GENERALIZED ARCHIMEDES ANGLE DIVISION

JAMES M PARKS

Abstract

Trisection is an often maligned topic, but we will show how it leads to a new angle division method using a neusis-type geometric construction, motivated by the result on trisection of an angle by Archimedes. This new method generates a new set of integers based on division numbers of the form $2^{n}+1, n$ a positive integer, which is different from both the set of constructible integers, and the set of integers associated with the q-gons constructible with the neusis. Construction methods of the associated regular q-gons of the new angle division numbers are investigated, including examples.

We begin with a review of the Archimedes method for solving the Puzzle of trisecting an angle. Archimedes solved this Puzzle with perhaps the cleverest method of all, using a neusis argument with a marked straightedge and a compass [1],[2]. A new method for solving this Puzzle which does not require a marked straightedge is then given. However, it is still similar to the Archimedes method. The advantage of this new method is that it can be generalized to angle division numbers larger than 3 .

We will assume angles are acute, unless stated otherwise.
Puzzle. Given an acute angle $\angle A B C$, a straightedge, and a compass, determine a method to trisect $\angle A B C$.

Keywords and phrases: Archimedes Trisection, Division of Angles, Construction of Regular n-gons, Neusis Construction.
(2010)Mathematics Subject Classification: 51-0/01A20, 51M04, 51M05, 51M15, 51M99

Received: 15.12.2020. In revised form: 27.05.2021. Accepted: 11.04.2021

Solution of Archimedes.

Assume we are given an acute angle $\angle A B C$, a straightedge, and a compass.

Construct circle c with center B and radius $A B$, Figure 1 .
Mark the length $A B$ on the end of the straightedge r as $D E$.
Place the straightedge r on point A with point D on the extension m of side $B C$ back through B, such that we have the order $D-E-A$ on r, Figure 1.

Move point D on line m until point E is on circle c (this is copy r^{\prime} of r).
Then the triangle $\Delta D^{\prime} E^{\prime} B$ is an isosceles triangle, since $D^{\prime} E^{\prime}=E^{\prime} B$, so $\angle E^{\prime} D^{\prime} B=\angle E^{\prime} B D^{\prime}$.

By the Exterior Angle Theorem, $\angle A E^{\prime} B=2 \angle E^{\prime} D^{\prime} B$.
Also, $\triangle E^{\prime} A B$ is isosceles, since $E^{\prime} B=A B$, so $\angle A E^{\prime} B=\angle E^{\prime} A B$.
Again, by the Exterior Angle Theorem, $\angle A B C=\angle A D^{\prime} B+\angle E^{\prime} A B$.
But $\angle E^{\prime} A B=2 \angle E^{\prime} D^{\prime} B=2 \angle A D^{\prime} B$, hence $\angle A B C=3 \angle A D^{\prime} B$.

Figure 1

Using Dynamic Geometry software the method of Archimedes can be duplicated on a PC. This software made it possible to develop a new variation of Archimedes' solution which uses a compass and straightedge, instead of a compass and a marked straightedge [2],[3]. It is still a neusis-type of geometric construction, as the radii of the circles are fixed, but the center of one circle moves with the straightedge, so one of the circles takes the place of the marks on the straightedge.

New Solution.

Given $\angle A B C$, a straightedge, and a compass, choose a point D on $A B$, and construct the parallel line m to side $B C$ on point D, as shown, Figure 2 Top.

Choose a point E on m within the angle $\angle A B C$, and construct the straightedge $E B$, so that $E B$ divides $\angle A B C$.

Construct circle c centered on point D with radius $D B$.

At the intersection F of c with $B E$ construct another circle d centered at F, with radius $D F$.

Then we have the order $B-F-E$ on line $B E$.
Note that $D B=D F$, and the circles c and d are congruent throughout the construction, even though the center F of circle d moves on c with the motion of point E on m.

Let G be the intersection, other than D, of circle d with line m.
Move point E on line m until it coincides with point G, Figure 2 Bottom.
Now $\angle D E B=\angle E B C$, since $m / / B C$.
Also, $\angle D B F=\angle D F B=2 \angle D E B=2 \angle E B C$, by the Exterior Angle Theorem, since triangles $\triangle D B F$ and $\triangle D F E$ are isosceles.

Hence $\angle A B C=3 \angle E B C$.

Figure 2

Both methods work on angles $\angle A B C$ up to size 135°.
The New Solution construction led to the generalization of the Archimedes solution, the new result, see Theorem below.

The idea behind this construction is this: If we can add one more circle, and one more triangle to $\triangle D B E$ in the construction above, it would give a division of $\angle A B C$ by 5 , since we're doubling the angles and then adding one more of the angles in each case.

The technique is still neusis in character, but uses circles to advance the argument, instead of a marked straightedge.

What we are proposing is a geometric argument which uses the division formula $2^{n}+1$, for n a positive integer.

We explore the method for the case $n=2,2^{n}+1=5$, with a demonstration.

Example 1. Let $\angle A B C$ be a given acute angle. We will show how to divide $\angle A B C$ by 5, which will help illustrate how to generalize the division method for numbers of the form $2^{n}+1, n \geq 1$.

As in the New Solution, if $\angle A B C$ is a given acute angle, choose a point D on $A B$, and construct a parallel line m to $B C$ on D.

Let E be a point on m such that $E B$ divides $\angle A B C$, Figure 3 Top.
Construct a circle c centered on D with radius $D B$, and let F be the point of intersection of c with $E B$.

Construct a second circle d on F with radius $D F$.
Move E off to the right if needed, and let G be the intersection of circle d with $B E$, so that we have the order $B-F-G-E$ on $B E$.

Construct a third circle e centered on G with radius $D G$.
Notice how the base side of the previous isosceles triangle becomes the short side of the next isosceles triangle.

Let H is the intersection of circle e with line m, so we have the order $D-H-E$ on line m.

Now move point E to coincide with point H, Figure 3 Bottom.
The centers F and G, of the circles d and e, will move with E.
Then $\angle E B C=\angle D E B$, since $m / / \mathrm{BC}$.
Also, $\angle D G B=2 \angle D E B=2 \angle E B C$, by the Exterior Angle Theorem, since $\triangle E D G$ is isosceles.

Similarly, since $\triangle D B F$ and $\triangle D F G$ are isosceles, $\angle D B E=\angle D F B=$ $2 \angle D G F=4 \angle E B C$.

Hence $\angle A B C=5 \angle E B C$.

Figure 3

The new angle division method is now clear. By induction it can be shown that, by this new angle division method, the number $2^{n}+1$ divides a given acute angle $\angle A B C$, when n is a positive integer.

Theorem. By the new angle division method, $2^{n}+1$ divides any acute angle $\angle A B C$, if n is a positive integer.

Proof.

By the Puzzle, New Solution, we know the method works for $n=1$. The number of circles needed for this result is 2 .

Assume $2^{n-1}+1$ divides $\angle A B C$, for $n>1$, where line m is on point D, D on $A B$, and $m / / B C$, as above.

Then there are n circles used to show that $\angle D B K=2^{n-1} \angle K B C$, where K is the point on m corresponding to point E in Example 1.

Thus $\angle A B C=\left(2^{n-1}+1\right) \angle K B C$.
Move point K off to the right on m if needed, and add another circle to the n circles, using the intersection point L of the nth circle with $K B$ as the center point, and $D L$ as the radius.

Move the intersection point K on m to coincide with the point M, the intersection point of this new $(n+1)$ th circle z with m.

The previous set of n nested triangles will be unchanged in their relationship with each other, and the formula $\angle A B C=\left(2^{n-1}+1\right) \angle K B C$ still holds when the point K is moved on m.

This is because each of the isosceles triangles has its equal sides equal to the radius of one of the constructed circles, so when the circles center is moved the triangle remains isosceles.

The base side of the previous isosceles triangle becomes the short side of the next isosceles triangle.

We will denote this new point K by K^{\prime}, Figure 4.

Figure 4

Then, since this $(n+1)$ th circle z adds one more multiple of angles, and $\angle D K^{\prime} L .=\angle L D K^{\prime}$, by the Exterior Angle Theorem on the related isosceles triangle, we have $\angle D B K^{\prime}=2\left(2^{n-1}\right) \angle D K^{\prime} L=2^{n} \angle D K^{\prime} L=2^{n} \angle D K^{\prime} B$ since $\angle D K^{\prime} B=\angle D K^{\prime} L$.

But $\angle D K^{\prime} B=\angle K^{\prime} B C$, thus $\angle A B C=\angle D B K^{\prime}+\angle K^{\prime} B C=2^{n} \angle K^{\prime} B C$ $+\angle K^{\prime} B C=\left(2^{n}+1\right) \angle K^{\prime} B C$.

We will indicate how this new angle division is related to the construction of regular polygons. Since these polygons are not constructible, we use Transformation Geometry.

Given a 90° angle $\angle A B C$, where $A B$ and $C B$ are unit length sides, let c be the unit circle about B . If we make a division of $\angle A B C$ by $2^{n}+1, n \geq 1$, we get an angle $\angle E B C$, where the point E is on c, Figure 5 .

Let $\angle F B C$ equal 4 copies of $\angle E B C$ formed by reflection, or rotation, then F is on c.

Thus $m \angle F B C=4 m \angle E B C$, and $\left(2^{n}+1\right) m \angle E B C=90^{\circ}$.
We then have a division of c by $2^{n}+1$, since $\left(2^{n}+1\right) m \angle F B C=$ $\left(2^{n}+1\right) 4 m \angle E B C=4\left(2^{n}+1\right) m \angle E B C=360^{\circ}$.

These $\angle F B C$ sections are then the division units which determine the sides of the regular $\left(2^{n}+1\right)$-gon by reflection or rotation.

Connect the intersection points C and F of the $\angle F B C$ division units to obtain the sides of the $\left(2^{n}+1\right)$-gon.

Figure 5

For example, we can use trisection to determine a 3-gon (and also a 4-gon, 6 -gon, and 12-gon).

Let $\angle A B C$ be a 90° angle, with $A B$, and $B C$ unit segments, and construct the unit circle c centered at B, as shown, Figure 6 Left. Of course we could have constructed a 30° angle, but we are demonstrating the general division method here.

Divide $\angle A B C$ by 3 , using the method in Puzzle, New Solution, to obtain angle $\angle E B C, E$ on c.

Then reflect or rotate $\angle E B C$ to obtain the angle $\angle A^{\prime} B C$, where $\angle A^{\prime} B A$ $=\angle E B C$.

Since $\mathrm{m} \angle A B C=3 m \angle E B C=90^{\circ}$, and we know that $\angle A^{\prime} B C=4 \angle E B C$, we have $3 m \angle A^{\prime} B C=3(4 m \angle E B C)=4(3 m \angle E B C)=360^{\circ}$.

Thus 3 of the $\angle A^{\prime} B C$ division units cover the entire circular region.
Connect the points C, A^{\prime}, and D^{\prime}, and hide the radii line segments and the circle, to obtain the 3 -gon $C A^{\prime} D^{\prime}$, Figure 6 Right.

Connect the other points as shown to get the other regular polygons in Figure 6 Right.

Figure 6

By the technique in the above example, we cannot only divide angles by numbers of the form $2^{n}+1$, for $n \geq 1$, but we can also divide angles by products of numbers of this type, $\left(2^{m}+1\right)\left(2^{n}+1\right), m, n \geq 1$. This also includes powers of these numbers, $\left(2^{m}+1\right)^{r}, m, r \geq 1$.

The n-bisections by numbers which are powers of 2 can be combined with these products: $2^{n}\left(2^{m}+1\right)\left(2^{q}+1\right)$, for $m, q \geq 1, n \geq 0$.

The general form of the divisors of this type is therefore: $2^{n} p[1] p[2] \ldots p[m]$, $m \geq 1, n \geq 0$, where each of the distinct factors $p[k]$ has the form $\left(2^{s}+1\right)^{t}$, where $s, t \geq 1$.

We call this new method, which uses these new numbers as divisors, the Generalized Archimedes Angle Division Method (GAADM for short).

The standard division by the product $\left(2^{m}+1\right)\left(2^{n}+1\right)$ is accomplished by dividing the given angle $\angle A B C$, by $2^{m}+1, m \geq 1$, to obtain $\angle E B C$, and then divide this angle by $2^{n}+1, n \geq 1$, to obtain $\angle F B C$.

Thus $\angle A B C=\left(2^{m}+1\right) \angle E B C=\left(2^{m}+1\right)\left(2^{n}+1\right) \angle F B C$.
Clearly, the product of the division operations is commutative.
For example we can divide an angle $\angle A B C$ by 25 , by first dividing the angle $\angle A B C$ by 5 to get $\angle E B C$, as in Example 1 above.

Then divide $\angle E B C$ by 5 to get the desired result, say $\angle F B C$, such that $\angle A B C=25 \angle F B C$.

We can also divide an angle $\angle A B C$ by 11 , even though 11 does not have the form $2^{n}+1$, for some n. First divide $\angle A B C$ by $2^{5}+1=33$, to get $\angle E B C$, then we can join 3 of these small angles $\angle E B C$ together to form a new division unit angle $\angle F B C$ which determines the division of $\angle A B C$ by 11 of these $\angle F B C$ units.

Other divisors, such as 13 (use $65=5 \times 13$) and 19 (use $513=27 \times 19$), are possible to construct by similar arguments. Division by other primes, such as $23,29, \ldots$, is theoretically possible.

Division by 7 is not possible, since $\left(2^{n}+1\right) \bmod 7$ is equal to either 2,3 , or 5 , for all $n \geq 1$.

For a general example, consider the divisor $\left(2^{1}\right)\left(2^{1}+1\right)\left(2^{2}+1\right)=30$. The division of $\angle A B C$ is accomplished by bisecting the given angle to obtain the angle $\angle D B C$, Figure 7. Then divide angle $\angle D B C$ by 3 to obtain the angle $\angle E B C$, and last divide angle $\angle E B C$ by 5 , to get $\angle F B C$.

This last angle $\angle F B C$ then satisfies $\angle A B C=30 \angle F B C$.
Similar multiplication techniques allow us to divide angles by some multiples of 25 .

Figure 7

Example 2. To demonstrate the Generalized Archimedes Angle Division Method and associated q-gon construction for a nontrivial case we construct a heptadecagon (17-gon), in honor of Carl Friedrich Guass, who was the first to construct this polygon in 1796, using a Euclidean construction.

First we divide a right angle $\angle A B C$ by 17 , Figure 8 .
We will need to construct 5 circles.
Choose a point D on $A B$, and construct a line m parallel to $B C$ through D. Then Choose a point E on line m in the interior of $\angle A B C$, and connect E to B.

Move E off to the right if necessary, and construct a circle c_{1} with center D and radius $D B$.

At the intersection F of the circle c_{1} with $B E$ construct a 2 nd circle c_{2} with center F and radius $D F$.

At the intersection G of this circle c_{2} with $B E$, where $B-F-G$, construct a 3 rd circle c_{3} with center G and radius $D G$.

At the intersection H of this circle c_{3} with $B E$, where $B-F-G-H$, construct a 4 th circle c_{4} with center H and radius $D H$.

At the intersection J of this circle c_{4} with $B E$, where $B-F-G-H-J$, construct a 5 th circle c_{5} with center J and radius $D J$.

Move E to the intersection K of circle c_{5} with the parallel line m so that we have $B-F-G-H-J-K$, and connect D to F, G, H, and J, respectively.

We know $\angle E B C=\angle D E B$, because $m / / B C$.
Also, $\angle D J B=2 \angle D E B=2 \angle E B C$ by the Exterior Angle Theorem, since $\triangle D J E$ is isosceles.

Similarly, since $\triangle D H J, \triangle D G H, \triangle D F G$ and $\triangle D B F$ are isosceles, we have $\angle D B F=\angle D F B=2 \angle D G B=4 \angle D H B=8 \angle D J B=16 \angle D E B=$ $16 \angle E B C$, all by the Exterior Angle Theorem, plus the equality above.

Thus $\angle A B C=\angle D B E+\angle E B C=\angle D B F+\angle E B C=16 \angle E B C+$ $\angle E B C=17 \angle E B C$.

Figure 8

Construction of the associated regular 17-gon then follows as in the examples above.

Let $\angle A B C$ be a right angle, with $A B$ and $C B$ unit segments, and construct a unit circle c about the center point B.

Then let $\angle E B C$ be the division of $\angle A B C$ by $17, E$ on c, Figure 9 Left.
Form the division unit $\angle P B C$ from 4 copies of $\angle E B C$ by reflections or rotations.

Thus $\angle P B C=4 \angle E B C, \angle A B C=4 \angle P B C+\angle E B C=17 \angle E B C$, and $17 m \angle P B C=360^{\circ}$.

Connect C and P to obtain a side of the 17-gon.

Reflect or rotate $\triangle P B C$ by iteration around the circle to get the sides of the 17 -gon, Figure 9 Right.

Figure 9

Conclusions.

This is a partial list of the division numbers which create q-gons using the numbers $2^{n}+1, n \geq 1$, and their multiples, but excluding bisections: $3,5,9,15,17,25,27,33,45,51,65,75,81,85,99,114, \ldots$

If we include bisections $2^{n}, n \geq 0$, and multiples in the above set of numbers, we have numbers of the general form $2^{n} p[1] p[2] \ldots p[m]$, for $m \geq 1, n \geq 0$, where each of the distinct $p[k]$ terms has the form $\left(2^{s}+1\right)^{t}, s, t \geq 1$.

Here is the general list of all the numbers above, with the allowed multiples, plus bisections. We denote this set by GAADM: $2,3,4,5,6,8,9,10$, $12,15,16,17,18,20,24,25,27,30,32,33,34,36,40,45,48,50,51,54$, $60,64,65,66,68,72,75,80,81,84,85,90,96,99,100,102, \ldots$.

Notice that this set of numbers contains the number 25 , and some multiples of 25 . These numbers are on the list of open question integers for the neusis constructions [4], [5].

The numbers in the following list are the constructible integers such that the q-gons are derived from divisors constructed using a compass and straight edge. They are of the type: $2^{n} p[1] p[2] \ldots p[m], m \geq 1, n \geq 0$, where each of the $p[k]$ terms are distinct Fermat Primes [4], OEIS A003401: 1, 2, $3,4,5,6,8,10,12,15,16,17,20,24,30,32,34,40,48,51,60,64,68,80$, $85,96,102, \ldots$

The following is the set of numbers which result from the neusis constructions of polygons [5]. OEIS A122254: $3,4,5,6,7,8,9,10,11,12,13$, $14,15,16,17,18,19,20,21,22,24,26,27,28,30,32,33,34,35,36,37$, $38,39,40,42,44,45,48,51,52,54,55,56,57,60,63,64,65,66,68,70$, $72,73,74,76,77,78,80,81,84,85,88,90,91,95,96,97,99,102, \ldots$

The following is the list of those numbers which correspond to polygons which are not constructible with neusis [5], OEIS A048136: 23, 29, 43, 46,
$47,49,53,58,59,67,69,71,79,83,86,87,89,92,94,98,103,106,107, \ldots$
The set of numbers denoted by GAADM contains the set of constructible integers, except for the number 1, since these Fermat Primes are numbers of the form $2^{n}+1$, for some n.

Even if we add the primes $11,13,19,23, . \quad . \quad$, and their multiples to the set of numbers denoted by GAADM, based on our discussion above, this set appears to be contained in the set of numbers which result from the neusis constructions of polygons listed above [5], OEIS A122254, except for the number 25 and the multiples of 25 . The validity of this observation is not known at this time.

References

[1] Heath, T., The Thirteen Books of Euclid's Elements, Vol.1, 2nd ed., Dover, 1956.
[2] Hesse, B., Angle Trisection, Geometry Forum Articles, geom.uiuc.edu/ docs/ forum/ angtri/.
[3] Parks, J., Trisections, n-sections, and Regular n-gons Using Geometer's SketchPad, NYSMTJ, Vol. 53.
[4] Wikipedia, Constructible Polygons, wikipedia.org/wiki/Constructible polygon.
[5] —, Neusis Construction, wikipedia.org/wiki/Neusis construction.

DEPARTMENT OF MATHEMATICS
EMERITI FACULTY
SUNY POTSDAM
POTSDAM, NY 13676, US
E-mail address: parksjm@potsdam.edu

