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THE IMPORTANCE OF BEING MEAN

ALDO SCIMONE and DANIELE RITELLI and GIULIA SPALETTA

Abstract. Many historical loci can be obtained through approaches that
differ from classic methods built on their own pure description as loci. Aim
of this work is to show how various algebraic curves can be obtained as the
locus for particular midpoints, and how the consideration of the latter can
give rise to a succession of homotheties, namely, contractions or dilations, of
the original curve. What is important to underline is that points generating
a locus possess the particular property of being midpoints of other pairs
of points, or segments, stemming from a particular configurations of points
and lines. This is illustrated here, by various examples.

1. Introduction

Aim of this work is to broaden the existing and ongoing study on the rep-
resentation of a locus [5, 6]. Through various examples of algebraic curves,
geometric loci for some sets of points, we show how they can be defined not
only in the historical way in which they were introduced in the mathematical
literature, but also through the simple movement of some particular point
in the two–dimensional plane.
Here, the focus is on the description of algebraic curves interpreted as the
locus for particular midpoints. We further show how this approach leads to
homothetic affine transformations of contractions or dilations. The geomet-
ric construction of various loci is outlined here, while the method for their
analytic description and rendering was presented in [6] and is briefly recalled
here for reading convenience.
In all the considered examples, the starting point is the intersection between
a line r and a circle Γ , whose equations are given with respect to a Cartesian
reference system xOy . Circle Γ is centered at the origin O = O(0, 0) and
has radius given by the positive parameter a , while r is any line through
O and with non–negative angular coefficient m, namely:

(1) Γ : x2 + y2 − a2 = 0 , r : mx− y = 0 .
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The assumption is made that each point P , involved in a locus generation,
has coordinates that are rational functions of a and m, that is:

(2)


xP =

xnum(a ,m)

xden(a ,m)

yP =
ynum(a ,m)

yden(a ,m)

.

In particular, the coordinates of points H ,H ′ = Γ ∩ r , respectively in the
first and third quadrants, are:

(3)

{
xH = 2K1

yH = 2mK1
,

{
xH′ = −2K1

yH′ = −2 mK1
,

where

(4) K1 = K1(a ,m) =
a

2
√
m2 + 1

.

To simplify the notation, the following factor is also employed:

(5) K2 = K2(a ,m) =
2K1

m2 + 1
.

We further denote as x−parallel, or y−parallel, a line that is parallel to the
respective coordinate axis. Similarly, we call x−symmetric, or y−symmetric,
a point that is symmetric to a given point through the respective coordi-
nate axis. Finally, we employ the short nomenclature P1−P2−midpoint to
indicate the midpoint between points P1 and P2 .

1.1. Loci construction. Using (2), two univariate polynomials in the vari-
able m are formed:

(6)

{
xden(a ,m)w xw = xnum(a ,m)w

yden(a ,m)w yw = ynum(a ,m)w
,

where the exponent has the role of eliminating any irrational term, and is
set as w = 2 , here.
The resultant of the two polynomials (6), namely, the determinant of their
associated Sylvester matrix [1], is then computed, factorized and simplified,
by eliminating factors that are constant or depend on the parameter a only;
integer powers of factors containing linear combinations of x , y and a can
be simplified out too.
The above procedure can be applied in an automated way, within a computer
algebra environment, to all the loci considered in this paper, and yields an
equation in the variables x and y that, evaluated at some value of a (here,
a = 1 ), represents the analytic cartesian description of the desired locus:

(7) p(x , y) =

d∑
k=0

αk x
k yd−k ,

where αk are rational constant coefficients, while d is some integer degree.
Curve (7) can be finally rendered as a contour line of zero level value.
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2. Bernoulli Quartic

(A) (B)

(C)

Figure 1. Quartic of Bernoulli (1A) with its contraction (1B)
and dilation (1C).

Given H ,H ′ in (3), let M be the H ′ − O−midpoint. Then, consider the
x−parallel line t , with M ∈ t , and construct points B ,B′ = Γ ∩ t :{

xM = −K1

yM = −mK1
, t : x+K1 = 0 ,{

xB = −K1

yB = K1

√
4m2 + 3

,

{
xB′ = −K1

yB′ = −K1

√
4m2 + 3

,
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where K1 is given in (4). Let P be the B′ −M−midpoint:

(8)

{
xP = −K1

yP = K1 (−m+
√

4m2 + 3)
.

As H varies along Γ , point P describes the so–called Bernoulli Quartic
given in Figure 1A and having equation:

(9) 256 y2 (x2 + y2) = a2 (160 y2 − 9 a2) .

This algebraic curve derives its name from Jacob Bernoulli 1, who studied it
in 1687 [4]; the quartic was later studied by Leibniz 2 in 1696; historically,
its construction is far more complicated than our midpoint interpretation.
If we further construct the P −O−midpoint Q and its x−symmetric point
Q′ , then we can describe another Bernoulli Quartic, homothetic to (9) as
shown in Figure 1B; the origin O is the homothety center. With this
procedure, it is possible to obtain a family of contractions of the Bernoulli
Quartic. It is also possible to create dilations, each of which is built by
considering a point R , along the half–line joining O and P , such that
the distance d(O ,R) is an integer multiple of d(O ,P ) ; as an example, in
Figure 1C, it is d(O ,R) = 2 d(O ,P ) .

3. Dürher Folium

Given H as in (3), let Q be its x−symmetric point, and build point R as
the symmetric of Q w.r.t. line r :{

xR = K2 (1− 3m2)

yR = mK2 (3−m2)
.

where K2 is given in (5). Let P be the R−H−midpoint:

(10)

{
xP = K2 (1−m2)

yP = 2mK2
.

As H varies along Γ , point P describes the so–called Dürer 3 Folium, a
special case of a rhodonea (or simply rose) curve with intertwined leaves; it
is illustrated in Figure 2A and its equation is:

(11) 4 (x2 + y2)3 = a2
(

4 (x2 + y2)2 − a2 y2
)
.

This algebraic curve is sextic, rational, symmetric w.r.t. to the reference
axes, and tangent to the x−axis. The origin O is a double contact–point for

the curve two branches, while each of the points C(0 ,
a√
2

) and C ′(0 ,− a√
2

)

is a double contact–point for the y−axis, with distinct tangents.
If we further construct the P−O−midpoint P ′ , we can obtain a contraction
of the original locus, as shown in Figure 2B; pursuing this procedure further,
it is possible to obtain a family of homotetic loci. The same procedure also
yields dilations, by considering points like P ′′ , along the half–line joining

1Jacob Bernoulli (1654–1705), Swiss mathematician, one of the many notable academics
in the Bernoulli family.

2Gottfried Wilhelm Leibniz (1646–1716), famous German polymath.
3Albrecht Dürer (1471–1528), German painter and theorist.
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(A) (B)

(C)

(D)

Figure 2. Folium of Dürer (2A), with its contraction (2B), di-
lations (2C) and trisectrix property (2D).

O and P , such that the ratio of the two distances d(O ,P ′′) and d(O ,P )
is integer; for example, in Figure 2C it is d(O ,P ′′) = 2 d(O ,P ) .
Finally, let us mention that the Dürer Folium enjoys the beautiful property
of being a trisectrix: with reference to Figure 2D, in fact, if θ is the angle
AÔL , and M is the intersection point between the curve and the semicircle
insisting on diameter OL , it then holds θ = 3φ , where φ is the angle
MÔL .

4. Maltese Cross

Let H in (3) have Q as y−symmetric point. Then, consider both line s
through Q and tangent to Γ , and line t ⊥ s such that H ∈ t , and build
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(A) (B)

(C)

Figure 3. Maltese Cross (3A), its related mid–point property of
point T (3B), and its homoteties (3C).

their intersection point K = s ∩ t :

(12)
s : x−my + a

√
m2 + 1 = 0 ,

t : mx+ y − 4mK1 = 0 ,

{
xK = K2 (m2 − 1)

yK = mK2 (m2 + 3)
.

Finally, let P be the K −H−midpoint:

(13)

{
xP = m2K2

yP = mK2 (m2 + 2)
.

As H varies along Γ , point P describes one arm of the so–called Maltese
Cross, or Bow–Tie, rendered in Figure 3A and whose equation is:

(14) (x2 + y2)3 = a2 (y4 + 20x2 y2 − 8x4 − 16 a2 x2) .
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The curve was studied by Besant 4, d’Ocagne 5 and Gaedecke 6, respectively
in 1870, 1884 and 1917. It is a sextic, rational curve that has a few nice
properties.
Referring to Figure 3B, let T be the point of intersection between the
x−parallel line joining Q and H , i.e., T is Q−H−midpoint. Since P is
K −H−midpoint, by the properties of triangles (here applied to the right
triangle QKH ), it follows that line t′ through P and T is parallel to line
s ; thus, t′ ⊥ t at P and t′ is tangent to the Maltese Cross curve at P . Now,
let t intersect the y−axis at point M and let N be the projection of O
on t′ . The right triangles TPH and TNQ are congruent, since they have
same angle measures and d(Q ,T ) = d(T ,H) ; thus, T is P −N−midpoint.
By congruency of the right triangles TPM and TNO , point T is also
M −O−midpoint.
Another beautiful property that the Maltese Cross curve enjoys is that its
orthoptic (i.e., set of points for which two tangents to a given curve meet at
a right angle) is the Cornoid discussed in § 5.
Finally, referring to Figure 3C, if we consider the P −O−midpoint P ′ and
trace down the locus described by P ′ as H varies, then, it can be proved
that such a locus is always homothetic to (14). In this way, a family of
curves can be obtained, all homothetic to each other, with the origin O
being their homothety center.

5. Cornoid

Figure 4. Cornoid.

The Cornoid is the orthoptic of the Maltese Cross, that is to say, it is
formed by those points from which the Maltese Cross is seen under a right

4William Henry Besant (1828–1917) British mathematician.
5Philibert Maurice d’Ocagne (1862–1938), French mathematician.
6Werner Gaedecke, German mathematician, active in the 1920s.
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angle; in other words, the Cornoid is the locus of the points from which two
tangents to the Maltese Cross can be conducted perpendicularly to each
other. Its generator point (as H varies along Γ ) is K = s ∩ t , where the
two lines t ⊥ s are built as described in § 4; the s and t equations and
the K coordinates are given in (12). As shown in Figure 4, the Cornoid is
a rational sixth degree curve, with two axes of symmetry; its equation is:

(15) (x2 + y2)3 = a2 (5 y4 + 6x2 y2 − 3x4 − 8 a2 y2 + 4 a4) .

6. Cross Curve

Consider the intersection Σ = s ∩ r bewteen lines r and s , given in (1)
and (12) respectively:

(16)

xΣ =
a
√
m2 + 1

m2 − 1
yΣ = mxΣ

.

(A)

(B)

Figure 5. Cross Curve (5A) and its asymptotic hyperbola (5B).

Recall circle Γ in (1) and point H in (3). As H varies along Γ , point Σ
generates the so-called Cross Curve:

(17) (y2 − x2)2 = a2 (y2 + x2) .

The quartic (17) is illustrated in Figure 5A, while Figure 5B shows that the
Cross Curve is asymptotic to the hyperbola:

(18) x2 − y2 =
1

a
.
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(A) (B)

(C)

Figure 6. Kiss Curve (6A), with its contraction (6B) and dila-
tion (6C).

7. Kiss Curve

Consider circle Γ and point H ′ , respectively given in (1) and (3). Construct
line s , tangent to Γ at H ′ , and its intersection Q with the x−axis.

s : x+my = −a
√
m2 + 1 ,

{
xQ = −a

√
m2 + 1

yQ = 0
.

Then, draw line u through points Q and H , and the y−parallel line t
such that H ′ ∈ t :

u : mx− (m2 + 2) y = am
√
m2 + 1 t : x = −2K1 .

The intersection P = t ∩ u , whose coordinates are:

(19)

xP = −2K1

yP =
2m3K1

m2 + 2

,
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generates, as H varies along Γ , the so–called Kiss curve:

(20) y2 (a2 + x2)2 = (a2 − x2)3 .

The geometric locus (20) is a rational sextic curve, with two cusps at the
intersections between Γ and the x−axis, as illustrated in Figure 6A:
The P −O−midpoint P ′ describes another Kiss curve, homothetic to (20)
with homothety ratio equal to 1/2 , thus a contraction, as shown in Figure
6B.
To obtain a dilation of the Kiss curve, it sufficies to consider a point P ′′ ,
along the line joining P with the origin O , such that the homothety ratio
d(P ′′ , O)/d(P ,O) is integer and greater than 1 ; as an example, in Figure
6C, it is d(P ′′ , O)/d(P ,O) = 2 .

8. Watt Curve

Recall again circle Γ and point H , respectively given in (1) and (3). Con-
sider line t , tangent to Γ at point Q , which is y−symmetric w.r.t. H ,
and let T be the x−axis intersection of line t :{
xQ = −2K1

yQ = 2K1
, t : x−my = −a

√
m2 + 1 ,

{
xT = −a

√
m2 + 1

yT = 0
.

Now, given r in (1), draw line u ⊥ r and such that T ∈ u , and construct
line s through points H and T . Finally, let R = u ∩ s . Therefore:

u : x+my = 2K1 (m2 − 1) ,

s : mx− (m2 + 2) y = −am
√
m2 + 1 ,

{
xR = −K2

yR = m3K2

.

The R−H−midpoint P , whose coordinates are:

(21)


xP =

m2K2

2

yP =
mK2 (2m2 + 1)

2

.

generates, as H varies along Γ , the so–called Watt 7 Curve, or Handlebar
Curve:

(22) 4 (x2 + y2)3 = a2 (4x4 − 19x2 y2 + 4 y4 − a2 x2) .

Figure 7A represents the Watt Curve (22), while Figures 7B and 7C respec-
tively illustrate a contraction and a dilation, that can be obtained by con-
sidering appropriate homethety ratios, with the same procedure described
in the previous sections.
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(A)

(B)

(C)

Figure 7. Watt Curve (7A), with its contraction (7B) and dila-
tion (7C).

9. Nicomede Concoid

Consider the intersection C = s ∩ r , where s is the line through A(a, 0)
and B(0, a) and r is as in (1):

s : x+ y = a ,

{
xC =

a

m+ 1
yC = m xC

.

7James Watt (1736–1819), Scottish inventor, engineer and chemist, whose 1776 im-
proved version of the 1712 steam-engine, by the English inventor Thomas Newcomen
(1664-1729), was fundamental to the Industrial Revolution.
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(A)
(B)

(C) (D)

Figure 8. Concoid of Nicomede with a node (8A) or no nodes
(8B), and its contraction (8C) or dilation (8D).

Recalling H ′ in (3), the C −H ′−midpoint P has coordinates:

(23)

xP =
K1 (−m− 1 +

√
m2 + 1)

m+ 1
yP = mxP

.

As H ′ varies along Γ given by (1), point P describes the so-called Concoid
of Nicomede 8, illustrated in Figure 8A; it is a quartic rational curve, passing
through A and B , having a node at the origin O , and whose equation is:

(24) 2 (x2 + y2) (x+ y)2 = a2 x y + 2 a (x2 + y2) (x+ y) .

By considering various midpoints, we can obtain contractions or dilations of
(24), or a nodeless concoid, as listed below.

8Nicomede (280–210 B.C.), ancient Greek mathematician.
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• The P − O−midpoint describes the reduced concoid, drawn as the
dashed curve in Figure 8C, homothetic to (24) through a homotethy
ratio equal to 1/2 .
• The P−H ′−midpoint Q describes the dilated concoid, drawn as the

dashed curve in Figure 8D, homothetic to (24) through an integer
homotethy ratio greater than 1 .
• The P − C−midpoint P ′ describes the nodeless concoid, drawn as

the thin curve in Figure 8B.

10. Clairaut Curve

(A) (B)

(C)

Figure 9. Double Egge Curve (9A), with its contraction (9B)
and dilation (9C).

Consider again Γ , r in (1) and H in (3). Let H have Q as x−symmetric
point, and draw line s ⊥ r such that Q ∈ s . Then, consider R = s ∩ r .
Therefore:{
xQ = 2K1

yQ = −mxQ
, s : x+my = 2K1 (1−m2) ,

{
xR = K2 (1− m2)

yR = mxR
.
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The R−H−midpoint P has coordinates:

(25)

{
xP = K2

yP = mxP
.

As H varies along Γ , point P describes the so-called Clairaut 9 Curve or
Double Egg Curve, shown in Figure 9A and whose equation is:

(26) (x2 + y2)3 = a2 x4 .

The locus (26) is a rational sextic curve, of type zero. To obtain its contrac-
tion by a homothety factor equal to 1/2 , we can use the P −O−midpoint
P ′ , as illustrated in Figure 9B. Dilations of (26) are achieved by considering
a point P ′′ such that d(P ′′ , O) = k d(P , 0) , where factor k > 1 is integer,
as described in Figure 9C.
Here, we linked (26) to the motion of a particular midpoint. In the mathe-
matical literature, the Clairaut Curve is instead constructed through other
procedures, such as via the inverse of the Eudoxus 10 Kampyle (curved line)
w.r.t. its center, or by rolling an ellipse along a four–leaf clover.
Locus (26) finds application in Physics: the magnetic field lines, created by
a magnetic dipole, are Clairaut curves.

11. Delanges Trisectrix

Given Γ , r in (1) and H ,H ′ in (3), consider the H ′−O−midpoint M and
draw line t ⊥ r such that M ∈ t . Then, denote Q the point of intersection
of t with the x−axis. Therefore:{
xM = −K1

yM = −mK1
, t : x+my = −K1 (m2+1) ,

{
xQ = −K1 (m2 + 1)

yQ = 0
.

The Q−H−midpoint P has coordinates:

(27)


xP =

K1 (1−m2)

2

yP = mK1

.

As H varies along Γ , point P describes the so-called Delanges 11 Trisectrix,
which is a quartic curve, circular and symmetric w.r.t. the coordinate axes,
as illustrated in in Figure 10A. Its equation is:

(28) 64 y2 (x2 + y2) = 16 a2 (x2 + y2)− a4 .

Curve (28) intersects the x−axis at the points of coordinates A(±a/4 , 0) ,
while it intersects the y−axis at the points of coordinates B(0 ,±a

√
2/4) .

The latter points B are double points of the curve itself; furthermore, the
point-at-infinity of the x−axis is also a double point for the Delanges Curve,
which is thus rational. Lines y = ±a/2 are its asymptotes.

9Alexis Claude Clairaut or Clairault (1713–1765) French mathematician and
astronomer.

10Eudoxus of Cnidos (400–350 B.C. circa), ancient Greek mathematician and
astronomer.

11Paolo Delanges (1750 ca.–1810), Italian engineer and mathematician.
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(A)
(B)

(C)

(D)

Figure 10. Trisectrix of Delanges (10A), its angle trisection
property (10B), and its contraction (10C) and dilation (10D).

Figures 10C and 10D respectively illustrates a contraction and a dilation,
that can be obtained by considering appropriate homethety ratios, with the
same procedure described in the previous sections of this paper.
Curve (28) is named after Delanges [2], who studied it in 1783 and used it to
trisect an angle. A century later, in 1878, it was rediscovered by the Amer-
ican mathematician Hillhouse [3], who also devised a tool to trace it me-
chanically. The angle trisection property is illustrated in Figure 10B. Con-
sider a circle centered at the origin O(0 , 0) , with radius given by d(O ,A) ,
where A(a/4 , 0) . Choose any point S along the considered circle, and let

θ = AÔS be the angle to be trisected. The line through point S , tangent
to the circle at S , intersects the Delanges Curve at point R , forming an
angle α = RÔS . It can then be proved that θ = 3α .
The Delanges Curve also holds the beautiful property of having Dürer
Folium (see § 3) as inverse curve w.r.t. the origin O . Furthermore, it is
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a special case of the Epispiral, the latter being a plane curve, whose equa-
tion can be given in polar form as ρ = a |sec(n θ)| , where ρ and θ are,
obviously, the polar variables.

12. Conclusions

The examples of algebraic curves, considered in this paper, have shown that
they can be defined not only in the historical way in which they were intro-
duced in the mathematical literature, but also through the simple movement
of some particular points of the plane. This applies to various other loci,
which may be the subject for additional investigation. Further work may
also involve consideration of particular points, other than the midpoints we
focused on here.
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