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WHEN NEWTON’S CONIC MEETS APOLLONIUS’ PROBLEM

LILIANA GABRIELA GHEORGHE

Abstract. A unified method for a geometric construction of conics which have
a prescribed focus, pass through given points, and tangent given lines is presented.
The proofs make extensive use of polar reciprocity, which converts these problems
into degenerate cases of Apollonius’ problem.

1. Introduction

A conic is determined once we specify five of its elements, between points and
tangents. A standard use of Pascal’s theorem, or a direct algebraic computation
easily allows to find a five-point conic. These methods are less friendly when we
prescribe tangent conditions, and fail, when a focus and three other conditions
between point and tangents are given. In this paper, we give a general method to
(geometrically) draw a conic which have a prescribed focus and three other elements
between points and tangents.

Figure 1. There is a unique conic with a prescribed focus and that tangents △ABC’s sides:
the polar dual of the circumcircle (dotted green) of the polar triangle △A′B′C′.
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Figure 2. There are four conics that have a common focus, F and that pass through three
given points P1, P2, P3: the polar duals of the i-circle and the exinscribed circle of the triangle
determined by the polars of these points).

In a broad view, such a problem relates to Kepler’s conjecture on elliptical
trajectories of planets, which have the Sun as one foci: in order to predict the
trajectory of a planet, it suffices to specify three of its positions. Such problems
had been extensively studied by Newton, in the first volume of its classic Principia
[9]; here we solve Proposition XX, Problem XII, Book I, Section IV.

The solution is based on polar reciprocity, a tool developed by V. Poncelet in
order to prove his famous Porism. The reader not acquainted with the method
may see the Appendix. This approach enables both a natural, as well as unified
treatment: there is no significant difference between various cases, as the method
adapts to any data.

Some of these problems, as those involving three given tangents, are well posed:
the solution exists and is unique; others, are not: there may be four, two, one or no
solution. According to the location of the focus, a specific type of conic is obtained.
The nature of the inscribed conic is related to a partition of the plane into invariant
subsets w.r. to Cremona transform, to which we give a direct, elementary proof.

Related work. Geometric constructions of conics are nowadays a part of so called
Descritive geometry; a good text, containing proofs of the constructions, is [5]; see
problems 75-79. In [2], foci of circumscribed parabolas are studied; proprieties of
conics that tangent triangle’s sides at its vertices are in [3],[4]. In-ellipses of convex
polygons are studied in [14]. Inscribed conics with prescribed foci are of course a
constant presence whenever there’s a Poncelet pair for triangles: see [8],[11],[12] for
a small sample.

Main result. The first result ensures that a conic that tangents three given lines
and having a prescribed focus exists, is unique, and shows how to draw it.
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Theorem 1.1. Let a, b, c three lines that are neither concurrent, nor parallel. Then
for any point F in the plane, not on these lines, there exists a unique conic which
have focus in F and tangents the lines a, b, c.

This conic, its tangency points, as well as all its geometric elements (focus,
vertices, directrix) admit a construction with line and compass only.

We also solve the dual problem.

Theorem 1.2. Let A,B,C be three non collinear points. Then for any point F in
the plane, that does not belong to the lines of the triangle, there exists four conics
which have focus in F and that pass through A,B,C. This conics, as well as its
main geometric elements (focus, vertices, directrix) admit a geometric construction.
Among those four solutions, there is at most one ellipse.

2. The proofs

Proof of Theorem 1.1. Refer to figure 1. Perform a dual transform, w.r. to an
inversion circle centered in F ; the lines a, b, c transforms into their poles A,B,C and
the problem converts into: to draw all the circles that pass through three points.

This problem is well posed (always have a solution, and the solution is unique)
whenever the three points are not collinear, i.e., whenever the three lines a, b, c are
not parallel.

The polar dual of this (unique) circle is the conic we search.

Proof of theorem 1.2. Refer to figure 2. In order to obtain the conic that has
one focus in F and pass through the vertices of the triangle, again perform a dual
transform w.r. to an inversion circle centered in F. The points converts into their
polars, and the problem became the following: to draw all the circles that tangent
three distinct lines.

The solution are the i-circle and the three ex-inscribed circles. The polar dual of
these circles, w.r. to the inversion circle are the conics that we searched.

All the geometric elements of these inscribed or circumscribed conic (vertices,
the other focus, directrix) are obtainable via geometric construction. These details
are in Appendix.

3. A partition of the plane into Cremona-invariant regions

As we already seen, it is always possible to draw the i-conic of a triangle, focused
at a specific point F : this conic exists and it is unique. Now we show how we can
predict its type, according to the location of its focus, F .

Let △ABC and let F be any point that does not belong to either AB,BC,CA;
then the isogonal of half-line [AF, w.r. to ∠BAC is the half-line [AF1, where F1 is
symmetric of F, with respect to the internal bisector of ∠BAC. The isogonal of a
line (or point), w.r. to an angle is an involution.

The Cremona transform of a point F w.r.to a triangle △ABC defines as the
intersection of Cremona transforms of the half-lines [AF, [BF, [CF, w.r.to the angles
of said triangle. The definition is good, since these three lines are concurrent.

Lemma 3.1. Let the triangle △ABC and let C, its circumcircle. Then:
i) if a point F is on the circumcircle, then the isogonal of [AF, [BF, [CF, w.r. to

the angles ∠A, ∠B,∠C, consist in three parallel lines;
ii) Cremona transform of a point located inside the triangle, is (a point) located

inside the triangle;
iii) if a point F is located outside the triangle, but inside its circumcircle, and

inside of an angle say ∠ACB, then its Cremona transform exists and locates outside
the triangle and into opposite by its vertex angle;
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Figure 3. i) T ′, the isogonal conjugate of a point T located inside of a triangle, is also
located inside the triangle; ii) the conjugate of point F on the circumcircle is a point at
infinity; iii) point P situated on the circular sector delimited by an arc AB and by a triangle’s
side [AB] are mapped into point P ′ located into the angle opposed by the vertex of ∠ACB .

iv) if F is outside the circumcircle, but inside of some angle of the triangle, then
its Cremona transform stays into the same region.

Proof.
i) First assume that F is on the circumcircle; let [AA1 and [BB1 be respectively

the isogonal conjugate of [AF and [BF w.r.to the angles ∠BAC and ∠ABC and
let Q the interception between AA1 and BC.

Since the quadrilateral [AFBC] is inscriptible, ∠FBA = ∠ACQ; on the other
hand, by construction, ∠FAB = ∠CAQ. This ensures that the triangles △ACQ
and △AFB has a par of respectively equal angles, hence ∠AQC = ∠ABF, as well.
By construction, ∠ABF = CBB1, which proves that the lines AA1 and BB1 are
parallel (forms congruent alternate internal angles, w.r. to the secant BC). The
same argument proves the other parallelism.

ii) The isogonal of a point inside an angle, stays inside said angle; hence, when P
is inside a triangle, it is inside of the three angles of the triangle, hence its Cremona
transform stays there, as well.

iii) If P is inside the circle, inside the angle ∠ACB but outside the triangle,
then let AP intercept the arc AB in F. Let δ = ∠PAB and ϵ = ∠PBA. The
isogonal conjugate of AP and BP are not parallel (since the point P is not on the
circumcircle) and let P ′ be their their intersection. We shall prove that

∠BAC + ∠δ + ∠ABC + ∠ϵ < 180◦.

In fact ∠BAC + ∠ABC = 180− ∠ACB = ∠AFB < ∠APB, by hypothesis. But
∠APB = 180− ϵ− δ, and this proves that the lines BP ′ and AQ must intercept;
denote (also) let P ′ be their intersection point.

Then P ′ must be contained into the half-plane limited by BC that does not
contain A, and on the half-plane limited by AC, that does not contain B, otherwise
the line AQ should intercept the line AC, twice, which is impossible! Hence P ′ must
be located into the opposite angle of ∠ACB.

iv) If P is a point inside the angle ∠ACB, but outside the circumcircle, then
the isogonal conjugate of [AF w.r.to ∠A will necessarily be in the interior of this
angle, too; on the other hand, its conjugate cannot be neither inside the circle, nor
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Figure 4. If F is on the circumcircle, the i-conic is a parabola (green); if F is either inside
the triangle or inside of an angle but outside the circumcircle, the i-conic is an ellipse (orange);
in the reminiscent cases, the i-conic is a hyperbola (violet)

insight the triangle, since otherwise, its conjugate should belong to the opposite
angle of ∠A, since the isogonal conjugation is an involution. So Cremona transform
invarriates this third region, too.

Theorem 3.1. Let a, b, c and F as above and let Γ a conic that have a focus in F
and tangents the lines a, b, c. Then:

(i) if the lines a, b, c determines a triangle, then these lines, together with the
circumcircle of the triangle induce a partition of the plane such that:
(a) Γ is a parabola if and only if the point F is on the circumcircle;
(b) Γ is an ellipse if and only if F either belong to the interior of the

triangle, or is a point that lie outside the circumcircle, and inside
some of the angles of the triangle;

(c) Γ is a hyperbola in the reminiscent cases.

Proof. We first proof the result about the parabola (see e.g. [1] Theorem 1.10
and Lemma 1.3 for a more classic proof). For this, we show it cannot have another
(finite) focus. In fact, the focuses of an inscribed conic are isogonal; and since F is
on the circumcirlce, its isogonal conjugate (the second focus) is the point at infinity,
which proves that the conic is indeed a parabola. Conversely, if certain parabola
tangents the sides of a triangle and have a focus in F, then its second focus is the
point at infinity, therefore F necessarily belong to the circumcircle. If F is inside the
triangle, then the conic is an ellipse whose second focus is also inside the triangle.
When one focus is inside of an angle and outside the circumcircle, its Cremona
transform stays in that region; this means that the inscribed conic that have one
focus in there, will have the other (proper) focus in that region, as well; hence the
conic cannot be a parabola. On the other hand, it cannot be a hyperbola, either,
since no hyperbola is (entirely) contained into a half-plane, while this region is. So,
the conic can only be an ellipse. Finally, in the reminiscent cases, the i-conic is a
hyperbola.
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Figure 5. There are precisely two conics (orange hyperbola, purple ellipse) that share a
Focus, pass trough P1, P2 and tangent one line (purple): these are the duals of the circles
(orange and light purple) that tangents the polars of P1 and P2 (green and blue lines) and
pass through R, the pole of the line. The later circles are the solution of an (LLP) Apollonius’
problem.

4. Related problems

For the sake of completeness, we briefly indicate how to solve the other cases, as
well. These will led to degenerate cases of Apollonius’ problem, that can be tackled
with polar duality, as we did in our earlier work [6].

4.1. Point-point-tangent case (PPT).

Proposition 4.1. To draw all the conics that share a focus, F, two points P1, P2

and one tangent, t3.

Proof. Refer to figure 5. Perform a polar duality w.r. to a circle centered in F.
The conic transforms into a circle; P1, P2 transform into their polars, which are two
tangents at the dual circle; finally, the tangent t3, transforms into its pole, P .

The problem converts into the following.

Proposition 4.2. (line-line-point (LLP)) To find all the circles that pass through a
point P and that are tangent to the lines p1 and p2.

This is, of course, the (LLP) case of the Apollonius’ problem.
Refer to figure 6. First assume that the lines p1 and p2 are concurrent; this

happens if and only if the points P1, P2, F are not collinear.
• If the point P is neither on p1 or p2, and if p1 and p2 intercept in a point
O, then the center of the tangent circles are the intersection between
a parabola with a focus in P and directrix p1, with the bisector of the
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Figure 6. (LLP) Apollonius problem. When the two lines are concurrent and the point in
not on the lines, there are two circles that tangent two lines and pass through a point, P1

(not common with the two lines). Their centers are the intersection of a parabola focused in
P1 and directrix one of the lines, with the (internal) bisector of the angle where the point P1

locates. There are two such parabolas, that produce the same pair of points.

∠p1, p2. There are two such solutions. (we get the same solution, when we
intercept the parabola with focus in T3 and directrix p2).

• if T3 is on p1, then the center is simply the intersection between the
internal and external bisector of the angle formed by p1 and p2 and the
perpendicular line in T. This happens when the point P1 belong to the
tangent t3.

• if T3 is the intersection point of p1 and p2, then there is no solution. This
is the case when both P1 and P2 are on t3.

If the lines p1, p2 are parallel, then
• if T lie on the strip limited by those two, there are two solutions. This

happens when F, P1, P2 are collinear and t separates this two points.
• if T belongs to p1, there is a unique solution.
• Otherwise, t3 does not separate this points, and there will be no solution.

4.2. Point-tangent-tangent (PTT).

Proposition 4.3. (PTT) To find all the conics that have a given focus, pass through
a point P and are tangent to two lines, t1 and t2.

The dual problem is.

Proposition 4.4. (LPP) To find all the circles that are tangent to a line p and
pass through two points T1, T2.

This is the LPP problem of Apollonius.
First assume that the line p does not separate the points T1 and T2.

• If the line T1T2 is not parallel to p, then we have two distinct solutions, the
intersection points of two parabolas: one having focus in T1 and directrix
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Figure 7. (LPP) Apollonius’ problem. The centers of the (circles) solutions of a (LPP)
Apollonius’ problem (solid blue and green circles), may be obtained as an intersection a
parabola and a line (the perpendicular bisector of [P1P2]. Note one may perform a geometric
intersection for the two.

p, and the other with focus in T2, and directrix p or the intersection of the
parabola with focus in T1 and directrix p, with the perpendicular bisector
of T1T2.

• If T1 belong to p, then there is a unique solution, which is the intersection
between the normal in T1 are p, and the mediatrix of T1T2.

• If the line T1T2 is parallel to p, we get a unique solution: the circumcircle
of NT1T2, where N is the point where the perpendicular bisector of T1T2

intercepts p.

If the line p separates the points T1 and T2, then there will be no solution.

Note that all the intersection points between a parabola and a line can be drawn
geometrically, again by polar duality. This is because the intersection points between
a conic focused in P and a line are the poles of the common tangents from the polar
of the line, to the dual circle of the conic (see Appendix).

This finishes the geometric construction of all these conics.

5. Appendix 1. Polar Duality

Let C(Ω, R) be a circle centered in Ω and of radius R, which we shall call inversion
circle. From now on, when we say the inverse or the symmetrical of a point, we
subtend symmetry w.r. to this inversion circle.

If p0 is a line that does not pass through Ω, then its pole is the inverse of the
projection of the centre Ω, on the line p0.

If P0 is a point (P0 ̸= Ω), the polar of P0 is the perpendicular line on ΩP0, that
pass through P1, the inverse of P0.

The dual of a circle (w.r. to an inversion circle) defines as the curve whose points
are the poles of the tangents of the original circle. When we perform the dual of a
circle, w.r. to an inversion circle, something quite nice happens.
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Figure 8. I) the polar dual of a circle (solid green) w.r. to an inversion circle centered in
Focus (dotted circle) is an ellipse, if the inversion center, is inside the inverted circle. II)
the vertices of the dual ellipse are the inverses of the diameter through O and Focus; III)
tangents at the reciprocated circle are mapped into points of the dual curve; points on the
reciprocated circle are sent into tangents at the dual curve.

Figure 9. When the center of the inversion circle (dotted black) is on the reciprocated circle
(dotted light blue), the polar dual is a parabola (light blue) which have focus in the center of
inversion circle (point Focus) and whose directrix (blue) is the polar of E′. the center of the
inverted circle.
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Figure 10. The intersection points between a parabola (black) focused in F and a line (red
line), are the poles S1, S2 of the tangents (blue, purple dotted) from S, the pole of the line,
to the dual circle (solid green circle).

Theorem 5.1. (see e.g. [13], art. 306 and 309) The dual of a circle γ = C(O, r),
w.r. to an inversion circle C(Ω, R), is a conic, Γ; if d denotes the distance between
the centres of the reciprocated and inversion circles, d = ΩO, then:

i) Γ is an ellipse, if r < d;
ii) Γ is a parabola, if r = d;
iii) Γ is a hyperbola, if r > d.
Moreover, (one of) the the focus of the dual conic Γ is precisely Ω, the centre

of the inversion circle; its directrix is the polar of O, the centre of the reciprocated
circle and the eccentricity is e = r

d .

This theorem has a very useful corollary.

Corollary 5.1. The dual of a conic Γ, w.r. to an inversion circle centered into its
focus, is a circle, γ.

The symmetric of the vertices of the conic Γ, are a pair of diametrically opposite
points of the dual circle, γ.

The pole of the directrix of Γ, is the center of the circle γ.

The reader may convince himself that all the elements of the dual conic, such as
vertices, directrix or the other focus, can be drawn with straight-line and compass,
since all the steps involves drawing the symmetric of a point and the pole of a line!
For more details on poles, polars and polar reciprocity, see [1], [7], [10], and [13].

6. Appendix 4. A geometric construction of the intersection points
between conics and lines

The intersection between a parabola and a line can be performed by polar duality.
This is because, according to the fundamental theorem on poles and polars, the
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intersections of two curves, are (precisely) the poles of their common tangents to
their dual curves.

Proposition 6.1. The intersection of a conic and a line are the poles of the tangents
from the pole of the line, to the dual circle of the conic w.r. to any inversion circle,
centered into the focus of the conic.
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