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CYCLIC AVERAGES

OF REGULAR POLYGONAL DISTANCES

Mamuka Meskhishvili

Abstract. We consider a regular plane polygon with n vertices and an
arbitrary point in the plane. Let R be the circumscribed radius of the
polygon and L a distance from the point to the centroid of the polygon.
Then the averages of the (2m)-th powers of distances from the point to the
polygon vertices satisfy the relations

S(2)
n = R2 + L2,

S(2m)
n = (R2 + L2)m +

bm
2
c∑

k=1

(
m

2k

)(
2k

k

)
(R2 + L2)m−2k(RL)2k,

where m = 2, . . . , n− 1.

1. Introduction

In his book Mathematical Circus, Martin Gardner wrote (p. 65): “There
is a beautifully symmetric equation for finding the side of an equilateral tri-
angle when given the distances of a point from its three corners:

3(a4 + b4 + c4 + d4) = (a2 + b2 + c2 + d2)2.”

This result was generalized by J. Bentin [1] from an equilateral triangle to
a regular polygon. Consider a regular plane polygon with n vertices and an
arbitrary point in the plane. Denote by s2 and q4 respectively the averages
of the squares and the averages of the fourth powers of the distances from
the point to the vertices of the polygon

s2 =
1

n

n∑
i=1

d2i and q4 =
1

n

n∑
i=1

d4i .

Then
q4 + 3R4 = (s2 +R2)2

is satisfied, where R is the circumscribed radius of the polygon.
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This result was generalized to regular simplicial and regular polytopic
distances in [2] and [3], respectively.

In the above-mentioned papers the distances are considered to the second
and fourth powers only. Naturally, we are interested to know what hap-
pens if we consider the distances to higher (more than 4) powers. In the
present paper, for a regular polygon we introduce a special kind of averages
of the distances to the even powers – the cyclic averages and by using their
properties establish the metrical relations for regular polygons.

2. General case

Let us consider a regular plane n-sided polygon A1A2 · · ·An with the
circumscribed radius R and an arbitrary point P in the plane. Denote
the distances between P and the centroid O of the polygon by L, and the
distances between P and the i-vertex by di (Fig. 1).

Figure 1

We use the following notation for the average of the (2m)-th powers of
the distances:

S(2m)
n =

1

n

n∑
i=1

d2mi .

Theorem 2.1. For a regular polygon with n vertices and an arbitrary point

in the plane, let S
(2m)
n be the averages of the (2m)-th powers of the distances

from the point to the vertices. If R is the circumscribed radius and L the
distance between the point and the centroid, then
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n = R2 + L2,

S(2m)
n = (R2 + L2)m +
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where m = 2, . . . , n− 1.

First we need to prove two lemmas.

Lemma 2.1. For arbitrary positive integers m and n, such that m < n, the
following condition

n∑
k=1

cos

(
m
(
α− (k − 1)

2π

n

))
= 0

is satisfied, where α is an arbitrary angle.

Denote

T = eimα + eim(α− 2π
n
) + eim(α−2 2π

n
) + · · ·+ eim(α−(n−1) 2π

n
).

The real part of T is

Re(T ) =
n∑
k=1

cos

(
m
(
α− (k − 1)

2π

n

))
.

The formula of the sum of geometric progression gives

T = eimα
(

1 + e−im
2π
n +

(
e−im

2π
n
)2

+ · · ·+
(
e−im

2π
n
)n−1)

=

= eimα
1− (e−im

2π
n )n

1− e−im
2π
n

,

e−im 2π = cos(−2πm) + i sin(−2πm) = 1.

Since m < n, e−im
2π
n 6= 1. So T = 0, i.e. Re(T ) = 0, which proves

Lemma 2.1.

Remark 2.1. If m ≥ n, the sum always contains α.

Lemma 2.2. For arbitrary positive integers m and n, such that m < n and
for an arbitrary angle α the following conditions are satisfied:

if m is odd

n∑
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cosm
(
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n

)
= 0;

if m is even
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.

When m is odd, using the power-reduction formula for cosine
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)
,
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we obtain
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Since m < n, from Lemma 2.1 it follows that each sum equals zero, which
proves the first part of Lemma 2.2.

When m is even, the power-reduction formula for cosine is

cosm θ =
1

2m

(
m
m
2

)
+

2

2m

m
2
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)
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.

Analogously to the case with oddm, the sum of the second addenda vanishes,
and since the number of the first addenda is n, the total sum equals

n

(
m
m
2

)
2m ,
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which proves Lemma 2.2.

Proof of the theorem. We introduce the new notations

A = R2 + L2 and B = 2RL.

Then

nS(2m)
n = (A−B cosα)m +

(
A−B cos

(2π

n
− α

))m
+

+

(
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+ · · ·+
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If m = 1, by Lemma 2.1we have
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Therefore
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If m > 1, we have
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.

According to Lemma 2.2, all sums with the negative sign “−” vanishes
because they contain odd powers and there remain only the sums with even
powers.
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If m is even, we have
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If m is odd, we write
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Using the floor function (the integer part), the obtained results can be
combined into a single formula as follows

S(2m)
n = Am +

bm
2
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)
,

which proves the theorem.

The values of the averages S
(2)
n , S

(4)
n , . . . , S

(2n−2)
n remain constant when

the point P moves on the circle C(O,L), i.e. if we consider any point on
the circle P ′ (Fig. 1), these averages will retain the same values. So we can
formulate
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Definition 2.1. The cyclic average of a regular polygon is the average of
the power of the distances from the point to the vertices, the value of which
is constant for any point on the circle C(O,L), where O is the centroid of
the polygon and L is the distance between the point and the centroid.

The properties of the cyclic average are as follows:

Property 1. Each regular n-gon has an n− 1 number of cyclic averages

S(2)
n , S(4)

n , . . . , S(2n−2)
n .

Property 2. Cyclic averages can be expressed only in terms of the circum-
scribed radius R and the distance L.

Property 3. The expressions of the non-cyclic averages contain α, i.e.
depend on the direction OP (Fig. 1).

Property 4. For fixed R and L, the cyclic averages of equal powers of
different regular n-gons are the same:

S
(2)
3 = S

(2)
4 = S

(2)
5 = S

(2)
6 = · · · ,

S
(4)
3 = S

(4)
4 = S

(4)
5 = S

(4)
6 = · · · ,

S
(6)
4 = S

(6)
5 = S

(6)
6 = · · · , S

(8)
5 = S

(8)
6 = · · · .

Property 5. Any relations in terms of the cyclic averages S
(2m)
n1 , the cir-

cumscibed radius R and the distance L, which are satisfied for a regular
n1-gon, are at the same time satisfied for any regular n2-gon, where n1 ≤ n2,

i.e. S
(2m)
n1 can be replaced by S

(2m)
n2 .

3. Special cases

Equilateral triangle

There are 2 cyclic averages:

S
(2)
3 =

1

3
(d21 + d22 + d23) = R2 + L2,

S
(4)
3 =

1

3
(d41 + d42 + d43) = (R2 + L2)2 + 2R2L2.

By eliminating L, we obtain the formula introduced by Garden

d41 + d42 + d43
3

+ 3R4 =
(d21 + d22 + d23

3
+R2

)2
.

In terms of the cyclic averages

S
(4)
3 + 3R4 = (S

(2)
3 +R2)2.

By Property 5, for any S
(4)
n and S

(2)
n , where n ≥ 3 (Bentin’s result) we have

S(4)
n + 3R4 = (S(2)

n +R2)2.
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Square

There are 3 cyclic averages:

S
(2)
4 =

1

4
(d21 + d22 + d23 + d24) = R2 + L2,

S
(4)
4 =

1

4
(d41 + d42 + d43 + d44) = (R2 + L2)2 + 2R2L2,

S
(6)
4 =

1

4
(d61 + d62 + d63 + d64) = (R2 + L2)3 + 6R2L2(R2 + L2).

Eliminating L from the cyclic averages S
(2)
4 and S

(6)
4 we obtain the second

relation between the distances and the circumscribed radius

Proposition 3.1. For any regular n-gon, where n ≥ 4, we have

S(6)
n = S(2)

n

(
(S(2)
n + 3R2)2 − 15R4

)
.

Substituting

R2 + L2 = S
(2)
4 and 2R2L2 = S

(4)
4 − (S

(2)
4 )2

into S
(6)
4 , we establish the direct correspondence between the distances

Proposition 3.2. For any regular n-gon, where n ≥ 4,

S(6)
n = S(2)

n

(
3S(4)

n − 2(S(2)
n )2

)
.

For the square, from Proposition 3.2 it follows that

8(d61+d62+d63+d64)+(d21+d22+d23+d24)
3 = 6(d21+d22+d23+d24)(d

4
1+d42+d43+d44),

which is equivalent to

(d21 + d22 − d23 − d24)(d21 + d23 − d22 − d24)(d21 + d24 − d22 − d23) = 0.

Enumerate the vertices of the square: A1A2A3A4. Then only

d21 + d23 = d22 + d24

holds, which together with the cyclic averages S
(2)
4 and S

(4)
4 implies

d21 + d23 = d22 + d24 = 2(R2 + L2),

d21d
2
3 + d22d

2
4 = 2(R4 + L4).
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