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GENERALIZED ARCHIMEDES ANGLE DIVISION

JAMES M PARKS

Abstract. Trisection is an often maligned topic, but we will show how
it leads to a new angle division method using a neusis-type geometric con-
struction, motivated by the result on trisection of an angle by Archimedes.
This new method generates a new set of integers based on division numbers
of the form 2n + 1, n a positive integer, which is different from both the set
of constructible integers, and the set of integers associated with the q-gons
constructible with the neusis. Construction methods of the associated reg-
ular q-gons of the new angle division numbers are investigated, including
examples.

We begin with a review of the Archimedes method for solving the Puzzle
of trisecting an angle. Archimedes solved this Puzzle with perhaps the
cleverest method of all, using a neusis argument with a marked straightedge
and a compass [1],[2]. A new method for solving this Puzzle which does not
require a marked straightedge is then given. However, it is still similar to
the Archimedes method. The advantage of this new method is that it can
be generalized to angle division numbers larger than 3.

We will assume angles are acute, unless stated otherwise.

Puzzle. Given an acute angle ∠ABC, a straightedge, and a compass,
determine a method to trisect ∠ABC.
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Solution of Archimedes.
Assume we are given an acute angle ∠ABC, a straightedge, and a com-

pass.
Construct circle c with center B and radius AB, Figure 1.
Mark the length AB on the end of the straightedge r as DE.
Place the straightedge r on point A with point D on the extension m of

side BC back through B, such that we have the order D − E − A on r,
Figure 1.

Move point D on line m until point E is on circle c (this is copy r′ of r).
Then the triangle ∆D′E′B is an isosceles triangle, since D′E′ = E′B, so

∠E′D′B = ∠E′BD′.
By the Exterior Angle Theorem, ∠AE′B = 2∠E′D′B.
Also, ∆E′AB is isosceles, since E′B = AB, so ∠AE′B = ∠E′AB.
Again, by the Exterior Angle Theorem, ∠ABC = ∠AD′B + ∠E′AB.
But ∠E′AB = 2∠E′D′B = 2∠AD′B, hence ∠ABC = 3∠AD′B.

Figure 1

Using Dynamic Geometry software the method of Archimedes can be du-
plicated on a PC. This software made it possible to develop a new variation
of Archimedes’ solution which uses a compass and straightedge, instead of
a compass and a marked straightedge [2],[3]. It is still a neusis-type of geo-
metric construction, as the radii of the circles are fixed, but the center of
one circle moves with the straightedge, so one of the circles takes the place
of the marks on the straightedge.

New Solution.
Given ∠ABC, a straightedge, and a compass, choose a point D on AB,

and construct the parallel line m to side BC on point D, as shown, Figure
2 Top.

Choose a point E on m within the angle ∠ABC, and construct the
straightedge EB, so that EB divides ∠ABC.

Construct circle c centered on point D with radius DB.
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At the intersection F of c with BE construct another circle d centered at
F , with radius DF .

Then we have the order B − F − E on line BE.
Note that DB = DF , and the circles c and d are congruent throughout

the construction, even though the center F of circle d moves on c with the
motion of point E on m.

Let G be the intersection, other than D, of circle d with line m.
Move point E on line m until it coincides with point G, Figure 2 Bottom.
Now ∠DEB = ∠EBC, since m//BC.
Also, ∠DBF = ∠DFB = 2∠DEB = 2∠EBC, by the Exterior Angle

Theorem, since triangles ∆DBF and ∆DFE are isosceles.
Hence ∠ABC = 3∠EBC.

Figure 2

Both methods work on angles ∠ABC up to size 135◦.
The New Solution construction led to the generalization of the Archimedes

solution, the new result, see Theorem below.
The idea behind this construction is this: If we can add one more circle,

and one more triangle to ∆DBE in the construction above, it would give
a division of ∠ABC by 5, since we’re doubling the angles and then adding
one more of the angles in each case.

The technique is still neusis in character, but uses circles to advance the
argument, instead of a marked straightedge.

What we are proposing is a geometric argument which uses the division
formula 2n + 1, for n a positive integer.
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We explore the method for the case n = 2, 2n + 1 = 5, with a demonstra-
tion.

Example 1. Let ∠ABC be a given acute angle. We will show how to
divide ∠ABC by 5, which will help illustrate how to generalize the division
method for numbers of the form 2n + 1, n ≥ 1.

As in the New Solution, if ∠ABC is a given acute angle, choose a point
D on AB, and construct a parallel line m to BC on D.

Let E be a point on m such that EB divides ∠ABC, Figure 3 Top.
Construct a circle c centered on D with radius DB, and let F be the

point of intersection of c with EB.
Construct a second circle d on F with radius DF .
Move E off to the right if needed, and let G be the intersection of circle

d with BE, so that we have the order B − F −G− E on BE.
Construct a third circle e centered on G with radius DG.
Notice how the base side of the previous isosceles triangle becomes the

short side of the next isosceles triangle.
Let H is the intersection of circle e with line m, so we have the order

D −H − E on line m.
Now move point E to coincide with point H, Figure 3 Bottom.
The centers F and G, of the circles d and e, will move with E.
Then ∠EBC = ∠DEB, since m//BC.
Also, ∠DGB = 2∠DEB = 2∠EBC, by the Exterior Angle Theorem,

since ∆EDG is isosceles.
Similarly, since ∆DBF and ∆DFG are isosceles, ∠DBE = ∠DFB =

2∠DGF = 4∠EBC.
Hence ∠ABC = 5∠EBC.

Figure 3
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The new angle division method is now clear. By induction it can be shown
that, by this new angle division method, the number 2n + 1 divides a given
acute angle ∠ABC, when n is a positive integer.

Theorem. By the new angle division method, 2n + 1 divides any acute
angle ∠ABC, if n is a positive integer.

Proof.
By the Puzzle, New Solution, we know the method works for n = 1. The

number of circles needed for this result is 2.
Assume 2n−1 + 1 divides ∠ABC, for n > 1, where line m is on point D,

D on AB, and m//BC, as above.
Then there are n circles used to show that ∠DBK = 2n−1∠KBC, where

K is the point on m corresponding to point E in Example 1.
Thus ∠ABC = (2n−1 + 1)∠KBC.
Move point K off to the right on m if needed, and add another circle to

the n circles, using the intersection point L of the nth circle with KB as the
center point, and DL as the radius.

Move the intersection point K on m to coincide with the point M , the
intersection point of this new (n + 1)th circle z with m.

The previous set of n nested triangles will be unchanged in their relation-
ship with each other, and the formula ∠ABC = (2n−1+1)∠KBC still holds
when the point K is moved on m.

This is because each of the isosceles triangles has its equal sides equal
to the radius of one of the constructed circles, so when the circles center is
moved the triangle remains isosceles.

The base side of the previous isosceles triangle becomes the short side of
the next isosceles triangle.

We will denote this new point K by K ′, Figure 4.

Figure 4
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Then, since this (n + 1)th circle z adds one more multiple of angles, and
∠DK ′L.= ∠LDK ′, by the Exterior Angle Theorem on the related isosceles
triangle, we have ∠DBK ′ = 2(2n−1)∠DK ′L = 2n∠DK ′L =2n∠DK ′B since
∠DK ′B = ∠DK ′L.

But ∠DK ′B = ∠K ′BC, thus ∠ABC = ∠DBK ′ + ∠K ′BC= 2n∠K ′BC
+ ∠K ′BC= (2n + 1)∠K ′BC.

We will indicate how this new angle division is related to the construc-
tion of regular polygons. Since these polygons are not constructible, we use
Transformation Geometry.

Given a 90◦ angle ∠ABC, where AB and CB are unit length sides, let c
be the unit circle about B. If we make a division of ∠ABC by 2n + 1, n ≥ 1,
we get an angle ∠EBC, where the point E is on c, Figure 5.

Let ∠FBC equal 4 copies of ∠EBC formed by reflection, or rotation,
then F is on c.

Thus m∠FBC = 4m∠EBC, and (2n + 1)m∠EBC = 90◦.
We then have a division of c by 2n + 1, since (2n + 1)m∠FBC =

(2n + 1)4m∠EBC = 4(2n + 1)m∠EBC = 360◦.
These ∠FBC sections are then the division units which determine the

sides of the regular (2n + 1)-gon by reflection or rotation.
Connect the intersection points C and F of the ∠FBC division units to

obtain the sides of the (2n + 1)-gon.

Figure 5

For example, we can use trisection to determine a 3-gon (and also a 4-gon,
6-gon, and 12-gon).

Let ∠ABC be a 90◦ angle, with AB, and BC unit segments, and construct
the unit circle c centered at B, as shown, Figure 6 Left. Of course we could
have constructed a 30◦ angle, but we are demonstrating the general division
method here.

Divide ∠ABC by 3, using the method in Puzzle, New Solution, to obtain
angle ∠EBC, E on c.

Then reflect or rotate ∠EBC to obtain the angle ∠A′BC, where ∠A′BA
= ∠EBC.
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Since m∠ABC = 3m∠EBC = 90◦, and we know that ∠A′BC = 4∠EBC,
we have 3m∠A′BC = 3(4m∠EBC) = 4(3m∠EBC) = 360◦.

Thus 3 of the ∠A′BC division units cover the entire circular region.
Connect the points C,A′, and D′, and hide the radii line segments and

the circle, to obtain the 3-gon CA′D′, Figure 6 Right.
Connect the other points as shown to get the other regular polygons in

Figure 6 Right.

Figure 6

By the technique in the above example, we cannot only divide angles by
numbers of the form 2n + 1, for n ≥ 1, but we can also divide angles by
products of numbers of this type, (2m + 1)(2n + 1),m, n ≥ 1. This also
includes powers of these numbers, (2m + 1)r,m, r ≥ 1.

The n-bisections by numbers which are powers of 2 can be combined with
these products: 2n(2m + 1)(2q + 1), for m, q ≥ 1, n ≥ 0.

The general form of the divisors of this type is therefore: 2np[1]p[2]...p[m],
m ≥ 1, n ≥ 0, where each of the distinct factors p[k] has the form (2s + 1)t,
where s, t ≥ 1.

We call this new method, which uses these new numbers as divisors, the
Generalized Archimedes Angle Division Method (GAADM for short).

The standard division by the product (2m +1)(2n +1) is accomplished by
dividing the given angle ∠ABC, by 2m + 1,m ≥ 1, to obtain ∠EBC, and
then divide this angle by 2n + 1, n ≥ 1, to obtain ∠FBC.

Thus ∠ABC = (2m + 1)∠EBC = (2m + 1)(2n + 1)∠FBC.
Clearly, the product of the division operations is commutative.

For example we can divide an angle ∠ABC by 25, by first dividing the
angle ∠ABC by 5 to get ∠EBC, as in Example 1 above.

Then divide ∠EBC by 5 to get the desired result, say ∠FBC, such that
∠ABC = 25∠FBC.
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We can also divide an angle ∠ABC by 11, even though 11 does not have
the form 2n + 1, for some n. First divide ∠ABC by 25 + 1 = 33, to get
∠EBC, then we can join 3 of these small angles ∠EBC together to form a
new division unit angle ∠FBC which determines the division of ∠ABC by
11 of these ∠FBC units.

Other divisors, such as 13 (use 65 = 5 x 13) and 19 (use 513 = 27 x 19),
are possible to construct by similar arguments. Division by other primes,
such as 23, 29, . . . , is theoretically possible.

Division by 7 is not possible, since (2n+1)mod7 is equal to either 2, 3, or
5, for all n ≥ 1.

For a general example, consider the divisor (21)(21 +1)(22 +1) = 30. The
division of ∠ABC is accomplished by bisecting the given angle to obtain the
angle ∠DBC, Figure 7. Then divide angle ∠DBC by 3 to obtain the angle
∠EBC, and last divide angle ∠EBC by 5, to get ∠FBC.

This last angle ∠FBC then satisfies ∠ABC = 30∠FBC.

Similar multiplication techniques allow us to divide angles by some mul-
tiples of 25.

Figure 7

Example 2. To demonstrate the Generalized Archimedes Angle Division
Method and associated q − gon construction for a nontrivial case we con-
struct a heptadecagon (17-gon), in honor of Carl Friedrich Guass, who was
the first to construct this polygon in 1796, using a Euclidean construction.

First we divide a right angle ∠ABC by 17, Figure 8.
We will need to construct 5 circles.
Choose a point D on AB, and construct a line m parallel to BC through

D. Then Choose a point E on line m in the interior of ∠ABC, and connect
E to B.

Move E off to the right if necessary, and construct a circle c1 with center
D and radius DB.

At the intersection F of the circle c1 with BE construct a 2nd circle c2
with center F and radius DF .

At the intersection G of this circle c2 with BE, where B−F−G, construct
a 3rd circle c3 with center G and radius DG.
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At the intersection H of this circle c3 with BE, where B − F − G −H,
construct a 4th circle c4 with center H and radius DH.

At the intersection J of this circle c4 with BE, where B−F −G−H−J ,
construct a 5th circle c5 with center J and radius DJ .

Move E to the intersection K of circle c5 with the parallel line m so
that we have B − F − G −H − J −K, and connect D to F,G,H, and J ,
respectively.

We know ∠EBC = ∠DEB, because m//BC.
Also, ∠DJB = 2∠DEB = 2∠EBC by the Exterior Angle Theorem, since

∆DJE is isosceles.
Similarly, since ∆DHJ , ∆DGH, ∆DFG and ∆DBF are isosceles, we

have ∠DBF = ∠DFB = 2∠DGB = 4∠DHB = 8∠DJB = 16∠DEB =
16∠EBC, all by the Exterior Angle Theorem, plus the equality above.

Thus ∠ABC = ∠DBE + ∠EBC = ∠DBF + ∠EBC = 16∠EBC +
∠EBC = 17∠EBC.

Figure 8

Construction of the associated regular 17-gon then follows as in the ex-
amples above.

Let ∠ABC be a right angle, with AB and CB unit segments, and con-
struct a unit circle c about the center point B.

Then let ∠EBC be the division of ∠ABC by 17, E on c, Figure 9 Left.
Form the division unit ∠PBC from 4 copies of ∠EBC by reflections or

rotations.
Thus ∠PBC = 4∠EBC, ∠ABC = 4∠PBC + ∠EBC = 17∠EBC, and

17m∠PBC = 360◦.
Connect C and P to obtain a side of the 17-gon.
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Reflect or rotate ∆PBC by iteration around the circle to get the sides of
the 17-gon, Figure 9 Right.

Figure 9

Conclusions.
This is a partial list of the division numbers which create q-gons using

the numbers 2n + 1, n ≥ 1, and their multiples, but excluding bisections:
3, 5, 9, 15, 17, 25, 27, 33, 45, 51, 65, 75, 81, 85, 99, 114, . . . .

If we include bisections 2n, n ≥ 0, and multiples in the above set of num-
bers, we have numbers of the general form 2np[1]p[2]...p[m], for m ≥ 1, n ≥ 0,
where each of the distinct p[k] terms has the form (2s + 1)t, s, t ≥ 1.

Here is the general list of all the numbers above, with the allowed multi-
ples, plus bisections. We denote this set by GAADM: 2, 3, 4, 5, 6, 8, 9, 10,
12, 15, 16, 17, 18, 20, 24, 25, 27, 30, 32, 33, 34, 36, 40, 45, 48, 50, 51, 54,
60, 64, 65, 66, 68, 72, 75, 80, 81, 84, 85, 90, 96, 99, 100, 102, . . . .

Notice that this set of numbers contains the number 25, and some multi-
ples of 25. These numbers are on the list of open question integers for the
neusis constructions [4], [5].

The numbers in the following list are the constructible integers such
that the q-gons are derived from divisors constructed using a compass and
straight edge. They are of the type: 2np[1]p[2]...p[m],m ≥ 1, n ≥ 0, where
each of the p[k] terms are distinct Fermat Primes [4], OEIS A003401: 1, 2,
3, 4, 5, 6, 8, 10, 12, 15, 16, 17, 20, 24, 30, 32, 34, 40, 48, 51, 60, 64, 68, 80,
85, 96, 102, . . . .

The following is the set of numbers which result from the neusis con-
structions of polygons [5]. OEIS A122254: 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26, 27, 28, 30, 32, 33, 34, 35, 36, 37,
38, 39, 40, 42, 44, 45, 48, 51, 52, 54, 55, 56, 57, 60, 63, 64, 65, 66, 68, 70,
72, 73, 74, 76, 77, 78, 80, 81, 84, 85, 88, 90, 91, 95, 96, 97, 99, 102, . . . .

The following is the list of those numbers which correspond to polygons
which are not constructible with neusis [5], OEIS A048136: 23, 29, 43, 46,
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47, 49, 53, 58, 59, 67, 69, 71, 79, 83, 86, 87, 89, 92, 94, 98, 103, 106, 107, . . . .

The set of numbers denoted by GAADM contains the set of constructible
integers, except for the number 1, since these Fermat Primes are numbers
of the form 2n + 1, for some n.

Even if we add the primes 11, 13, 19, 23, . . . , and their multiples
to the set of numbers denoted by GAADM, based on our discussion above,
this set appears to be contained in the set of numbers which result from the
neusis constructions of polygons listed above [5], OEIS A122254, except for
the number 25 and the multiples of 25. The validity of this observation is
not known at this time.
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