A GENERALIZATION OF FEUERBACH'S THEOREM

TRAN QUANG HUNG AND NGUYEN THI THUY DUONG

Abstract

Given a triangle with the nine-point circle Ω, we construct a radical circle from the pedal triangle of an arbitrary point which is tangent to Ω. Feuerbach's theorem is a particular case where the pedal triangle is an intouch triangle.

1. Introduction

In 1822, the 22 year-old German mathematician Feuerbach published a theorem on the nine-point circle which can be stated as follows

Theorem 1 (Feuerbach, 1822). The nine-point circle of a nonequilateral triangle is tangent to both its incircle and its three excircles.

The theorem appeared in a small book Feuerbach wrote after receiving a doctorate, and immediately became the highlight of this book. It is also one of the most significant legacies of the short-lived geometer before he passed at age 34 .

The fisrt author of this note has given an extension of Feuerbach's Theorem on the right triangles; see [7].

In this paper the authors shall develop a direct generalisation of Theorem 1 based on the following theorem regarding Thebault's orthogonal circles in [2].

Theorem 2 (Thébault's general theorem [4]). If the distances $\mathrm{O}_{2} \mathrm{O}_{3}, \mathrm{O}_{3} \mathrm{O}_{1}$, $O_{1} O_{2}$ between the centers of three circles $\left(O_{1}\right),\left(O_{2}\right),\left(O_{3}\right)$, having radii R_{1}, R_{2}, R_{3}, satisfy a relation of the form

$$
\begin{equation*}
\left|O_{2} O_{3}\right| \cdot R_{1} \pm\left|O_{3} O_{1}\right| \cdot R_{2} \pm\left|O_{1} O_{2}\right| \cdot R_{3}=0 \tag{1}
\end{equation*}
$$

then the circumcircle (O) of triangle $O_{1} O_{2} O_{3}$ is tangent to the radical circle $\left(O^{\prime}\right)$ of the circles $\left(O_{1}\right),\left(O_{2}\right),\left(O_{3}\right)$, and the radical center O^{\prime} is at the center of one of the tritangent circles of the triangle determined by the radical axes of circle (O) in association with each of the circles $\left(O_{1}\right),\left(O_{2}\right),\left(O_{3}\right)$.

This theorem was also proven in details in [4]. We now proceed to generalize Theorem 1.

[^0]Theorem 3 (Generalization of Feuerbach's theorem). Let $A B C$ be a triangle with A_{1}, B_{1}, and C_{1} are midpoints of the sides $B C, C A$, and $A B$, respectively. Let $A_{0} B_{0} C_{0}$ be the pedal triangle of an arbitrary point P. Then the radical circle ω of the circles $\left(A_{1}, A_{1} A_{0}\right),\left(B_{1}, B_{1} B_{0}\right)$, and $\left(C_{1}, C_{1} C_{0}\right)$ is tangent to the nine-point circle Ω of triangle $A B C$.

Figure 1. Generalization of Feuerbach's theorem
After proving this generalized theorem, we will apply it to a particular case in order to construct new tangent circles in ABC . We will also propose two important theorems that describe more clearly the radical center mentioned in Theorem 3. With this specified description we will then obtain an explicit construction for the tangent circle to the nine-point circle in Theorem 3.

2. PRoof of generalized theorem

Proof. Using signed length of segment, we see that $\overline{C B}=\overline{B_{1} C_{1}}$. Also applying the Pythagorean theorem, we have

$$
\begin{align*}
|P B|^{2}-|P C|^{2} & =\left|A_{0} B\right|^{2}-\left|A_{0} C\right|^{2} \\
& =\left(\overline{A_{0} B}+\overline{A_{0} C}\right)\left(\overline{A_{0} B}-\overline{A_{0} C}\right) \\
& =2 \cdot \overline{A_{0} A_{1}} \cdot \overline{C B} \\
& =4 \cdot \overline{A_{0} A_{1}} \cdot \overline{B_{1} C_{1}} \tag{2}
\end{align*}
$$

By analogy, we get

$$
\begin{equation*}
|P C|^{2}-|P A|^{2}=4 \cdot \overline{B_{0} B_{1}} \cdot \overline{C_{1} A_{1}} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
|P A|^{2}-|P B|^{2}=4 \cdot \overline{C_{0} C_{1}} \cdot \overline{A_{1} B_{1}} \tag{4}
\end{equation*}
$$

From (2), (3), and (4), we obtain

$$
\begin{align*}
& 4 \cdot \overline{A_{0} A_{1}} \cdot \overline{B_{1} C_{1}}+4 \cdot \overline{B_{0} B_{1}} \cdot \overline{C_{1} A_{1}}+4 \cdot \overline{C_{0} C_{1}} \cdot \overline{A_{1} B_{1}} \tag{5}\\
& =\left(|P B|^{2}-|P C|^{2}\right)+\left(|P C|^{2}-|P A|^{2}\right)+\left(|P A|^{2}-|P B|^{2}\right)=0
\end{align*}
$$

or

$$
\begin{equation*}
A_{1} A_{0} \cdot B_{1} C_{1} \pm B_{1} B_{0} \cdot C_{1} A_{1} \pm C_{1} C_{0} \cdot A_{1} B_{1}=0 \tag{7}
\end{equation*}
$$

Note that $A_{1} A_{0}, B_{1} B_{0}$, and $C_{1} C_{0}$ are the radii of circles $\left(A_{1}, A_{1} A_{0}\right),\left(B_{1}, B_{1} B_{0}\right)$, and $\left(C_{1}, C_{1} C_{0}\right)$, respectively. Then from (7) and Theorem 2 , radical circle ω of the circles $\left(A_{1}, A_{1} A_{0}\right),\left(B_{1}, B_{1} B_{0}\right)$, and $\left(C_{1}, C_{1} C_{0}\right)$ is tangent to the circumcircle of triangle $A_{1} B_{1} C_{1}$ which is the nine-point circle Ω of $A B C$.

3. More detailed description for the radical center

In order to construct the radical circle in the Theorem 3, we need a way to construct the radical center of the circles $\left(A_{1}, A_{1} A_{0}\right),\left(B_{1}, B_{1} B_{0}\right)$, and $\left(C_{1}, C_{1} C_{0}\right)$. The following two theorems from [6] help us describe in more details the radical center of these circles.

Theorem 4 (Tran Quang Hung, post $\# 5$ in [6]). Let $A B C$ be a triangle with A_{1}, B_{1}, and C_{1} as midpoints of the sides $B C, C A$, and $A B$, respectively. Let $A_{0} B_{0} C_{0}$ be a pedal triangle of any point P. Let Q be the radical center of the circles $\left(A_{1}, A_{1} A_{0}\right),\left(B_{1}, B_{1} B_{0}\right)$, and $\left(C_{1}, C_{1} C_{0}\right)$. Let R be the isogonal conjugate of Q with respect to triangle $A_{0} B_{0} C_{0}$. Then the line $P R$ passes through circumcenter O of triangle $A B C$.

Theorem 5 (Alexander Skutin, post \#8 in [6]). Let $A B C$ be a triangle with A_{1}, B_{1}, and C_{1} as midpoints of the sides $B C, C A$, and $A B$, respectively. Let $A_{0} B_{0} C_{0}$ be the pedal triangle of any point P. Let Q be the radical center of the circles $\left(A_{1}, A_{1} A_{0}\right)$, $\left(B_{1}, B_{1} B_{0}\right)$, and $\left(C_{1}, C_{1} C_{0}\right)$. Let I be the circumcenter of the pedal triangle of P with respect to triangle $A_{0} B_{0} C_{0}$, and G be the centroid of $A_{0} B_{0} C_{0}$. Then three points Q, G, and I are collinear and $|Q G|=2 \cdot|G I|$.

4. Some applications

In [4], Victor Thébault showed that if $P=I$ where I is the incenter of triangle $A B C$, then incircle (I) clearly coincides with the radical circle of $\left(A_{1}, A_{1} A_{0}\right),\left(B_{1}, B_{1} B_{0}\right)$, and $\left(C_{1}, C_{1} C_{0}\right)$. Thus, (I) is tangent to nine-point circle of $A B C$.

If $P=I_{a}$ where I_{a} is the A-excenter of triangle $A B C$, then excircle $\left(I_{a}\right)$ clearly coincides with the radical circle of $\left(A_{1}, A_{1} A_{0}\right),\left(B_{1}, B_{1} B_{0}\right)$, and $\left(C_{1}, C_{1} C_{0}\right)$. Thus $\left(I_{a}\right)$ is tangent to nine-point circle of $A B C$.

If $P=H$ where H is the orthocenter of triangle $A B C$, we obtain the application (B), in [4].

We give another application of Theorem 3.
Theorem 6. Let $A B C$ be a triangle inscribed in a circle ω. Na is Nagel point ([5]) of triangle $A B C . X$ is the midpoint of arc $B C$ containing A of ω. ω_{a} is the circle center X and radius $X A$. From $N a$ draw tangent lines $N a A_{1}, N a A_{2}$ to circle ω_{a} with A_{1} and A_{2} on ω_{a}. Define similarly the points
B_{1}, B_{2}, C_{1}, and C_{2}. Then six points $A_{1}, A_{2}, B_{1}, B_{2}, C_{1}$, and C_{2} lie on a circle Ω, and Ω is tangent to ω.

Figure 2. An application with Nagel point

Proof. Let I_{a}, I_{b}, and I_{c} be the excenters at the vertices A, B, and C, respectively. It is not hard to see that I is the orthocenter of triangle $I_{a} I_{b} I_{c}$, and X, Y, Z are midpoints of sides $I_{b} I_{c}, I_{c} I_{a}, I_{a} I_{c}$, respectively. Thus ω is the nine-point circle of triangle $I_{a} I_{b} I_{c}$. Following [6] (with detailed proof of Luis González in post $\# 2), N a$ is the radical center of ω_{a}, ω_{b}, and ω_{c}. Therefore,

$$
\begin{equation*}
N a A_{1}=N a A_{2}=N a B_{1}=N a B_{2}=N a C_{1}=N a C_{2} \tag{8}
\end{equation*}
$$

In other words, six points $A_{1}, A_{2}, B_{1}, B_{2}, C_{1}$, and C_{2} lie on circle Ω which is the radical circle of ω_{a}, ω_{b}, and ω_{c}. Therefore, X, Y, Z are midpoints of sides $I_{b} I_{c}, I_{c} I_{a}, I_{a} I_{c}$, respectively. By applying Theorem 3 , we get Ω is tangent to ω. This completes the proof.

5. Conclusion

We have extended Feuerbach's theorem by using the concept of radical circles. Simple as this extension may be, it is by no means trivial. Note that

Victor Thébault's general theorem plays a crucial role in this whole proof, its application to the pedal triangle in this generalization of Feuerbach's theorem is pivotal.

Acknowledgements. The authors would like to thank Luis González and Alexander Skutin for their assistance with this article.

References

[1] Bogomolny, A., Feuerbach's Theorem, Interactive mathematics miscellany and puzzles, https://www.cut-the-knot.org/Curriculum/Geometry/Feuerbach.shtml.
[2] Weisstein, E. W., Feuerbach's Theorem, MathWorld-A Wolfram Web Resource, https://mathworld.wolfram.com/FeuerbachsTheorem.html.
[3] Weisstein, E. W., Radical Circle, MathWorld-A Wolfram Web Resource, https:// mathworld.wolfram.com/RadicalCircle.html.
[4] Thebáult, V., On Feuerbach's Theorem, Amer. Math. Monthly, 58(9) 1951, 620-622, http://doi.org/10.2307/2306358.
[5] Weisstein, E. W., Nagel Point, MathWorld-A Wolfram Web Resource, https:// mathworld.wolfram.com/NagelPoint.html.
[6] Tran, Q. H., (nickname buratinogigle), Nagel point is radical center, Art of Problem Solving. Available at https://artofproblemsolving.com/community/ q1h521011p2934725.
[7] Tran, Q. H., Feuerbach's Theorem on right triangle with an extension, Int. J. Geom., 6(2) (2017), 103-108.

High School for Gifted Students, Vietnam National University, Hanoi, Vietnam

Email address: tranquanghung@hus.edu.vn
Concord College, Shropshire, United Kingdom
Email address: nt.thuyduong3402@gmail.com

[^0]: 2010 Mathematics Subject Classification. 51M04, 51-03.
 Key words and phrases. Feuerbach's theorem, general theorem, pedal triangle, tangent circles
 Received: 29.06.2020. In revised form: 20.12.2020. Accepted: 10.10.2020.

