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PERIMETER BISECTORS, CUSPS, AND KITES

MILENA HARNED

Abstract. We identify the specific convex quadrilaterals whose angle
bisectors are also perimeter bisectors to be the rhombi and the kites with
three congruent acute angles. The proof of this result uses the envelope of
the lines that bisect the quadrilateral’s perimeter. We also investigate and
make some observations regarding these envelopes for more general convex
polygons.

1. Introduction

Our main result is

Theorem 1.1. Let P be a convex quadrilateral. The following are equiva-
lent:

• Every angle bisector of P bisects its perimeter.
• P is either a kite with three congruent acute angles or a rhombus.

To prove this result, we needed to consider the envelope of the perimeter
bisectors of a convex polygon. For the basic properties of envelopes, we
recommend Section 3.5 of [2]. Thus consider a convex polygon P in a plane
Π. For each direction measured by an angle θ there is a unique line L(θ)
that bisects the perimeter of P . Consider a perimeter bisector L(θ) neither
of whose endpoints are a vertex of P . Following the construction of an
envelope, we define C(θ) to be the limit of the intersection of L(θ) with
L(α) as α approaches θ. Let E(P ) to be the closure of the image of C. In
Definition 2.1, we will give a precise definition of E(P ) and refer to it as the
”bisection envelope” of P .

Unlike the analogous envelope for area bisectors, as described in [3], E(P )
is generally not continuous and consists of a union of parabolic segments
and isolated points. Indeed, the only triangles with continuous bisection en-
velopes are the equilateral triangles. However, continuity of E(P ) is closely
related to when the perimeter bisectors at vertices of P are also angle bisec-
tors. For a formal definition of continuity of E(P ), see Definition 2.3.
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When E(P ) is continuous, we can imagine a very small car driving along
it in such a way that the car does not make any abrupt changes in the di-
rection it is facing. For most of the journey the car will be traveling along
a parabolic arc. But when it points in the direction of a perimeter bisector
with an endpoint at a vertex, the route will generally involve a cusp (see
Definition 4.1), requiring our driver to switch gears from drive to reverse,
or vice versa, in order to continue the journey. On the other hand, since
all perimeter bisectors are swept through in half a circle, when our driver
completes a single lap, the car will be facing in the opposite direction that it
started. This is only possible if there are an odd number of cusps in E(P ).
A quadrilateral has four vertices, and therefore four expected cusps, a con-
tradiction, unless one of the perimeter bisectors joins two vertices. Once we
establish the existence of a perimeter bisector that joins two vertices, the
remainder of the proof follows using Euclidean methods.

The conditions in Theorem 1.1 do not exactly correspond to continuity
of E(P ). In addition to the quadrilaterals described in Theorem 1.1, convex
quadrilaterals with a continuous bisection envelope also include the paral-
lelograms (see Theorem 5.1).

In order to prove Theorem 5.1, we need an optimization result which is
interesting in its own right, so we will briefly explain it here. Fix two points
A = (a, 0) and A′ = (−a, 0) on the x-axis in the Cartesian plane. For a
point X in the upper half plane, define f(X) = sin∠AA′X sin∠A′AX. As
X travels along the horizontal half line (t, 0), where t > 0, the function
f(X) achieves a maximum where this half line intersects the circle with
diameter AA′. However, we will show that as X travels through the first
quadrant from apogee to perigee of an ellipse with foci A and A′, the upward
movement along the ellipse is enough to make f strictly increasing.

2. Definitions

In this section we will outline some terms and definitions used throughout
this paper in the order in which they appear.

Let Π = R2. Consider a convex polygon P in Π. For each direction
measured by an angle θ there is a unique line in that direction that bisects
the perimeter of P . Throughout, we shall denote this line by LP (θ) (or just
L(θ) if the context is clear). We define a curve C+ such that C+ : [0, π]→ Π
where C+(θ) ≡ limt→0+ L(θ) ∩ L(θ + t). Similarly, we define C− using the
same formula, except replacing θ + t with θ − t.

Definition 2.1. The bisection envelope of P , which we denote by E(P ), is
the union of the images of C+ and C−.

Examples of bisection envelopes will be given shortly, but we first define
terms relating to characteristics of bisection envelopes.

Definition 2.2. The bisection envelope E(P ) is said to be continuous through
a perimeter bisector L(θ) if and only if C+(θ) = C−(θ).

Definition 2.3. The bisection envelope E(P ) is said to be continuous if and
only if C+(θ) = C−(θ) for all θ ∈ [0, π].
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Figure 1. The bisection envelope of an equilateral trian-
gle, whose envelope consists of three parabolic segments with
endpoints on the perimeter bisectors that pass through the
vertices of the triangle, which also are the angle bisectors of
the triangle. This envelope is continuous.

Figure 2. The bisection envelope of an isosceles triangle,
whose envelope consists of three parabolic segments with end-
points on the perimeter bisectors that pass through the ver-
tices of the triangle. This envelope is continuous through the
perimeter bisector that is also the triangle’s line of symmetry.

Definition 2.4. We define the mouth of a parabola to be the open convex
region of the plane bounded by the parabola (as opposed to the nonconvex
region).

In order to illustrate these definitions, we provide various examples of
bisection envelopes, as depicted in Figures 1, 2, 3, 4, 5, and 6.

Throughout this paper, we found it useful to isolate cases where perimeter
bisectors have both endpoints on parallel sides of a polygon. For this reason,
we have the following

Definition 2.5. A polygon is antiparallel if no perimeter bisector of the
polygon has endpoints on the interiors of parallel sides.
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Figure 3. The bisection envelope of a scalene triangle,
whose envelope consists of three parabolic segments with end-
points on the perimeter bisectors that pass through the ver-
tices of the triangle. This envelope is not continuous through
any perimeter bisector that passes through a vertex.

Figure 4. The bisection envelope of a trapezoid, whose en-
velope consists of three parabolic segments with endpoints
on the perimeter bisectors that pass through the bottom two
vertices of the trapezoid and an isolated point which is on
the intersection of the perimeter bisectors coming from the
top two vertices.

Consider a convex polygon P with parallel sides AB and CD such that
there exists more than one perimeter bisector with endpoints on those par-
allel sides. Without loss of generality, let AB ≤ CD. Within side AB, let
XY be the subsegment consisting of the points on AB such that they are
endpoints of perimeter bisectors with their other endpoint on segment CD.
Similarly define VW on CD. Note that XY = VW . We shorten each of
the lengths of AB and CD by collapsing XY and VW to points. We repeat
this process until we obtain a polygon Q, which is antiparallel.

Definition 2.6. We call Q the collapsed polygon of P and the process by
which Q is formed the act of collapsing P .

Note that the collapsed polygon could be a degenerate point, such as in
the case in which P is a parallelogram.

3. Bisection Envelopes

In this section, we discuss some general properties of bisection envelopes.

Theorem 3.1. Let P be a convex polygon. Then E(P ) is a union of par-
abolic sections and isolated points. Let B = {L(θ) | θ ∈ [0, π]}. Let Bv be
the subset of lines in B that go through a vertex of P , and let L1 and L2
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Figure 5. The bisection envelope of a trapezoid, whose en-
velope consists of three parabolic arcs and an isolated point
with two parabolic arcs that cross over each other. The end-
points of these arcs rest on perimeter bisectors of the trape-
zoid, and the isolated point lies on the intersection of two
perimeter bisectors.

be consecutive perimeter bisectors in Bv. The endpoints of perimeter bisec-
tors between L1 and L2 slide along two specific sides of P . If these sides
are parallel, the corresponding section of E(P ) will be a point located at the
midpoint of any of these perimeter bisectors. Otherwise, the corresponding
section of E(P ) is an arc of a parabola.

In order to prove this result, we use

Lemma 3.1. Let A be an angle with vertex V . Fix a positive real number l.
Let Sl be the set of line segments with endpoints on opposite sides of A which
cut off a section of A of length l. Let E be the envelope of the line segments
in Sl as parameterized by their direction. Then E is an arc of a parabola
with axis the angle bisector of A. Furthermore, each segment in Sl is tangent
to E and separates the mouth of E from the vertex V . If P1P2 ∈ Sl and
Q = E ∩ P1P2, then P1Q/QP2 = V P2/V P1. Finally, clockwise rotation
through the line segments in Sl corresponds to motion along E from right to
left according to a person standing on E and facing into the mouth of the
parabola.
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Figure 6. The bisection envelope of a regular heptagon,
whose envelope consists of seven parabolic segments with
endpoints on the perimeter bisectors that pass through the
vertices of the heptagon, which also are the angle bisectors
of the heptagon. This envelope is continuous.

Proof. Let L = P1P2 ∈ Sl. Let x be a real number. Let P1(x) be the point

on
←−→
V P1 whose signed distance from P1 is x (oriented so that V is on the

positive side of P1). Define P2(x) so that P1(x)P2(x) ∈ Sl. Furthermore,

define L(x) to be P1(x)P2(x). Let Q(x) be the intersection of L and L(x)
and let Q be the limit of Q(x) as x → 0. Finally, denote by d(·, ·) the
Euclidean distance between two points.

Let θ = m∠P1Q(x)P1(x) = m∠P2Q(x)P2(x). By the law of sines,

d(P1, Q(x))

sin∠P1P1(x)Q(x)
=
|x|

sin θ
=

d(P2, Q(x))

sin∠P2P2(x)Q(x)
.

Taking the limit as x→ 0, we determine

d(P1, Q)

sin∠V P1P2
=

d(P2, Q)

sin∠V P2P1
.

Again applying the law of sines, we conclude that

(1)
d(P1, Q)

d(P2, Q)
=

sin∠V P1P2

sin∠V P2P1
=
d(V, P2)

d(V, P1)
.

Introduce an xy-coordinate plane in which V = (0,−m), where m > 0
and the sides of A intersect the x-axis at (n, 0) and (−n, 0), where n > 0.

Furthermore, do this in such a way that l = 2
√
n2 +m2, so the segment

connecting (−n, 0) and (n, 0) is in Sl.
The setup of Lemma 3.1 is illustrated in Figure 7. The two sides of the

angle correspond to the equations y = −(m/n)x−m and y = (m/n)x−m.
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Figure 7. The setup used in the proof of Lemma 3.1. Seg-
ment P1P2 and the segment connecting (−n, 0) and (n, 0)
both cut off the same length l of the angle.

Without loss of generality, assume P1 = (a, b) is on the line y = −(m/n)x−m
with −2n < a < 0.

Because the distance between P1 and (−n, 0) is equal to the distance
between P2 and (n, 0), and the sides of A have opposite slopes, we know
that P2 = (n, 0)− (−n− a, b) = (a+ 2n,−b). By (1), we know P1V/P2V =
P2Q/P1Q. By similarity, P1V/P2V = −a/(a+ 2n). Thus,

Q =
a+ 2n

2n
(a+ 2n, (

m

n
)a+m)− a

2n
(a, (
−m
n

)a−m)

= (2a+ 2n,
m

4n2
(2a+ 2n)2),

which shows that Q is on the parabola y = (m/4n2)x2 with axis the angle
bisector of A. Therefore, E is an arc of y = (m/4n2)x2 (which extends from
(−2n,m) to (2n,m)). Its derivative is (m/2n2)x. Note that the slope of
←−→
P1P2 is

(2m/n)a+ 2m

2n
=
ma+mn

n2
= (2a+ 2n)(

m

2n2
),

which agrees with the slope of the tangent at Q. Therefore
←−→
P1P2 is the

tangent to E at Q.1

Next, we show that
←−→
P1P2 separates the mouth of the parabola from V .

Note that
←−→
P1P2 intersects the y-axis at (0,−m(a+n)2

n2 ), so we must show that

−m < −m(a+ n)2

n2
< 0,

which follows since m > 0 and −2n < a < 0, so −n < a+ n < n.
Because the derivative of the parabola is m

2n2x, which is linear and has a
positive slope, traveling from right to left along this parabola as defined by

1This also follows from general properties of envelopes. See, for example, Section 3.5b,
page 295 of [2].
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looking into its mouth corresponds to clockwise rotation of tangent lines.

Proof. [Proof of Theorem 3.1] Consider two consecutive lines L1 and L2 in
Bv. The set of lines in B between L1 and L2 have endpoints on a fixed pair
of sides of P . Call these sides s1 and s2.

There are two cases to consider: either s1 and s2 are parallel or they are
not.

If they are not parallel, then the perimeter bisectors between L1 and
L2 also cut off the same length of the angle formed by s1 and s2. Hence,
Lemma 3.1 applies and we see that the section of E(P ) generated by perime-
ter bisectors between L1 and L2 is a parabolic arc.

If s1 and s2 are parallel, then the envelope of the lines between L1 and
L2 will simply be a point because any pair of bisecting lines in this set will
intersect each other halfway between s1 and s2.

3.1. Collapsed Polygons. Note that, in the process of collapsing one pair
of parallel sides, the sides of P do not change direction, but all perimeter
bisectors, except for the one parallel to the pair of parallel sides being col-
lapsed, will change direction. In fact, one can imagine all the perimeter
bisectors having their endpoints glued in place along the perimeter of P ,
because the collapsing process does not change the relative location of the
endpoints of perimeter bisectors along the boundary. Let X, Y , V , and W
be as in the setup of Definition 2.6. Any bisecting line with endpoints on
XY or VW will, after collapsing the polygon, become a bisecting line whose
endpoints are the points that XY and VW become after the collapse.

Because of the way the perimeter bisecting lines and the sides of a polygon
behave under collapsing, after collapsing a pair of parallel sides in this poly-
gon, the number of parabolic sections in its bisection envelope will remain
unchanged.

Proposition 3.1. The bisection envelope of a convex polygon is a point if
and only if its collapsed polygon is a point.

Proof. By the proof of Theorem 3.1, the bisection envelope of a polygon
will be a point if and only if every perimeter bisector has endpoints on a
pair of parallel sides. From our description of the collapsed polygons, we
know that, if the polygon does not collapse into a point, then the collapsed
polygon has perimeter bisectors that do not have endpoints on a pair of
parallel sides.

4. Continuity of Bisection Envelopes

By Lemma 3.1, a bisection envelope is continuous through any perimeter
bisector whose endpoints are not vertices. Recall (Definition 2.3) that a
bisection envelope is continuous if and only if it is continuous through every
perimeter bisector. Note that bisection envelopes are not continuous in
general. For example, among triangles, only the equilateral triangle has a
continuous bisection envelope. In this section, we state our general results
on the continuity of bisection envelopes.

In the case that the bisection envelope is continuous, we can define the
following functions, which will be used in the proofs of Lemma 4.1 and
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Theorem 4.1. Let P1 be the real projective line, which we will parameterize
by real numbers θ modulo π. Given θ ∈ P1, there is a unique perimeter
bisector L in that direction, which we have called L(θ). Because the bisection
envelope is continuous, we can parameterize the envelope by the function
e : P1 → Π by defining e(θ) = C+(θ) = C−(θ). Let S1 be the unit circle
parameterized by a real number t modulo 2π. Let π : S1 → P1 be the
canonical projection. Define f : S1 → Π by f = e ◦ π. Finally, let v(t) =

limh→0+
f(t+h)−f(t)

h . Note that in this definition, h approaches 0 only from
above.

Imagine traveling around the bisection envelope in a very small car, with
e(t) denoting the car’s position. If we interpret t as time, as t increases, the
perimeter bisectors L(t) rotate counterclockwise. Let the vector (cos t, sin t)
represent the direction the car is facing, and note that the vector v(t) points
in the direction the car moves.

Definition 4.1. We define a cusp to be a point occurring at the intersection
of two parabolic arcs such that moving through the point from one parabola
to the other reverses the sign of v(t) · (cos t, sin t).

Note that the sign of v(t) · (cos t, sin t) is positive exactly when the mouth
of the parabola that the car is traveling along is on the left side (with respect
to the direction the car is facing) of the perimeter bisector tangent to this
parabola at the location of the car.

Lemma 4.1. Let P be an antiparallel polygon. Consider a perimeter bi-
sector of P with exactly one endpoint at a vertex of P . The bisection en-
velope of this polygon is continuous through this perimeter bisector if and
only if the perimeter bisector is an angle bisector. Furthermore, the sign of
v(t) · (cos t, sin t) is reversed after traveling through this perimeter bisector,
meaning that the bisection envelope has a cusp at this perimeter bisector.

Proof. Let AB be a perimeter bisector of P such that A is a vertex of P and
B is on the interior of some side CD of P . In order to apply Lemma 3.1, we
extend CD as well as the sides of the polygon which have A as an endpoint.
Since A is not an endpoint of a side that is parallel to CD, a triangle is
formed. Let the other vertices of this triangle be E and F . Note that, by
Theorem 3.1, if the bisection envelope is to be continuous through AB, there
must exist a point G on AB such that the parabolas resulting from ∠AEB
and ∠AFB are both tangent to AB at G. See Figure 8.

By applying Lemma 3.1 to ∠AEB and ∠AFB, we see that BE/AE =
AG/GB = BF/AF . By the converse of the angle bisector theorem (see [4],
in particular, Proposition 3 of Book 6), AB bisects the polygon’s angle at
A.

Next, we show that the sign of v(t) · (cos t, sin t) reverses when traveling
through AB, resulting in a cusp. In order for this sign to reverse, the
mouths of the parabolas generated from ∠AEB and ∠AFB must be on
opposite sides of AB, that is, E and F are on opposite sides of AB. We
note that, since AEF is a triangle and AB goes through its interior, E and
F must be on opposite sides of AB, thus the sign of v(t) · (cos t, sin t) must
reverse through AB, and a cusp is generated.

Lemma 4.1 immediately yields
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Figure 8. This triangle arises in the proof of Lemma 4.1.
Its sides are the extensions of the sides of polygon P that
contain vertex A and the side CD of P . Segment AB is a
perimeter bisector of P .

Corollary 4.1. In an antiparallel polygon, if every perimeter bisector having
a vertex as an endpoint has exactly one endpoint at a vertex and is an
angle bisector of the polygon, then the bisection envelope of the polygon is
continuous.

Theorem 4.1. Consider an antiparallel polygon with the properties that no
perimeter bisector connects two of its vertices and its bisection envelope is
continuous. Then its bisection envelope consists of an odd number of cusps.

Proof. By Lemma 4.1, at each cusp of the bisection envelope, the sign
of v(t) · (cos t, sin t) will change. Since f(t) factors through P1, the pe-
riod of f(t) is π; v(0) = v(π) and (cos 0, sin 0) = −(cosπ, sinπ), therefore
v(0) · (cos 0, sin 0) = −v(π) · (cosπ, sinπ). (Note that v(t) is never 0 in an
antiparallel polygon.) This equality can only hold when there are an odd
number of cusps in the envelope, since the sign of v(t) · (cos t, sin t) changes
after each cusp.

Corollary 4.2. If an antiparallel polygon has an even number of vertices
and a continuous bisection envelope, then there must be a perimeter bisector
which connects two of its vertices.

Proof. Consider a polygon P that satisfies the conditions of the hypothesis;
however, assume for the sake of contradiction that there are no perimeter
bisectors connecting two vertices of P . By Theorem 3.1, cusps between
parabolas occur on perimeter bisectors with an endpoint at a vertex of P .
Thus, in this case, the number of cusps in the bisection envelope equals the
number of vertices of P , which is even. However, since P has a continuous
bisection envelope, by Theorem 4.1, there should be an odd number of cusps,
a contradiction. Therefore, there must be a perimeter bisector that connects
two vertices of P .

4.1. Non-antiparallel Polygons. The results described thus far in this
section are not necessarily true when a polygon is not antiparallel. We will
now consider the non-antiparallel case.

We begin with the setup and all the hypotheses of Lemma 4.1 except
allow the polygon P to be non-antiparallel.
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Figure 9. Trapezoid AA′FE, where AA′ is parallel to EF .
PointsA, A′ = G, C, andD are vertices of a polygon, AB and
A′H are perimeter bisectors of this polygon which intersect
at their midpoint M .

So let P be a non-antiparallel polygon. Let A be a vertex of P and define
B so that AB is a perimeter bisector of P . Furthermore, assume that A is
the endpoint of a side that is parallel to side CD. Let AA′ be the side of the
polygon parallel to CD. Let us assume that there exists a perimeter bisector
with both endpoints on AA′ and CD. Without loss of generality, we can
assume that rotating AB clockwise results in the perimeter bisectors with
endpoints on AA′ and CD. We will show that if the bisection envelope is
continuous through AB, then AB must still be an angle bisector. However,
at AB, E(P ) may or may not have a cusp.

First we show that AB is still an angle bisector. By Theorem 3.1, the
bisection envelope resulting from perimeter bisectors with endpoints on AA′

and CD will be the midpoint of AB, which we label M . Let us extend CD
and the side with an endpoint at A that is not AA′ and let their intersection
point be E. By Lemma 3.1, AE/BE = BM/AM . Since M is the midpoint
of AB, AE/BE = 1. Thus, ∆AEB is isosceles. Because ∠EAB = ∠ABE
and ∠A′AB and ∠ABE are alternate interior angles, AB is an angle bisec-
tor.

We will now show that the sign change described in Lemma 4.1 occurs
for some non-antiparallel cases, but not for others.

Let GH be the first perimeter bisector that has a vertex as an endpoint
when rotating the perimeter bisectors clockwise starting at AB, labeled so
that G is on AA′ and H is on CD. Note that GH intersects M .

For now, assume that G and H are not both vertices of P as we will
address that situation later in this subsection. Then there are two cases to
consider: Either G is a vertex or H is a vertex.

Suppose G is a vertex of the polygon, meaning that G = A′. See Figure 9.
In this case, we claim that the sign of v(t) · (cos t, sin t) still changes as
we pass through M . Note that a parabola is generated both before and
after the endpoints of the perimeter bisectors travel along AA′ and BH:
the parabola generated beforehand results from ∠AEB, and the parabola
generated afterwards results from ∠A′FB. Since E and F are on opposite
sides of both AB and A′H, when moving towards M and when emerging
from M , the mouths of the parabolas generated will change sides of the



96 Milena Harned

Figure 10. The example described in 4.1.1.

perimeter bisectors with respect to the direction (cos t, sin t). As a result,
the sign of v(t) · (cos t, sin t) reverses.

Now suppose H is a vertex of the polygon (and not G). When H is a
vertex of the polygon, it must coincide with C. Let us denote the point
generated by the intersection of AA′ and the side with an endpoint at C
that is not parallel to AA′ as K.

Example 4.1.1. We present a pentagon in which the sign of v(t) ·
(cos t, sin t) does not change from one parabolic arc to another because the
vertices of the angles defining parabolic sections before and after the end-
points of the perimeter bisectors travel along AG and BC are on the same
side of AB and GC, by assigning actual coordinates to the labeled points in
Figure 10 as follows.

A = (−1, 1) A′ = (1330 , 1) B = (1,−1) C = H = (−1
3 ,−1)

F = (4742 ,−1) E = (−1,−1) G = (13 , 1) K = (−3, 1)
M = (0, 0) N = (−1,−1

2)

Here, our pentagon is ANCFA′, as illustrated in the above diagram. We
leave it to the reader to verify that AB and GC are perimeter bisectors of
pentagon ANCFA′ and that the bisection envelope is continuous through
M (which means checking that KG = KC and AE = EB).

Example 4.1.2. We will now give an example of a non-antiparallel penta-
gon P which has a bisection envelope that contains two parabolic sections
that meet along a perimeter bisector that connects two of its vertices, but
not at a cusp.

Let P = NXMY Z be the pentagon where:

N = (1, 0) X = (−1,−1) M = (−1, 0)

Y = (
√
5−1

3+2
√
3+
√
5
− 1, 2

√
5−2

3+2
√
3+
√
5
) Z = ( 2

√
15−2

√
3

3+2
√
3+
√
5

+ 1, 2
√
5−2

3+2
√
3+
√
5
)

The pentagon and its bisection envelope are illustrated in Figure 11: We
claim that MN is a perimeter bisector of P and E(P ) is continuous through
MN . Furthermore, v(t) · (cos t, sin t) does not change sign through MN .
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Figure 11. The example described in 4.1.2.

Let A ≡ (xa, ya) be the intersection of
←−→
MY and

←−→
NX. Similarly, let

B ≡ (xb, yb) be the intersection
←−→
MX and

←→
NZ.

For E(P ) to be continuous through MN , we require that AN/AM =
BN/BM , by Lemma 4.1. The locus of points Q for which QN/QM =
AN/AM = BN/BM is one of the Apollonian circles associated with M

and N , that is, a circle with equation (x − 1+f2

1−f2 )2 + y2 = 4f2

(f2−1)2 , where

f = AN/AM = BN/BM . We constructed our pentagon by choosing f = 2,
then picked two nice points on this circle, namely A = (−5/3,−4/3) and

B = (−1,−2
√
3

3 ). We then set X to be the intersection of NA and MB.

Finally, we found Y and Z on
←−→
MA and

←→
NB, respectively, so that Y and Z

share their y-coordinates and so that MN would be a perimeter bisector of
the resulting pentagon.

We note that, by Lemma 3.1, the parabolas generated by the angles at A

and B do not form a cusp because A and B are on the same side of
←−→
MN .

5. Continuity for Triangles and Quadrilaterals

5.1. Triangle Case.

Proposition 5.1. If the bisection envelope of a triangle is continuous through
a perimeter bisector that has an endpoint on a vertex, then that vertex is the
apex of an isosceles triangle.

Proof. Consider triangle ABC. Suppose that AP is a perimeter bisector
and the bisection envelope is continuous through AP . By Lemma 4.1, AP
is an angle bisector. By the angle bisector theorem, there exists a constant
k such that BP = k · AB and CP = k · AC. Since AP is also a perimeter
bisector, we must have AB + BP = AC + CP , that is AB + k · AB =
AC + k ·AC, hence AB = AC.
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Corollary 5.1. The bisection envelope of a triangle is continuous if and
only if the triangle is equilateral.

Proof. By Proposition 5.1, every vertex is the apex of an isosceles triangle,
therefore, that triangle must be equilateral.

5.2. Quadrilateral Case. Here, we apply our results about the continuity
of bisection envelopes to prove Theorem 1.1. We also determine exactly
which convex quadrilaterals have continuous bisection envelopes. But first,
we state and prove a technical fact about isosceles trapezoids which we will
invoke twice in the sequel.

Lemma 5.1. If all angle bisectors of an isosceles trapezoid are perimeter
bisectors, then the trapezoid must be a square.

Proof. Consider an isosceles trapezoid ABDC, labeled so that CD is par-
allel to AB and CD ≤ AB. Let CE be a perimeter bisector. Note that E
is on AB since AB ≥ CD. Because each direction corresponds to a unique
perimeter bisector, CE must be the angle bisector at C. Similarly, if DG
is a perimeter bisector, then it is the angle bisector at D and G is on AB.
Because CE and DG are perimeter bisectors, CD = EG, and, by symmetry,
CGED is a rectangle, and CE and DG intersect at their midpoint, which
we label H. Observe that m∠ECA = m∠DCE = m∠CEA. Hence ∆ACE
is isosceles. Similarly, ∆BDG is isosceles. Thus, AE = AC = BD = BG.

Let a = AE and c = CD. Let θ = m∠CAB = m∠DBA. Then AB =
2a−c and c = a(1−cos θ). Because ∆ACE is isosceles, the angle bisector at
A passes through H and reintersects the boundary of the trapezoid at a point
we label J . Note that J must be on BD since AB ≥ CD. By hypothesis,
AJ is a perimeter bisector; therefore, AB +BJ = 2a, so BJ = c. Applying
the law of sines to ∆ABJ , we obtain

1− cos(θ)

sin(θ/2)
=

1 + cos(θ)

sin(π − 3θ/2)
,

whose only solutions, up to multiples of 2π, are θ = π/2, 3π/2. The solution
θ = 3π/2 is extraneous and the solution θ = π/2 shows that our trapezoid
is a square.

Proof. [Proof of Theorem 1.1] We split this proof into three cases based on
the number of pairs of parallel sides in the quadrilateral.

Case 1: No Pairs of Parallel Sides
Consider a convex quadrilateral which has no pairs of parallel sides and angle
bisectors that bisect its perimeter. We will show that the only such quadri-
laterals are the kites with three equal acute angles. If none of the perimeter
bisectors connect vertices of our quadrilateral, then by Lemma 4.1, its bi-
section envelope must be continuous. However, by Corollary 4.2 there must
be an odd number of cusps. Since we are in an antiparallel case, all four
angle bisectors must be cusps, a contradiction. Therefore, there must exist
a perimeter bisector connecting two vertices of this quadrilateral.



Perimeter Bisectors, Cusps, and Kites 99

Figure 12. A kite used in the proof of Case 1 of Theorem 1.1.

Remark 5.1. In searching for an elementary proof of Theorem 1.1, our
stumbling block was deducing the existence of a perimeter bisector that con-
nected two vertices. So it is in showing that such a perimeter bisector exists
that we seem to need our general results on bisection envelopes.

So we may assume that our quadrilateral has a perimeter bisector that
connects two of its vertices. Since this perimeter bisector must also be an
angle bisector, the quadrilateral must be either a kite or a parallelogram. In
the current case, we are considering quadrilaterals with no pairs of parallel
sides, so we determine that our quadrilateral must be a kite.

We will now show that this kite must have three equal acute angles.
Consider a kite ACBD labeled so that AB is an angle bisector. Let CE

be the angle bisector at C, and let F be the intersection of
←→
AB and

←→
CE.

By swapping the labels of A and B if necessary, we may assume that E
is on BD. See Figure 12. Since CE and AB are angle bisectors, we have
AC
BC = AF

BF = EF
CF ; since CE and AB are also perimeter bisectors, we must

have AC = BE. Therefore, ∆FBC ∼ ∆FAE, so AC
BC = AE

BC , which shows
AE = AC. So, m∠CEB = π −m∠CED = π − (m∠CEA + m∠AED) =
π − (y + 2y). Since m∠ECB = y and the angles of a triangle sum to π, we
conclude that m∠EBC = 2y and our quadrilateral has three equal angles,
namely B, C, and D. Furthermore, note that these three angles must be
acute, since otherwise E would be on AD (CE is a perimeter bisector and
if the angles are obtuse, then CB + BD is less than half the perimeter of
ACBD).

We now show that any kite with 3 equal acute angles has angle bisectors
which are also perimeter bisectors. So consider the same setup as above,
except assume that the angles at C, B, and D all have the same acute
measure, and that CE is an angle bisector. Then BC/AC = BF/AF , and
since AB is an angle bisector, BC/BE = CF/EF . Furthermore, since
∆ACB ∼ ∆BCE, BC/BE = BC/AC. As a result, CF/EF = BF/AF ,
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thus, ∆ACF ∼ ∆BFE, and since ∆BCF is isosceles, ∆ACF ∼= ∆EBF ,
so AC = BE = AD. We note that, since AB is a perimeter bisector,
AC + BC is half of the perimeter of ACBD. Thus, BC + BE is also half
of the perimeter of ACBD, making CE a perimeter bisector.

We have therefore determined that for quadrilaterals having no pairs of
parallel sides, having angle bisectors which are also perimeter bisectors is
equivalent to being a kite with three equal acute angles.

Case 2: One Pair of Parallel Sides
Consider a trapezoid ABDC labeled so that AB is parallel to CD and such
that CD < AB. Assume that all of its angle bisectors are also perimeter
bisectors. Let E be the point where the angle bisector at C intersects the
boundary of the trapezoid. By assumption CE is also a perimeter bisector,
and since CD < AB, E must be on AB. By similar reasoning, if F is the
intersection of the angle bisector at D with the boundary of the trapezoid,
then F is on AB. Observe that m∠FDB = m∠CDF = m∠DFB and
m∠ECA = m∠DCE = m∠CEA; therefore, ∆ACE and ∆FDB are isosce-
les triangles. Since CE and DF are perimeter bisectors of ABDC, both
AC + AE and BD + BF are half the perimeter; therefore AC = BD and
ABDC is an isosceles trapezoid. By Lemma 5.1, we see that our trapezoid
must be a square, which is a contradiction (to having only one pair of par-
allel sides).

Case 3: Two Pairs of Parallel Sides
In all parallelograms, the diagonals are perimeter bisectors, but are angle bi-
sectors only when the parallelogram is a rhombus. Conversely, the diagonals
of a rhombus are always perimeter and angle bisectors.

It is not the case that the equivalent statements in Theorem 1.1 are equiv-
alent to the quadrilateral having a continuous bisection envelope. Instead,
we have

Theorem 5.1. Let Q be a convex quadrilateral. The following are equiva-
lent:

• The bisection envelope of Q is continuous.
• Q is either a kite with three congruent acute angles or a parallelo-

gram.

Proof. We shall split into three cases depending on the number of pairs of
parallel sides in the quadrilateral.

Case 1: No Pairs of Parallel Sides.
Consider a convex quadrilateral which has no pairs of parallel sides and a
continuous bisection envelope. By Corollary 4.2 this quadrilateral must have
a perimeter bisector connecting two of its vertices.

Let us therefore consider a quadrilateral ACBD that has a perimeter bi-
sector connecting two vertices A and B. Because AB is a perimeter bisector,
AC + CB = AD + DB, that is, C and D are on an ellipse with foci A and B.
We shall show that continuity of the bisection envelope through AB implies
that ACBD is a kite (or a parallelogram, although here we are considering
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Figure 13. An illustration of Case 1 in the proof of Theorem 5.1.

the case with no parallel sides). Let
←→
BD and

←→
AC intersect at E, and let

←→
AD

and
←→
BC intersect at F . By Lemma 3.1, AE/AF = BE/BF . By the law of

sines, this is equivalent to sin∠DBA
sin∠ABC = sin∠CAB

sin∠BAD , or sin∠DBA sin∠BAD =
sin∠ABC sin∠CAB.

We claim that the only points P on the ellipse that satisfy

sin∠DBA sin∠BAD = sin∠ABP sin∠PAB

are D and its images under symmetries of the ellipse. To show this, by
the symmetry of the ellipse, it suffices to show that sin∠ABP sin∠PAB is
strictly monotone as P travels over a quadrant of the ellipse. In particular,
place ACBD in an xy-coordinate plane so that the ellipse defined by the
points X such that AX + XB = AD + DB has major axis the x-axis and
minor axis the y-axis and so that A = (−1, 0) and B = (1, 0). Let the
highest point on the ellipse be (0, b). See Figure 13.

Let s(x, y) = sin∠ABP sin∠PAB, where P = (x, y), so

s(x, y) =
y2√

((x+ 1)2 + y2)((x− 1)2 + y2)
.

Define x(t) =
√
b2 + 1 cos t and y(t) = b sin t so that (x(t), y(t)) is a parame-

terization of the ellipse. We will show that s(x(t), y(t)) is strictly increasing
for t ∈ [0, π/2]. We simplify our computations by showing, instead, that
g(t) ≡ 1

s(x(t),y(t))2
is strictly decreasing for t ∈ [0, π/2].
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We compute that

dg

dt
=

4x(x2 + y2 − 1)

y4
(−

√
b2 + 1 sin t) +

8x2 − 4x4 − 4x2y2 − 4y2 − 4

y5
(b cos t)

= −4b3 cos t

y5
(b2 + sin2 t).

Because b, y > 0 and cos t > 0 for t ∈ (0, π/2), we see that dg/dt < 0 for
t ∈ (0, π/2), thus ds/dt > 0 for t ∈ (0, π/2), as desired.

This establishes that there are at maximum four solutions to the equation

sin∠DBA sin∠BAD = sin∠ABP sin∠PAB,

namely D and its images under the symmetries of the ellipse. If D is not on
the minor axis of the ellipse, then two of these solutions are degenerate, one,
namely the point symmetric to D in the center of the ellipse, corresponds
to a parallelogram, and one, namely the point mirror symmetric to D in
the major-axis, corresponds to a kite. If D = (0, b), then there are only two
solutions, one degenerate and one corresponding to a rhombus. In this case,
we are assuming that our quadrilateral has no parallel sides, so we conclude
that this quadrilateral is a kite.

Note that the perimeter bisector with one endpoint at C must have its
other endpoint on the interior of a side (since C is not on the minor axis).
Since the bisection envelope is continuous, by Lemma 4.1, this perimeter
bisector must be an angle bisector. Hence all angle bisectors of our kite are
also perimeter bisectors, and so by Theorem 1.1, we conclude that our kite
must have three equal acute angles.

Case 2: One Pair of Parallel Sides.
We will now show that the bisection envelope of a quadrilateral containing
one pair of parallel sides (i.e. a trapezoid) is never continuous.

Consider a trapezoid ABDC labeled so that AB is parallel to CD and
such that CD < AB; we disregard the case where AB = CD since we
consider parallelograms in a later section.

We claim that an endpoint of one of the perimeter bisectors from vertex C
or D must be on AB. Let E be the other endpoint of the perimeter bisector
from C. If our claim is false, we must have E on BD. If BE > CD, then
the perimeter bisector at D would have its other endpoint on BD as well,
which is impossible. But if BE ≤ CD, since AB > CD, the other endpoint
of the perimeter bisector at D must be on AB, as desired. By relabeling
if necessary, we may assume that E is on AB. Let F be the point on CD
which is furthest from C such that the perimeter bisector with endpoint F
has its other endpoint on AB. Note that G = A or F = D.

These two possibilities are illustrated in Figure 14 and Figure 15. Let H
be the intersection of CE and FG. Note that H is the midpoint of both CE
and FG since CE and FG are diagonals of parallelogram CFEG. By the
proof of Theorem 3.1, the bisection envelope generated by perimeter bisec-
tors between CE and FG will be H. By Lemma 3.1, if the bisection envelope
of this trapezoid is to be continuous, AE/AC = CH/EH = 1, hence ∆CAE
is isosceles and AH is an angle bisector. Since CE is a perimeter bisector,
2AC is half of the perimeter of trapezoid ABDC.
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Figure 14. Trapezoid ACBD with perimeter bisectors CE
and FG where A = G, as appears in the proof of Theo-
rem 5.1.

Figure 15. Trapezoid ACBD with perimeter bisectors CE
and FG where D = F , as appears in the proof of Theo-
rem 5.1.

SupposeG = A (see Figure 14). Then 2AC = FD+DB+BA ≥ FE+EA.
However, FE = AC = AE, so F = D and E = B, implying that ABDC is
a parallelogram, which we are not allowing here.

So assume F = D (see Figure 15). Then BD + BG = 2AC. By
Lemma 3.1, BD = BG, thus, BD = BG = AC = AE, and the trape-
zoid is isosceles. By Lemma 4.1, all of the angle bisectors of this isosceles
trapezoid must also be perimeter bisectors. We therefore apply Lemma 5.1
to determine that this isosceles trapezoid must be a square, which we ad-
dress in the next section. Thus, there are no quadrilaterals with one pair of
parallel sides that have continuous bisection envelopes.

Case 3: Two Pairs of Parallel Sides.
The bisection envelope of a quadrilateral containing two pairs of parallel
sides is always continuous, since the bisection envelope will be a point: by
Theorem 3.1, since in a parallelogram, all perimeter bisectors pass through
the intersection of the parallelogram’s diagonals, its bisection envelope is a
point.
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Figure 16. A triangle with rounded corners with its bisec-
tion envelope to illustrate an example of a region with a con-
tinuously differentiable boundary.

6. Conclusion

It may seem that Theorem 1.1 should have a proof that uses purely Eu-
clidean methods. Note that the quadrilaterals in our theorem all have a
perimeter bisector that connects two vertices, and, once we establish this
fact, the remainder of our proof is Euclidean. So if one could provide a
Euclidean proof of the existence of a perimeter bisector that connects two
vertices (or, if one could find a proof that avoids determining the existence of
such a perimeter bisector as an intermediary step), a purely Euclidean proof
would be possible. However, we deduced the existence of such a perimeter
bisector by studying properties of the envelope generated by the family of
perimeter bisectors. Indeed, we think the argument involving envelopes is
not only a crucial feature of the present work, but also rather satisfying.

Perimeter bisectors for triangles have been studied and it is known that
the three perimeter bisectors from each vertex of a triangle are concurrent.
In [5], Todd considered the envelope of the perimeter bisectors of a triangle,
but his motivation was to find lines that simultaneously bisect the area
and the perimeter of the triangle. In [1], Berele and Catoiu recognize the
envelope of the perimeter bisecting lines of a triangle to be a union of three
parabolic arcs and reveal many of its properties.

Of further interest might be a study of the cusps of a bisection enve-
lope of a finite convex region with continuously differentiable boundary,
more specifically in knowing what the conditions are that produce a cusp
in the continuously differentiable case. In this case, the bisection enve-
lope is always continuous. See Figure 16 for an example. We conclude by
providing formulas for the bisection envelope in the continuously differen-
tiable case. Let the boundary of the region be given by C : [0, L] → Π,
where C is continuously differentiable, C(0) = C(L), and the parameter
corresponds to arc length (so that L is the perimeter of the region). The
perimeter bisectors are the line segments joining C(s) with C(L2 + s), so

we define P (s) ≡ C(L2 + s) − C(s). Then the perimeter bisector through
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C(s) is parameterized by C(s) + xP (s) and the perimeter bisector through
C(s+ t) is parameterized by C(s+ t) + yP (s+ t). The intersection of these
two perimeter bisectors is found by solving the system of linear equations
C(s) + xP (s) = C(s + t) + yP (s + t), then substituting the solution for x
or y into the appropriate parameterization. Note that because our region
is convex, both x and y will be positive (in fact, between 0 and 1). Let
E : [0, L] → Π parameterize the bisection envelope. Using these considera-
tions, we compute

E(s) = lim
t→0

(C(s) +
|(C(s+ t)− C(s))× P (s+ t)|

|P (s)× P (s+ t)|
P (s))

= C(s) + lim
t→0

d
dt |(C(s+ t)− C(s))× P (s+ t)|

d
dt |P (s)× P (s+ t)|

P (s) (by L’Hôpital’s rule)

= C(s) + lim
t→0

|(C(s+ t)− C(s))× P ′(s+ t) + C ′(s+ t)× P (s+ t)|
|P (s)× P ′(s+ t)|

P (s)

= C(s) +
|P (s)× C ′(s)|
|P (s)× P ′(s)|

P (s)

Note that P (s)×C ′(s) can never be 0 because neither P (s) nor C ′(s) is zero
and the perimeter bisector at C(s) cannot be tangent to the boundary (for,
otherwise, our shape would have to be the line segment that connect C(s)
with C(s+L/2). Therefore, P (s)×C ′(s+L/2) = −P (s+L/2)×C ′(s+L/2)
points in the opposite direction to P (s)× C ′(s). Thus,

|P (s)× (C ′(s+
L

2
)− C ′(s))| = |P (s)× C ′(s)|+ |P (s)× C ′(L

2
+ s)|,

and therefore

E(s) = C(s) +
|P (s)× C ′(s)|
|P (s)× P ′(s)|

P (s)

= C(s) +
|P (s)× C ′(s)|

|P (s)× (C ′(s+ L
2 )− C ′(s))|

P (s)

= C(s) +
|P (s)× C ′(s)|

|P (s)× C ′(s)|+ |P (s)× C ′(L2 + s)|
P (s).

Note that this last expression shows that we may think of the bisection
envelope in the continuously differentiable case as given by Lemma 3.1 ap-
plied to the angle whose sides are the tangent lines at the endpoints of each
perimeter bisector.
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