥ 0.

In view of the previous inequality (3.59), we only need to show

(R− r)s4 − 6(4R+ r)s2Rr + 3(R+ r)(4R+ r)rs2 ≥ 0,

i.e.,

(R− r)s2
[
s2 − 3r(4R+ r)

]
≥ 0.

This is true since we have R ≥ 2r and the following known inequality (see
[1]):

(3.77) s2 ≥ 3(4R+ r)r.

Consequently, inequality (3.72) is proved.

Corollary 3.13. In any triangle ABC, the following inequality holds:

(3.78)
∑ ra

(mb +mc) sin
2A

≥ 2.

Proof. By Theorem 1.1, we only need to prove that

(3.79)
∑ ra

(qb + qc) sin
2A

≥ 2,

where qa, qb, qc are given by (3.54). But we can prove the following identity:∑
ra(qc + qa)(qa + qb)(sinB sinC)2 =

rN4

256R6s4
,(3.80) ∏

(qb + qc) sin
2A =

r2M4

32R6s2
,(3.81)
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where

M4 =(R+ 2r)s8 + (16R3 + 32R2r + 12Rr2 − 2r3)s6

+ 2(R+ r)(32R4 − 32R3r − 56R2r2 − 20Rr3

− r4)s4 − 2r(8R3 + 8R2r − 2Rr2 − r3)(4R+ r)3s2

+Rr2(4R+ r)6,

N4 =s12 + (16R2 + 4Rr + 2r2)s10 + (64R4 − 64R3r − 64R2r2

+ 20Rr3 − r4)s8 − 4(64R5 − 224R4r − 240R3r2 − 64R2r3

+ 6Rr4 + r5)rs6 + (64R4 + 192R3r + 128R2r2 − 44Rr3

− r4)(4R+ r)3rs4 − 2(8R2 + 14Rr − r2)(4R+ r)6r2s2

+ (4R+ r)9r3.

Thus, it follows from (3.80) and (3.81) that

(3.82)
∑ ra

(qb + qc) sin
2A

=
N4

8rs2M4
.

To prove inequality (3.79) we need to prove that

(3.83) K0 ≡ N4 − 16rs2M4 ≥ 0.

Simplifying gives the following equivalent inequality:

K0 ≡ s12 + (16R2 − 12Rr − 30r2)s10 + (64R4 − 320R3r − 576R2r2

− 172Rr3 + 31r4)s8 − 4(2R+ r)(160R4 − 192R3r − 376R2r2

− 148Rr3 − 7r4)rs6 + (64R4 + 448R3r + 384R2r2 − 108Rr3

− 33r4)(4R+ r)3rs4 − 2(8R2 + 22Rr − r2)(4R+ r)6r2s2

+ (4R+ r)9r3 ≥ 0.(3.84)

This inequality can be proved by applying the following Gerretsen’s inequal-
ity (see [1] and [16]):

(3.85) g1 ≡ s2 − 16Rr + 5r2 ≥ 0,

the fundamental inequality (3.39), and the previous the Gerretsen inequality
(3.40). In fact, after analysing we obtain the following identity:

K0 = g61 + x1g
5
1 + x2g

4
1 + x3g

3
1 + x4g

2
1 + x5g1 + x6g2

+ x7t0s
2 + x8,(3.86)

where g2 and t0 are the same as in (3.39) and (3.40) respectively, and

x1 =16R2 + 84Rr − 60r2,

x2 =64R4 + 960R3r + 1904R2r2 − 4672Rr3 + 1156r4,

x3 =64Rr(44R4 + 314R3r + 1173r4),
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x4 =32r(128R7 + 2144R6r + 6472R5r2 − 30762R4r3

+ 64174R3r4 − 542R2r5 − 7277Rr6 − 2707r7),

x5 =128r2(512R8 + 5952R7r + 8656R6r2 − 109718R5r3

+ 156768R4r4 + 9122R2r6 + 3653r8),

x6 =384Rr7(28927R2 + 1105r2),

x7 =32r3(34R3 + 3975R2r + 331r3),

x8 =128(R− 2r)(2048R8 + 26624R7r + 76448R6r2

− 32808R5r3 − 413606R4r4 + 333201R3r5

− 18404R2r6 + 9257Rr7 + 2824r8)r3.

By Euler’s inequality R ≥ 2r, one sees that x1, x2, x5 > hold. Moreover,
with the help of software Maple we easily obtain the following identities:

x4 =32r(128e7 + 3936e6r + 42952e5r2 + 198438e4r3

+ 491678e3r4 + 764550e2r5 + 763011er6 + 362475r7),(3.87)

x8 =128er3(2048e8 + 59392e7r + 678560e6r2 + 4038488e5r3

+ 13593674e4r4 + 26523169e3r5 + 29338482e2r6

+ 16776741er7 + 3770610r8),(3.88)

where e = R − 2r ≥ 0. Thus, we have x4 > 0 and x8 ≥ 0. Therefore,
according to identity (3.86), Gerretsen’s inequalities (3.40), (3.85) and the
fundamental inequality (3.39) we conclude that K0 ≥ 0 holds. This com-
pletes the proof of Corollary 3.13.

4. Some conjectures related to the Erdös-Mordell inequality

In this section, we shall introduce some interesting inequalities as open
problems which, though unproved, have been checked by the computer.

Let R1, R2, R3 be the distances from an interior point P of the triangle
ABC to the vertices A,B,C of the triangle ABC, respectively. Let r1, r2, r3
be the distances from P to the sides BC,CA,AB, respectively. Then

(4.1)
∑

R1 ≥ 2
∑

r1.

This is the famous Erdös-Mordell inequality (cf. [16, pp.319-319]).
The author has already established and presented some sharpened ver-

sions of the Erdös-Mordell inequality (see [5] and [10]-[13]). For example,
the following conjecture was proposed in [12]:

(4.2)

∑
R1∑
r1

≥ 1

2

∑ a2

mbmc
.

Here, we shall introduce some new similar conjectures.
Note that the previous inequality (2.1) is equivalent to

(4.3)
2ma

rb + rc
+

rb + rc
2ma

≥ 2.
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Inspired and motivated by this inequality and the Erdös-Mordell inequality,
the author proposes the following sharpened version of the Erdös-Mordell
inequality:

Conjecture 4.1. For any interior point P of the triangle ABC, we have

(4.4)

∑
R1∑
r1

≥ 2ma

rb + rc
+

rb + rc
2ma

.

Four similar conjectures are as follows:

Conjecture 4.2. For any interior point P of the triangle ABC, we have

(4.5)

∑
R1∑
r1

≥ mb +mc

ma + ra
+

ma + ra
mb +mc

.

Conjecture 4.3. For any interior point P of the triangle ABC, we have

(4.6)

∑
R1∑
r1

≥ maha
rbrc

+
rbrc
maha

.

Conjecture 4.4. For any interior point P of the triangle ABC, we have

(4.7)

∑
R1∑
r1

≥ 4mbmc

2a2 + bc
+

2a2 + bc

4mbmc
.

Conjecture 4.5. For any interior point P of the triangle ABC, we have

(4.8)

∑
R1∑
r1

≥

∑
ra∑
ma

+

∑
ma∑
ra

.

Finally, we give a sharpened version of the Erdös-Mordell inequality again,
which is inspired by the equivalent form (3.52) of the fundamental triangle
inequality.

Conjecture 4.6. For any interior point P of the triangle ABC, we have

(4.9)

∑
R1∑
r1

≥ 4r

R
+

∑(
b− c

a

)2

.

Inequality (3.52) implies that the above inequality is stronger than the
Erdös-Mordell inequality.
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