CIRCUMINVARIANTS OF 3-PERIODICS IN THE ELLIPTIC BILLIARD

DAN REZNIK and RONALDO GARCIA

Abstract. A Circumconic passes through a triangle’s vertices; an Inconic is tangent to the sidelines. We study the variable geometry of certain conics derived from the 1d family of 3-periodics in the Elliptic Billiard. Some display intriguing invariances such as aspect ratio and pairwise ratio of focal lengths. We also define the Circumbilliard, a circumellipse to a generic triangle for which the latter is a 3-periodic.

1. Introduction

Given a triangle, a circumconic passes through its three vertices and satisfies two additional constraints, e.g., center location. An Inconic touches each side and is centered at a specified location. Both these objects are associated (via isogonal or isotomic conjugation) with lines on the plane [28, Circumconic, Inconic] and therefore lend themselves to agile algebraic manipulation.

We study properties and invariants of such conics derived from a 1d family of triangles: 3-periodics in an Elliptic Billiard (EB): these are triangles whose bisectors coincide with normals to the boundary (bounces are elastic), see Figure 1.

Amongst all planar curves, the EB is uniquely integrable [15]. It can be regarded as a special case of Poncelet’s Porism [6]. These two properties imply two classic invariances: N-periodics have constant perimeter and envelop a confocal Caustic. The seminal work is [26] and more recent treatments include [18, 24].

We have shown 3-periodics also conserve the Inradius-to-Circumradius ratio which implies an invariant sum of cosines, and that their Mittenpunkt (where lines drawn from each Excenter thru sides’ midpoints meet) is stationary at the EB center [23]. Indeed many such invariants have been effectively generalized for N > 3 [1, 3].

We have also studied the loci of 3-periodic Triangle Centers over the family: out of the first 100 listed in [16], 29 sweep out ellipses (a remarkable fact on its own) with the remainder sweeping out higher-order curves [9]. Related is

Keywords and phrases: Elliptic Billiard, Triangle Center, Circumconic, Circumellipse, Circumhyperbola, Inconic, Inellipse, Conservation, Invariant.

Figure 1. 3-periodics (blue) in the Elliptic Billiard (EB, black): normals to the boundary at vertices (black arrows) are bisectors. The family is constant-perimeter and envelops a confocal Caustic (brown). This family conserves the ratio inradius-to-circumradius and has a stationary Mittenpunkt at the EB center. Video: [21, PL#01].

the study of loci described by the Triangle Centers of the Poristic Triangle family [20].

Summary of the paper: We first describe the Circumbilliard: the circumellipse associated with a generic triangle for which the latter is a 3-periodic. We then analyze the dynamic of geometry of Circumbilliards for triangles derived from the 3-periodic family such as the Excentral, Anticomplementary, Medial, and Orthic, as well as the loci swept by their centers. We then describe invariants detected for Circumconics and Inconics, namely:

- Proposition 3.4 in Section 3 describes regions of the EB which produce acute, right-triangle, and obtuse 3-periodics.
- Theorem 3.1 in Section 3: The aspect ratio of Circumbilliards of the Poristic Triangle Family [7] is invariant. This is a family of triangle with fixed Incircle and Circumcircle.
- Theorem 4.1 in Section 4: The ratio of semi-axis of Circumellipses centered on the Incenter is invariant over the 3-periodic family. We conjecture this to be the case for a 1d-family of circumellipses.
- Theorem 5.1 in Section 5: The focal lengths of two special circum-hyperbola (Feuerbach and Excentral Jerabek) is constant over the 3-periodic family.
- Conjectures 6.1 and 6.2 in Section 6 claim the aspect ratios of two important Excentral Inconics are invariant. Candidate expressions are provided which match our experiments.

Appendices A, B, and C contain some longer derivations supporting the above. A reference table with all Triangle Centers, Lines, and Symbols appears in Appendix D. Videos illustrating some of the results appear on Table 2 in Section 7.

2. The Circumbilliard

Let the boundary of the EB satisfy:
(1) \[f(x, y) = \left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = 1. \]

Where \(a > b > 0\) denote the EB semi-axes throughout the paper. Below we use aspect ratio as the ratio of an ellipse’s semi-axes. When referring to Triangle Centers we adopt Kimberling \(X_i\) notation [16], e.g., \(X_1\) for the Incenter, \(X_2\) for the Barycenter, etc., see Table 3 in Appendix D.

The following five-parameter equation is assumed for all circumconics not passing through \((0, 0)\).

(2) \[1 + c_1x + c_2y + c_3xy + c_4x^2 + c_5y^2 = 0 \]

Proposition 2.1. Any triangle \(T = (P_1, P_2, P_3)\) is associated with a unique ellipse \(E_9\) for which \(T\) is a billiard 3-periodic. The center of \(E_9\) is \(T\)’s Mittenpunkt.

Proof. If \(T\) is a 3-periodic of \(E_9\), by Poncelet’s Porism, \(T\) is but an element of a 1d family of 3-periodics, all sharing the same confocal Caustic\(^1\). This family will share a common Mittenpunkt \(X_9\) located at the center of \(E_9\) [23]. Appendix A shows how to obtain the parameters for (2) such that it passes through \(P_1, P_2, P_3\) and is centered on \(X_9\): this yields a \(5 \times 5\) linear system. Solving it its obtained a quadratic equation with positive discriminant, hence the conic is an ellipse.

\(E_9\) is called the Circumbilliard (CB) of \(T\). Figure 2 shows examples of CBs for two sample triangles.

Figure 2. Two random triangles are shown as well as their Circumbilliards (CBs). Notice their axes in general are not horizontal/vertical. An algorithm for computing the CB is given in Appendix A. **Video:** [21, PL#02]

3. **Circumbilliards of Derived Triangles**

Figure 3 shows CBs for the Excentral, Anticomplementary (ACT), and Medial Triangles, derived from 3-periodics.

\(^1\) This turns out to be the Mandart Inellipse \(I_9\) of the family [28].
Figure 3. Draw in black in each picture is an $a/b \approx 1.618$, and a 3-periodic at $t = 7.0$ degrees. **Left:** the CB of the Excentral Triangle (solid green) centered on the latter’s Mittenpunkt is X_{168} [16]. Its locus (red) is non-elliptic. Also shown (dashed green) is the elliptic locus of the Excenters (the MacBeath Circumellipse E'_6 of the Excentrals [28]), whose center is X_9 [9]. **Top Right:** the CB of the Anticomplementary Triangle (ACT) (blue), axis-aligned with the EB. Its center is the Gergonne Point X_7, whose locus (red) is elliptic and similar to the EB [9]. The locus of the ACT vertices is not elliptic (dashed blue). **Bottom Right:** the CB of the Medial Triangle (teal), also axis-aligned with the EB, is centered on X_{142}, whose locus (red) is also elliptic and similar to the EB, since it is the midpoint of X_9X_7 [16]. The locus of the medial vertices is a dumb-bell shaped curve (dashed teal). **Video:** [21, PL#03]

3.1. **Excentral Triangle.** The locus of the Excenters is shown in Figure 3 (left). It is an ellipse similar to the 90°-rotated locus of X_1 and its axes a_e, b_e are given by [8, 9]:

$$a_e = \frac{b^2 + \delta}{a}, \quad b_e = \frac{a^2 + \delta}{b}$$

Where $\delta = \sqrt{\frac{a^4 - a^2b^2 + b^4}{a^2}}$.

Proposition 3.1. The locus of the Excenters the stationary MacBeath Circumellipse E'_6 [28] of the Excentral Triangles.

Proof. The center of E'_6 is the Symmedian Point X_6 [28, MacBeath Circumconic]. The Excentral Triangle’s X_6 coincides with the Mittenpunkt X_9 of the reference [16]. Since over the 3-periodics the vertices of the Excentral lie on an ellipse and its center is stationary, the result follows.

Proposition 3.2. The Excentral CB is centered on X_{168}, whose trilinears are irrational, and whose locus is non-elliptic.

Proof. X_{168} is the Mittenpunkt of the Excentral Triangle [16] and its trilinears are irrational on the sidelengths. To determine if its locus is an

\[\text{No Triangle Center whose trilinears are irrational on sidelengths has yet been found whose locus under the 3-periodic family is an ellipse [9].}\]
ellipse we use the algebro-numeric techniques described in [9]. Namely, a least-squares fit of a zero-centered, axis-aligned ellipse to a sample of X_{168} positions of the 3-periodic family produces finite error, therefore it cannot be an ellipse.

This had been observed in [9] for several irrational centers such as X_i, $i = 13-18$, as well as many others. Notice a center may be rational but produce a non-elliptic locus, the emblematic case being X_6, whose locus is a convex quartic. Other examples include X_j, $j = 19, 22–27$, etc.

3.2. Anticomplementary Triangle (ACT). The ACT is shown in Figure 3 (top right). The locus of its vertices is clearly not an ellipse.

The ACT is perspective with the reference triangle (3-periodic) at X_2 and all of its triangle centers correspond to the anticomplement of corresponding reference ones [28]. The center of the CB of the ACT is therefore X_7, the anticomplement of X_9. We have shown the locus of X_7 to be an ellipse similar to the EB with axes [9]:

$$(a_7, b_7) = k (a, b), \text{ with: } k = \frac{2\delta - a^2 - b^2}{a^2 - b^2}$$

Remark 3.1. The axes of the ACT CB are parallel to the EB and of fixed length.

This stems from the fact the ACT is homothetic to the 3-periodic.

3.3. Medial Triangle. The locus of its vertices is the dumbbell-shaped curve, which at larger a/b is self-intersecting, and therefore clearly not an ellipse, Figure 3 (bottom right).

Like the ACT, the Medial is perspective with the reference triangle (3-periodic) at X_2. All of its triangle centers correspond to the complement of corresponding reference ones [28]. The center of the CB of the Medial is therefore X_{142}, the complement of X_9. This point is known to sit midway between X_9 and X_7.

Remark 3.2. The locus of X_{142} is an ellipse similar to the EB.

This stems from the fact X_9 is stationary and the locus of X_7 is an ellipse similar to the EB (above). Therefore its axes will be given by:

$$(a_{142}, b_{142}) = (a_7, b_7)/2$$

Stemming from homothety of 3-periodic and its Medial:

Remark 3.3. The axes of the Medial CB are parallel to the EB and of fixed length.

3.4. Superposition of ACT and Medial.

Proposition 3.3. The Intouchpoints of the ACT (resp. 3-periodic) are on the EB (resp. on the CB of the Medial)

Proof. The first part was proved in [22, Thm. 2]. Because the 3-periodic can be regarded as the ACT of the Medial, the result follows.

\footnote{Anticomplement: a 1:2 reflection about X_2.}

\footnote{Complement: a 2:1 reflection about X_2.}
This phenomenon is shown in Figure 4. Also shown is the fact that \(X_i, i = 7, 142, 2, 9, 144\) are all collinear and their intermediate intervals are related as \(3 : 1 : 2 : 6\). In [17] this line is known as \(L(X_2, X_7)\) or \(L_{663}\). \(X_{144}\) is the perspector of the ACT and its Intouch Triangle (not shown) [28]. Video: [21, PL#04,05]

3.5. Orthic Triangle. Let \(\alpha_4 = \sqrt{2} - 1 \simeq 1.352\). In [22, Thm. 1] we show that if \(a/b > \alpha_4\), the 3-periodic family will contain obtuse triangles.

Proposition 3.4. If \(a/b > \alpha_4\), the 3-periodic is a right triangle when one of its vertices is at four symmetric points \(P_i^\perp, i = 1, 2, 3, 4\) given by \((\pm x^\perp, \pm y^\perp)\) with:

\[
x^\perp = \frac{a^2 \sqrt{a^4 + 3b^4 - 4b^2 \delta}}{c^3}, \quad y^\perp = \frac{b^2 \sqrt{-b^4 - 3a^4 + 4a^2 \delta}}{c^3}
\]

Proof. Let the coordinates of the 3-periodic vertices be \(P_1 = (x_1, y_1), P_2 = (x_2, y_2), P_3 = (x_3, y_3)\) as derived in [8].
Circuminvariants of 3-Periodics in the Elliptic Billiard 37

Figure 5. Two 3-periodics are shown: one acute (solid blue) and one obtuse (dashed blue) inscribed into an $a/b = 1.618$ EB. Red arcs along the top and bottom halves of the EB indicate that when a 3-periodic vertex is there, the 3-periodic is obtuse. These only exist when $a/b > \alpha_4 \simeq 1.352$.

Computing the equation $(P_2 - P_1, P_3 - P_1) = 0$, after careful algebraic manipulations, it follows that x_1 satisfies the quartic equation
\[c^8 x_1^4 - 2a^4 c^2 (a^4 + 3b^4) x_1^2 + a^8 (a^4 + 2a^2 b^2 - 7b^4) = 0. \]
For $a/b > \sqrt{2} - 1$ the only positive root in the interval $(0, a)$ is given by
\[x = \frac{a^2 \sqrt{a^4 + 3b^4 - 4b^2 \delta}}{c^3}. \]

With y obtainable from (1).

Equivalently, a 3-periodic will be obtuse iff one of its vertices lies on top or bottom halves of the EB between the P_1^\perp, see Figure 5.

Consider the elliptic arc along the EB between $(\pm x^\perp, y^\perp)$. When a vertex of the 3-periodic lies within (resp. outside) this interval, the 3-periodic is obtuse (resp. acute).

Proposition 3.5. When $a/b > \alpha_4$, the locus of the center of the Orthic CB has four pieces: 2 for when the 3-periodic is acute (equal to the X_6 locus), and 2 when it is obtuse (equal to the locus of X_6 of $T'' = P_2 P_3 X_4$).

Proof. It is well-known that [16] an acute triangle T has an Orthic whose vertices lie on the sidelines. Furthermore the Orthic’s Mittenpunkt coincides with the Symmedian X_6 of T. Also known is the fact that:

Remark 3.4. Let triangle $T' = P_1 P_2 P_3$ be obtuse on P_1. Its Orthic has one vertex on $P_2 P_3$ and two others exterior to T'. Its Orthocenter X_4 is also exterior. Furthermore, the Orthic’s Mittenpunkt is the Symmedian Point X_6 of acute triangle $T'' = P_2 P_3 X_4$.

To see this, notice the Orthic of T'' is also T'. T'' must be acute since its Orthocenter is P_2.

The CB of the orthic is shown in Figures 6 for four 3-periodic configurations in an EB whose $a/b > \alpha_4$.

\[^5 \text{The anti-orthic pre-images of } T' \text{ are both the 3-periodic and } T''. \]
Proposition 3.6. The coordinates \((\pm x^*, \pm y^*)\) where the locus of the center of the Orthic’s CB transitions from one curve to the other are given by:

\[
x^* = \frac{x^\perp}{c^6} \left(a^6 + 2a^2b^4 - b^2\delta(3a^2 + b^2) + b^6 \right)
\]

\[
y^* = -\frac{y^\perp}{c^6} \left(b^6 + 2a^4b^2 - a^2\delta(3b^2 + a^2)\delta + a^6 \right)
\]

Proof. Let \(P_1 = (x_1, y_1)\) be the right-triangle vertex of a 3-periodic, given by \((x^+, y^+)\) as in (4). Using [8], obtain \(P_2 = (p_{2x}/q_2, p_{2y}/q_2)\) and \(P_3 = (p_{3x}/q_3, p_{3y}/q_3)\), with:

\[
p_{2x} = b^4c^2x^3_1 - 2a^4b^2x^2_1y_1 + a^4c^2x_1y^2_1 - 2a^6y^3_1
\]

\[
p_{2y} = 2b^6x^3_1 - b^4c^2x^2_1y_1 + 2a^2b^4x_1y^2_1 - a^4c^2y^3_1
\]

\[
q_2 = b^4(a^2 + b^2)x^2_1 - 2a^2b^2c^2x_1y_1 + a^4(a^2 + b^2)y^2_1
\]

\[
p_{3x} = b^4c^2x^3_1 + 2a^4b^2x_1y_1 + a^4c^2x^2y^2_1 + a^6y^3_1
\]

\[
p_{3y} = -2b^6x^3_1 - b^4c^2x^2_1y_1 - 2a^2b^4x_1y^2_1 - a^4c^2y^3_1
\]

\[
q_3 = b^4(a^2 + b^2)x^2_1 + 2a^2b^2c^2x_1y_1 + a^4(a^2 + b^2)y^2_1
\]

It can be shown the Symmedian point \(X_6\) of a right-triangle is the midpoint of its right-angle vertex altitude. Computing \(X_6\) using this property leads to the result.

Let \(\alpha_{eq} = \sqrt{4\sqrt{3} - 3} \approx 1.982\) be the only positive root of \(x^4 + 6x^2 - 39\). It can be shown, see Figure 7:

Proposition 3.7. At \(a/b = \alpha_{eq}\), the locus of the Orthic CB is tangent to EB’s top and bottom vertices. If a 3-periodic vertex is there, the Orthic is equilateral.

Proof. Let \(T\) be an equilateral with side \(s_{eq}\) and center \(C\). Let \(h\) be the distance from any vertex of \(T\) to \(C\). It can be easily shown that \(h/s_{eq} = \sqrt{3}/3\). Let \(T’\) be the Excentral Triangle of \(T\): its sides are \(2s_{eq}\). Now consider the upside down equilateral in Figure 7, which is the Orthic of an upright isosceles 3-periodic. \(h\) is clearly the 3-periodic’s height and \(2s_{eq}\) is its base. The height and width of the upright isosceles are obtained from explicit expressions for the vertices [8]:

\[
s_{eq} = \frac{\alpha^2}{\alpha^2 - 1} \sqrt{2\delta - \alpha^2 - 1}, \quad h = \frac{\alpha^2 + \delta + 1}{\alpha^2 + \delta}
\]

where \(\alpha = a/b\). Setting \(h/s_{eq} = \sqrt{3}/3\) and solving for \(\alpha\) yields the required result for \(\alpha_{eq}\).

3.6. Summary. Table 1 summarizes the CBs discussed above, their centers, and their loci.
Figure 6. Orthic CB for an EB with $a/b = 1.5 > \alpha_4$, i.e., containing obtuse 3-periodics, which occur when a 3-periodic vertex lies on the top or bottom areas of the EB between the P^\perp. **Top left:** 3-periodic is sideways isosceles and acute (vertices outside P^\perp, so 3 orthic vertices lie on sidelines. The Orthic CB centers is simply the mittenpunkt of the Orthic, i.e, X_6 of the 3-periodic (blue curve: a convex quartic [9]). **Top right:** The position when a vertex is at a P^\perp and the 3-periodic is a right triangle: its Orthic and CB degenerate to a segment. Here the CB center is at a first (of four) transition points shown in the other insets as Q_i, $i = 1, 2, 3, 4$. **Bottom left:** The 3-periodic is obtuse, the Orthic has two exterior vertices, and the center of the CB switches to the Symmedian of $T'' = P_1P_2X_4$ (red portion of locus). **Bottom right:** The 3-periodic is an upright isosceles, still obtuse, the center of the Orthic CB reaches its highest point along its locus (red). **Video:** [21, PL#06].

<table>
<thead>
<tr>
<th>Triangle</th>
<th>Center</th>
<th>Elliptic Locus</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-Periodic</td>
<td>X_9</td>
<td>n/a</td>
</tr>
<tr>
<td>Excentral</td>
<td>X_{168}</td>
<td>No</td>
</tr>
<tr>
<td>ACT</td>
<td>X_7</td>
<td>Yes</td>
</tr>
<tr>
<td>Medial</td>
<td>X_{142}</td>
<td>Yes</td>
</tr>
<tr>
<td>Orthic</td>
<td>X_6^*</td>
<td>No</td>
</tr>
</tbody>
</table>

Table 1. CBs mentioned in this Section, their Centers and loci types.

3.7. **Circumbilliard of the Poristic Family.** The Poristic Triangle Family is a set of triangles (blue) with fixed Incircle and Circumcircle [7]. It is a cousin of the 3-periodic family in that by definition its Inradius-to-Circumradius r/R ratio is constant.

Weaver [27] proved the Antiorthic Axis6 of this family is stationary. Odehnal showed the locus of the Excenters is a circle centered on X_{10}.

6The line passing through the intersections of reference and Excentral sidelines [28].
and of radius $2R$ [20]. He also showed that over the family, the locus of the Mittenpunkt X_9 is a circle whose radius is $2d^2(4R + r)$ and center is $X_1 + (X_1 - X_3)(2R - r)/(4R + r)$, where $d = |X_1X_3| = \sqrt{R(R - 2r)}$ [20, page 17].

Let $\rho = r/R$ and a_9, b_9 be the semi-axis lengths of the Circumbilliard a poristic triangle. As shown in Figure 8:

Theorem 3.1. The ratio a_9/b_9 is invariant over the family and is given by:

$$\frac{a_9}{b_9} = \sqrt{\frac{\rho^2 + 2(\rho + 1)\sqrt{1 - 2\rho} + 2}{\rho(\rho + 4)}}$$

where $\rho = r/R$.

Proof. The following expression for r/R has been derived for the 3-periodic family of an a, b EB [10, Equation 7]:

$$\rho = \frac{r}{R} = \frac{2(\delta - b^2)(a^2 - \delta)}{(a^2 - b^2)^2}$$

Solving the above for a/b yields the result.
4. Invariants in Circumellipses

The Medial Triangle divides the plane in 7 regions, see Figure 9. The following is a known fact [2, 13]:

Remark 4.1. If the center of a Circumconic lies within 4 of these (resp. the remainder 3), the conic will be an Ellipse (resp. Hyperbola).

Centers X_1, X_2, and X_9 are always interior to the Medial Triangle [16], so the Circumconics E_i, $i = 1, 2, 9$ centered on them will ellipses, Figure 10. E_2 is the Steiner Circumellipse, least-area over all possible Circumellipses [28], and E_9 is T’s CB, see Section 2.

It is known that E_1 intersects the EB and the Circumcircle at X_{100}, the Anticomplement of the Feuerbach Point. Also that E_2 intersects E_9 at X_{190}, the Yff Parabolic Point [14, 16]. These two ellipses intersect at X_{664} [19].

Given a generic triangle T:

Proposition 4.1. The axes of E_1 are parallel to E_9’s.

The proof is in Appendix B.

Theorem 4.1. Let η_1 and η_1' be the lengths of minor and major semi-axes of E_1, respectively. The ratio of their lengths is constant over the 3-periodic family and given by:

$$\frac{\eta_1'}{\eta_1} = \frac{\sqrt{2b^2 + 2(a^2 - b^2)\delta - a^2b^2}}{b^2} > 1$$

This is the isogonal conjugate of X_{663}, i.e., L_{663} mentioned before is coincidentally its Trilinear Polar [28].
Figure 9. A reference triangle is shown (blue) as well as its Medial (red). The latter sides divide the plane into 7 regions, including the Medial’s interior. When a Circumconic center lies on any of the shaded regions (resp. unshaded) it is an Ellipse (resp. Hyperbola). Parabolas have centers at infinity. For illustration, the X_1 and X_9-centered Circumellipses and the X_{11}-centered Feuerbach Hyperbola are shown. Note that over the family of 3-periodics, a given Circumconic may alternate between Ellipse and Hyperbola, e.g., when centered on X_4, X_5, X_6, etc.

Proof. Calculate the ratio using vertex locations (see [10]) for an isosceles orbit, and then verify with a Computer Algebra System (CAS) the expression holds over the entire family.

Note: experimentally η'_1 is maximal (resp. minimal) when the 3-periodic is an isosceles with axis of symmetry parallel to the EB’s minor (resp. major) axis.

Proposition 4.2. The axes of E_2 are only parallel to E_0 if T is isosceles.

See Appendix B.

4.1. Parallel-Axis Pencil. The Feuerbach Circumhyperbola of a Triangle is a rectangular hyperbola\(^8\) centered on X_{11} [28]. Peter Moses has contributed a stronger generalization [19]:

Remark 4.2. The pencil of Circumconics whose centers lie on the Feuerbach Circumhyperbola F_{med} of the Medial Triangle have mutually-parallel axes.

The complement\(^9\) of X_{11} is X_{3035} [16] so F_{med} is centered there, see Figure 11. The following is a list of Circumellipses whose centers lie on F_{med} [19]: $X_i, i=1, 3, 9, 10^{10}$, 119, 142, 214, 442, 600, 1145, 2092, 3126, 3307, 3308, 3647, 5507, 6184, 6260, 6594, 6600, 10427, 10472, 11517, 11530, 12631, 12639, 12640, 12641, 13089, 15346, 15347, 15348, 17057, 17060, 18258, 18642, 19557, 19584, 22754, 34261, 35204.

\(^8\)Since it passes through the Orthocenter X_4 [28].
\(^9\)The 2:1 reflection of a point about X_2.
\(^{10}\)Notice X_{10} is the Incenter of the Medial. Interestingly, X_8, the Incenter of the ACT, does not belong to this select group.
Proposition 4.3. A circumellipse has center on F_{med} iff it passes through X_{100}.

A proof appears in Appendix C. The following has been observed experimentally:

Conjecture 4.1. Over the family of 3-periodics, all Circumellipses in Moses’ pencil conserve the ratio of their axes.

5. A Special Pair of Circumhyperbolae

Here we study invariants of two well-known Circumhyperbolae: the Feuerbach and Jerabek Hyperbolas F and J [28, Jerabek Hyperbola]. Both are rectangular since they contain X_4 [28]. The former is centered on X_{11} and the latter on X_{125}. With respect to 3-periodics no invariants have been detected for J. However, the Jerabek J_{exc} of the Excentral Triangle, which passes through the Excenters and is centered on X_{100}^{12}, does produce interesting invariants. F is known to pass through X_1 and X_9 of its reference triangle. Interestingly J_{exc} also passes through X_1 and X_9. This stems from the fact that J passes through X_4 and X_6. Since the Excentral Triangle is always acute [5], its X_4 is X_1. Likewise, the excentral X_6 is X_9.

The Isogonal Conjugate of a Circumconic is a line [28, Circumconic]. Remarkably:

Remark 5.1. The Isogonal conjugate of F with respect to a reference triangle and that of J_{exc} with respect to the Excentral one is line $X_1X_3 = L_{650}$.

11Its centers lie in the unshaded regions in Figure 9.
12The Excentral’s X_{125} [28].
13The Feuerbach Hyperbola F_{exc} has not yet yielded any detectable invariants over the 3-periodic family.
Figure 11. An $a/b = 1.5$ EB is shown (black) centered on X_a as well as a sample 3-periodic (blue). Also shown are Circumellipses centered on $X_i, i = 1, 3, 10, 142$, whose centers lie on the Feuerbach Circumhyperbola of the Medial Triangle (both shown red), centered on X_{3035}, the complement of X_{11}. Notice all conics drawn (including the Circumhyp) have axes parallel to the EB and all Circumellipses pass through X_{100}. Note: the Circumellipse centered on X_3 is the Circumcircle, its axes, drawn diagonally, are immaterial.

The first part is well-known [28, Feuerbach Hyperbola]. For the second part, consider that J is the Isogonal Conjugate of the Euler Line [28, Jerabek Hyperbola]. The Euler Line of the Excentral Triangle passes through its X_4 and X_5 which are X_1 and X_3 in the reference 3-periodic.

Referring to Figure 12:

Proposition 5.1. J_{exc} intersects E_9 in exactly two locations.

Proof. Let $s_i, i = 1, 2, 3$ refer to 3-periodic sidelengths. The perspector of J_{exc} is $X_{649} = s_1(s_2 - s_3) ::$ (cyclical) [16]. Therefore the trilinears $x : y : z$ of J_{exc} satisfy [29]:

$$J_{exc} : s_1(s_2 - s_3)x^2 + s_2(s_3 - s_1)y^2 + s_3(s_1 - s_2)z^2 = 0.$$

Notice the above is satisfied for the Excenters $[1 : 1 : -1], [1 : -1 : 1]$ and $[-1 : 1 : 1]$. As $X_1 = [1 : 1 : 1]$ and $X_9 = s_2 + s_3 - s_1 ::$ (cyclical) it follows that $J_{exc}(X_1) = J_{exc}(X_9) = 0$.

Eliminating variable x, the intersection of $J_{exc} = 0$ and $E_9 = 0$ is given by the quartic:

$$s_2(s_1 - s_3)k_1y^4 + 2s_2(s_1 - s_3)k_1k_2y^3z + 2s_3(s_1 - s_2)k_1k_2yz^3 + s_3(s_1 - s_2)k_1z^4 = 0$$
With \(k_1 = (s_1 + s_2 - s_3)^2 \) and \(k_2 = s_1 + s_3 - s_2 \). The discriminant of the above equation is:

\[-432[(s_2-s_3)(s_1-s_3)(s_1-s_2)(s_1+s_3-s_2)^2(s_1-s_2-s_3)^2(s_1+s_2-s_3)^2(s_1s_2s_3)^2]\]

Since it is negative, there will be two real and two complex solutions [4].

Proposition 5.2. \(F \) intersects the \(X_9 \)-centered Circumellipse at \(X_{1156} \).

Proof. The perspector of \(X_9 \) is \(X_1 \) and that of \(X_{11} \) is \(X_{650} = (s_3 - s_3)(s_3 + s_3 - s_1) :: (\text{cyclic}) \). Therefore, the trilinears \(x : y : z \) of \(F \) and \(E_9 \) satisfy:

\[
F : (s_2 - s_3)(s_2 + s_3 - s_1)/x + \\
(s_3 - s_1)(s_3 + s_1 - s_2)/y + \\
(s_1 - s_2)(s_1 + s_2 - s_3)/z = 0
\]

\(E_9 : 1/x + 1/y + 1/z = 0. \)

\(X_{1156} \) is given by \(1/[(s_2 - s_3)^2 + s_1(s_2 + s_3 - 2s_1)] :: (\text{cyclic}) \). This point can be readily checked to satisfy both of the above.

Given a generic triangle \(T \), the following two claims are known:

Proposition 5.3. The asymptotes of both \(F \) and \(J_{\text{exc}} \) are parallel to the \(X_9 \)-centered circumconic, i.e., \(c_4 \) and \(c_5 \) in (2) vanish.

Proof. To see the first part, consider that since the Caustic is centered on \(X_9 \) and tangent to the \(3 \)-periodics, it is the (stationary) Mandart Inellipse \(I_9 \) of the family [28]. This inconic is known to have axes parallel to the asymptotes of \(F \) [11]. Since the Caustic is confocal with the EB, \(F \) asymptotes must be parallel to the EB axes.

Secondly, \(3 \)-periodics are the Orthic Triangles of the Excentrals, therefore the EB is the (stationary) Excentral’s Orthic Inconic [28]. The latter’s axes are known to be parallel to the asymptotes of the Jerabek hyperbola. [28, Orthic Inconic].

An alternate, algebraic proof appears in Appendix B.

Let \(\lambda \) (resp. \(\lambda' \)) be the focal length of \(F \) (resp. \(J_{\text{exc}} \)).

Remark 5.2. Isosceles \(3 \)-periodics have \(\lambda' = \lambda = 0. \)

To see this consider the sideways isosceles \(3 \)-periodic with \(P_1 = (a, 0) \).

\(P_2 \) and \(P_3 \) will lie on the 2nd and 3rd quadrants at \((-a_c, \pm y')\), where \(a_c = a(\delta - b^2)/(a^2 - b^2) \) is the length of the Caustic major semi-axis [9]. \(X_1 \) and \(X_4 \) will lie along the \(3 \)-periodic’s axis of symmetry, i.e., the x-axis. To pass through all 5 points, \(F \) degenerates to a pair of orthogonal lines: the x-axis and the vertical line \(x = -a_c \). The foci will collapse to the point \((-a_c, 0)\).

A similar degeneracy occurs for the upright isosceles, i.e., when \(P_1 = (0, b) \), namely, the foci collapse to \((0, -a_c)\), where \(b_c = b(a^2 - \delta)/(a^2 - b^2) \) is the Caustic minor semi-axis length.

Theorem 5.1. For all non-isosceles \(3 \)-periodics, \(\lambda'/\lambda \) is invariant and given by:
(6) \[
\frac{\lambda'}{\lambda} = \frac{\sqrt{\delta^2 + (a^2 + b^2) \delta + a^2b^2}}{ab} = \sqrt{2/\rho} > 2
\]

Proof. Assume the EB is in the form of (1). Let the 3-periodic be given by
\[P_i = (x_i, y_i), i = 1, 2, 3. \] F passes through the \(P_i, X_1 \) and \(X_9 = (0, 0) \). The asymptotes of \(F \) are parallel to the EB axes, therefore this hyperbola is given by
\[c_1 x + c_2 y + c_3 xy = 0 \] and \(\lambda^2 = |8c_1c_2/c_3^2| \), where:
\[c_1 = y_2y_3(x_2 - x_3)x_1^2 + (x_2^2y_3 - x_3^2y_2 - y_2^2y_3 + y_2y_3^2)x_1y_1 + y_2y_3(x_2 - x_3)y_1^2 - (x_2y_3 - x_3y_2)(x_2x_3 + y_2y_3)y_1 \]
\[c_2 = x_2x_3(y_2 - y_3)x_1^2 + (x_2x_3^2 - x_2^2x_3 - x_2y_3^2 + x_3y_3^2)x_1y_1 + (x_2y_3 - x_3y_2)(x_2x_3 + y_2y_3)x_1 - x_2x_3(y_2 - y_3)y_1^2 \]
\[c_3 = (x_2y_3 - x_3y_2)x_1^2 + (x_2^2y_3 - x_2x_3^2 + y_2^2y_3 - y_2y_3^2)x_1 + (x_2y_3 - x_3y_2)y_1^2 + (x_2^2x_3 - x_2x_3^2 + x_2y_3^2 - x_3y_3^2)y_1 \]

Let \(P'_i = (x'_i, y'_i), i = 1, 2, 3 \) be the Excenters. They are given by
\[
\begin{align*}
P'_1 &= \left(-\frac{x_1 s_1 + x_2 s_2 + x_3 s_3}{s_2 + s_3 - s_1}, -\frac{y_1 s_1 + y_2 s_2 + y_3 s_3}{s_2 + s_3 - s_1} \right) \\
P'_2 &= \left(\frac{x_1 s_2 + x_2 s_2 + x_3 s_3}{s_3 + s_1 - s_2}, \frac{y_1 s_2 + y_2 s_2 + y_3 s_3}{s_3 + s_1 - s_2} \right) \\
P'_3 &= \left(\frac{x_1 s_1 + x_2 s_2 + x_3 s_3}{s_1 + s_2 - s_3}, \frac{y_1 s_1 + y_2 s_2 + y_3 s_3}{s_1 + s_2 - s_3} \right)
\end{align*}
\]

Here, \(s_1 = |P_2 - P_3|, s_2 = |P_1 - P_3| \) and \(s_3 = |P_1 - P_2| \).

Since \(J_{exc} \) is also centered on the origin and has horizontal/vertical asymptotes, \(J_{exc} \) is given by \(c'_1 x + c'_2 y + c'_3 xy = 0 \), and \((\lambda')^2 = |8c'_1c'_2/c'_3^2| \), where \(c'_i \) are constructed as (7) replacing \((x_i, y_i) \) with \((x'_i, y'_i) \).

Consider a right-triangle\(^1\) 3-periodic, e.g., with \(P_1 \) at \((x^1, y^1) \) given in (3) and \(P_2 \) and \(P_3 \) obtained explicitly [8]. From these obtain \(c_1 \) using (7). Using (8) obtain \(P'_i \) and the \(c'_i \). Finally, obtain a symbolic expression for \(\lambda'/\lambda \). After some manipulation and simplification with a Computer Algebra System (CAS), we obtain (6) which we call a candidate.

Parametrize the 3-periodic family with \(P_1(t) = (a \cos t, b \sin t) \) and using the sequence above arrive at an expression for \(\lambda'/\lambda \) in terms of \(t \). Subtract that from the right-triangle candidate. After some algebraic manipulation and CAS simplification verify the subtraction vanishes, i.e., \(\lambda'/\lambda \) is independent of \(t \).

5.1. **Focal Length Extrema.** Let \(P_1(t) = (a \cos t, b \sin t) \). While their ratio is constant, \(\lambda \) and \(\lambda' \) undergo three simultaneous maxima in \(t \in (0, \pi/2) \), see Figure 13. In fact, the following additional properties occur at configurations of maximal focal length (we omit the rather long algebraic proofs), see Figure 14:

- \(F' \) is tangent to the Caustic at \(\pm X_{11} \).
- \(J'_{exc} \) is tangent to the EB at \(\pm X_{100} \), i.e., at \(\mp X_{1156} \) (see below).

\(^1\)We found this to best simplify the algebra.
Figure 12. An $a/b = 1$ EB is shown (black) as well as a sample 3-periodic (blue), the confocal Caustic (brown), and the Excentral Triangle (green). The 3-periodic’s Feuerbach Circumhyperbola F (orange) passes through its three vertices as well as X_1, X_9, and X_4. The Excentral’s Jerabek Circumhyperbola J_{exc} (purple) passes through the three Excenters, as well as X_1, X_9 and X_{40} (not shown). Two invariants have been detected over the orbit family: (i) the asymptotes (dashed) of both F and J_{exc} stay parallel to the EB axes, (ii) the ratio of focal lengths is constant (focal axis appears dashed). F intersects the Billiard at X_{1156}.

Remark 5.3. Like F, J_{exc}' intersects the EB at X_{1156}.

This happens because X_{1156} is the reflection of X_{100} about X_9. If the latter is placed on the origin, then $X_{1156} = -X_{100}$, and J_{exc}' passes through $\pm X_{1156}$.

Let F' and J_{exc}' be copies of F and J_{exc} translated by $-X_{11}$ and $-X_{100}$ respectively, i.e., they become concentric with the EB (focal lengths are unchanged). Since their asymptotes are parallel to the EB axes and centered on the origin, their equations will be of the form:

$$F': xy = k'_F, \quad J_{exc}': xy = k'_j$$

Remark 5.4. $\lambda = 2\sqrt{2k'_F}$, $\lambda' = 2\sqrt{2k'_j}$, $\lambda' / \lambda = \sqrt{k'_j / k'_F} = \sqrt{2 / \rho}$.

6. Inconic Invariants

A triangle’s Inconic touches its three sides while satisfying two other constraints, e.g., the location of its center. Similar to Circumconics, if the latter is interior to the 4 shaded regions in Figure 9 it is an ellipse, else it is
Figure 13. Focal lengths λ, λ' of F, J_{exc} vs the parameter t in $P(t) = (a \cos t, b \sin t)$ are shown red and green. The solid (resp. dashed) curves correspond to $a/b = 1.5$ (resp. $a/b = 1.3$). In the first quadrant there are 3 maxima. λ'/λ (blue) remain constant for the whole interval.

Figure 14. Two snapshots of J and F_{exc} drawn solid blue and solid green, respectively, for $a/b = 1.5$. Also shown (dashed) are copies F' and J'_{exc} of both hyperbolas translated so they are dynamically concentric with the EB (translate J by $-X_{11}$ and F_{exc} by $-X_{100}$). Their focal lengths λ, λ' are identical to the original ones; their focal axes are collinear and shown the dashed diagonal through the EB center. Notice that like F, J' also intersects the EB at X_{1156}. Left: $t = 10.1^\circ$, showing an intermediate value of ether focal length. Right: $t = 6.2^\circ$, focal lengths are at a maximum. When this happens, the translated copy of F (resp. J_{exc}) is tangent to the Caustic (resp. EB) at X_{11} (resp. X_{1156}). Video: [21, PL#09,10]

a hyperbola. Lines drawn from each vertex to the Inconic tangency points concur at the perspector or Brianchon Point B [28].

Let the Inconic center C be specified by Barycentrics $g(s_1, s_2, s_3)$ (cyclic), then B is given by $1/[(g(s_2, s_3, s_1) + g(s_3, s_1, s_2) - g(s_1, s_2, s_3))$ (cyclic) [25]. For example, consider the Inconic centered on X_1 (the Incircle), i.e., $g = s_2 s_3$ (cyclic). Then $B = 1/(s_1 s_3 + s_1 s_2 - s_2 s_3)$. Dividing by the product $s_1 s_2 s_3$ obtain $B = 1/(s_2 + s_3 - s_1)$ (cyclic), confirming that the perspector of the Incircle is the Gergonne Point X_7 [28, Perspector]. The contact points are the vertices of the Cevian triangle through B.

15Barycentrics g can be easily converted to Trilinears f via: $f(s_1, s_2, s_3) = g(s_1, s_2, s_3)/s_1$ (cyclic) [29].
Above we identified the confocal Caustic with the Mandart Inellipse I_9 [28] of the 3-periodic family, i.e., it is a stationary ellipse centered on X_9 and axis-aligned with the EB, Figure 1. Its semi-axes a_c, b_c are given by [8]:

$$a_c = \frac{a (\delta - b^2)}{a^2 - b^2}, \quad b_c = \frac{b (a^2 - \delta)}{a^2 - b^2}.$$

Similarly, the X_9-centered Inconic of the family of Excentral Triangles is the stationary EB, i.e., the EB is the Orthic Inconic [28] of the Excenters.

6.1. Excentral X_3-Centered Inconic. No particular invariants have yet been found for any of the Inconics to 3-periodics with centers in $X_i, i = 3, 4, \ldots, 12$. Let I_3 denote the X_3-centered inconic. Its Brianchon Point is X_{69} and its foci aren’t named centers [19].

Remark 6.1. I_3 is always an ellipse.

To see this consider the Circumcenter of an acute, right, or obtuse triangle lies inside, on a vertex, or opposite to the interior of the Medial, respectively, i.e., within one of the 4 shaded regions in Figure 9.

Let I'_3 denote the X_3-centered Inconic of the Excentral Triangle. Its Brianchon Point is X_{69} of the Excentral, i.e., X_{2951} of the reference 3-periodic [19], Figure 15(left).

Remark 6.2. I'_3 is axis-aligned with the EB and intersects it at X_{100}.

Let μ'_3, μ_3 denote I'_3 major and minor semi-axes.

Conjecture 6.1. μ'_3/μ_3 is invariant over all 3-periodics and given by:

$$\frac{\mu'_3}{\mu_3} = \frac{R + d}{R - d} = 1 + \frac{\sqrt{1 - 2\rho}}{\rho} - 1$$

with $d = \sqrt{R(R - 2r)}$, and $\rho = r/R$. The above has been derived for an isosceles 3-periodic. It matches the ratio numerically for any combination of a, b.

6.2. Excentral X_5-Centered (MacBeath) Inconic. Above the locus of the Excenters is identified with the Excentral MacBeath Circumconic E'_6. The MacBeath Inconic I_5 of a triangle is centered on X_5 and has foci on X_4 and X_3. Its Brianchon Point is X_{264}, and it can be both an ellipse or a hyperbola [28, MacBeath Inconic]. No invariants have yet been found for I_5.

Consider I'_5, the MacBeath Inconic of the Excentral Triangle, Figure 15(right). The center and foci of I'_5 with respect to the reference triangle are X_3, X_1, and X_{40}, respectively, and its Brianchon is X_{1742} [19]. Unlike I'_3, the axes of I'_5 are askew with respect to the EB.

Remark 6.3. I'_5 is always an ellipse.

This is due to the fact that the Excentral is acute as is its homothetic Medial. Since X_5 is the latter’s Circumcenter, it must lie inside it.

Let μ'_5, μ_5 denote I'_5 major and minor semi-axes.
Conjecture 6.2. μ'_5/μ_5 is invariant over all 3-periodics and given by:

$$\frac{\mu'_5}{\mu_5} = \frac{R}{\sqrt{R^2 - d^2}} = \frac{1}{\sqrt{2}\rho}$$

The above was derived for an isosceles 3-periodic and shown to work for any a, b.

7. Conclusion

Videos mentioned above have been placed on a playlist [21]. Table 2 contains quick-reference links to all videos mentioned, with column “PL#” providing video number within the playlist.

Additionally to Conjecture 4.1 we submit the following questions to the reader:

- Can alternate proofs be found for Theorems 4.1 and 5.1 with tools of algebraic and/or projective geometry?
- Are there other notable circumconic pairs which exhibit interesting invariants?
- Can any of the invariants cited above be generalized to N-periodics?
<table>
<thead>
<tr>
<th>PL#</th>
<th>Title</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Mittenpunkt stationary at EB center</td>
<td>1</td>
</tr>
<tr>
<td>02</td>
<td>Circumbilliards (CB) of Various Triangles</td>
<td>2</td>
</tr>
<tr>
<td>03</td>
<td>CBs of Derived Triangles and Loci of Centers</td>
<td>3</td>
</tr>
<tr>
<td>04</td>
<td>CBs of ACT and Medial (separate)</td>
<td>3</td>
</tr>
<tr>
<td>05</td>
<td>CBs of ACT and Medial (superposed)</td>
<td>3</td>
</tr>
<tr>
<td>06</td>
<td>CB of Orthic and Locus of its Mittenpunkt</td>
<td>3</td>
</tr>
<tr>
<td>07</td>
<td>Invariant Aspect Ratio of Circumbilliard of Poristic Family</td>
<td>3</td>
</tr>
<tr>
<td>08</td>
<td>The X_1- and X_2-centered Circumellipses</td>
<td>4</td>
</tr>
<tr>
<td>09</td>
<td>Orbit Feuerbach and Excentral Jerabek Circumhyperbolas</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>Invariant Focal Length Ratio for F and J_{exc}</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>Excentral MacBeath and X_3-Centered Inconics: Invariant Aspect Ratio</td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>The Yff Circumparabola of 3-Periodics</td>
<td>7</td>
</tr>
<tr>
<td>13</td>
<td>The Thomson Cubic of 3-Periodics</td>
<td>7</td>
</tr>
</tbody>
</table>

Table 2. Videos mentioned in the paper. Column “PL#” indicates the entry within the playlist [21].

- Can the invariant aspect ratios for the Excentral Inconics mentioned in Section 6 be proven?
- Are there other Inconic invariants over 3-periodics and/or their derived triangles?
- Are there interesting properties for the loci of the foci of Feuerbach and/or Jerabek Circumhyperbolas?
- The Yff Circumparabola whose focus is on X_{190} is shown in [21, PL#12] over 3-periodics. Are there interesting invariants?
- Does any Triangle Circumcubic display interesting invariants over 3-periodics? We found none for the Thomson Cubic shown in [21, PL#13]. How about the Darboux, Neuberg, Lucas, and myriad others catalogued in [12].
- The ratio of focal lengths of F by J_{exc} is numerically invariant for the Poristic family. Can this be proved?
- Like 3-periodics, poristic triangles conserve r/R. Can a continuous map be specified between the two families? Are there any interesting properties?

Acknowledgments

We would like to thank Peter Moses and Clark Kimberling for their prompt help with dozens of questions. A warm thanks goes out to Profs. Jair Koiller and Daniel Jaud who provided critical editorial help.

The second author is fellow of CNPq and coordinator of Project PRONEX/ CNPq/ FAPEG 2017 10 26 7000 508.
Appendix A. Computing a Circumconic

Let a Circumconic have center \(M = (x_m, y_m) \). Equation (2) is subject to the following 5 constraints\(^{16}\): it must be satisfied for vertices \(P_1, P_2, P_3 \), and its gradient must vanish at \(M \):

\[
\begin{align*}
 f(P_i) &= 0, \quad i = 1, 2, 3 \\
 \frac{dg}{dx}(x_m, y_m) &= c_1 + c_3 y_m + 2 c_4 x_m = 0 \\
 \frac{dg}{dy}(x_m, y_m) &= c_2 + c_3 x_m + 2 c_5 y_m = 0 \\
 \end{align*}
\]

Written as a linear system:

\[
\begin{bmatrix}
 x_1 & y_1 & x_1^2 & y_1^2 \\
 x_2 & y_2 & x_2^2 & y_2^2 \\
 x_3 & y_3 & x_3^2 & y_3^2 \\
 1 & 0 & x_m & 2x_m \\
 0 & 1 & x_m & 0 & 2y_m
\end{bmatrix}
\begin{bmatrix}
 c_1 \\
 c_2 \\
 c_3 \\
 c_4 \\
 c_5
\end{bmatrix}
= \begin{bmatrix}
 -1 \\
 -1 \\
 -1 \\
 0 \\
 0
\end{bmatrix}
\]

Given sidelengths \(s_1, s_2, s_3 \), the coordinates of \(X_9 = (x_m, y_m) \) can be obtained by converting its Trilinears \((s_2 + s_3 - s_1 :: \ldots)\) to Cartesians [16].

Principal axes’ directions are given by the eigenvectors of the Hessian matrix \(H \) (the jacobian of the gradient), whose entries only depend on \(c_3, c_4, \) and \(c_5 \):

\[
H = J(\nabla g) = \begin{bmatrix}
 2c_4 & c_3 \\
 c_3 & 2c_5
\end{bmatrix}
\]

The ratio of semiaxes’ lengths is given by the square root of the ratio of \(H \)’s eigenvalues:

\[
a/b = \sqrt{\lambda_2/\lambda_1}
\]

Let \(U = (x_u, y_u) \) be an eigenvector of \(H \). The length of the semi-axis along \(u \) is given by the distance \(t \) which satisfies:

\[
g(M + tU) = 0
\]

This yields a two-parameter quadratic \(d_0 + d_2 t^2 \), where:

\[
\begin{align*}
 d_0 &= 1 + c_1 x_m + c_4 x_m^2 + c_2 y_m + c_3 x_m y_m + c_5 y_m^2 \\
 d_2 &= c_4 x_u^2 + c_3 x_u y_u + c_5 y_u^2
\end{align*}
\]

The length of the semi-axis associated with \(U \) is then \(t = \sqrt{-d_0/d_2} \). The other axis can be computed via (10).

\(^{16}\)If \(M \) is set to \(X_9 \) one obtains the Circumbilliard.
The eigenvectors (axes of the conic) of H are given by the zeros of the quadratic form

$$q(x, y) = c_3(y^2 - x^2) + 2(c_2 - c_5)xy$$

Appendix B. Circumellipses of Elementary Triangle

Let a triangle T have vertices $P_1 = (0, 0)$, $P_2 = (1, 0)$ and side lengths s_1, s_2, s_3. Using the linear system in Appendix A, one can obtain implicit equations for the circumellipses E_9, E_1, E_2 centered on T’s Mittenpunkt X_9, Incenter X_1, and Barycenter X_2, respectively:

$$E_9(x, y) = v^2 x^2 - v(s_1 - s_2 - 1 + 2u)xy + ((s_1 - s_2 - 1)u + u^2 + s_2)y^2$$
$$-v^2 x + ((s_1 - s_2 - 1)u + u^2 + s_2)y^2 + v(u - s_2)y = 0$$

$$E_1(x, y) = (L - 2) v^2 x^2 + (L - 2 s_2 - 2u)(L - 2) vxy$$
$$+ (-L^2u + (2u + 1) Ls_2 + (u^2 + 2u) L - 2 s_2^2 - 4u s_2 - 2 u^2) y^2$$
$$- (L - 2) v^2 x - v(Ls_2 - uL - 2 s_2^2 + 2u) y$$

$$E_2(x, y) = v^2 x^2 + v(1 - 2u)xy + (u^2 - u + 1)y^2 - v^2 x + v(u - 1)y = 0$$

$s_1 = \sqrt{(u - 1)^2 + v^2}$, $s_2 = \sqrt{u^2 + v^2}$, $L = s_1 + s_2 + 1$

Consider the quadratic forms

$$q_9(x, y) = v(s_1 - s_2 + 2u - 1)x^2 + 2((s_2 - s_1)u - s_2 - u^2 + u + v^2) xy$$
$$+v(1 - 2u - s_1 + s_2) y^2$$

$$q_1(x, y) = -v(L - 2) (L - 2 s_2 - 2u)x^2 + v(L - 2) (L - 2 s_2 - 2u) y^2$$
$$+2(L^2u - (2u + 1)Ls_2 + (v^2 - u^2 - 2u)L + 4s_2 u + 4u^2)xy$$

$$q_2(x, y) = v(2u + 1)x^2 + 2(-(u^2 + v^2 + u - 1)xy + v(1 - 2u) y^2$$

The axes of E_9 (resp. E_1) are defined by the zeros of q_9 (resp. q_1). Using the above equations it is straightforward to show that the axes of E_1 and E_9 are parallel.

The axes of E_2 and E_9 are parallel if and only if $(u - 1)^2 + v^2 = 1$ or $u^2 + v^2 = 1$; this means that the triangle is isosceles.

The implicit equations of the circumhyperbolas F passing through the vertices of the orbit centered on X_{11} and J_{exc} passing through the vertices of
the excentral triangle and centered on X_{100} are:

$$F(x, y) = v^3(2u - 1)(x^2 - y^2) + v^3(1 - 2u)x$$
$$+ [((s_3^2 + (u - 1)s_2^2 - us_2)s_1 + (2u - 1)s_2^2 - u(s^2_2 - s_2) - 4u^2v^2 + v^4 + 2uv^2)xy$$
$$+ s_1^2u^2s_2 + (us_2 - u(u - 1)s_2^2 + s_2u^2)s_1 + us_2^2 - v^2s_2^2 - u^3(2u - 1)y = 0$$

$$J_{exc}(x, y) = 4v^3(2u - 1)(x^2 - y^2)$$
$$+ [(4s_2^2 + 4u - 1)s_2^2 - 4us_2) s_1 - 4us_2s_2 - 4s_2^2$$
$$- 4u^4 - 16u^2v^2 + 4v^4 + 8u^3 + 16uv^2]xy$$
$$+ [(2(s_3^2 + (1 - s_1)u - v^2 + s_2) + us_1(s_1 + 1)s_2 + u(u - 2)s_1^2)]v|x$$
$$+ [(4 - 4u)s_2((u - (1 - s_1)u + (1/2)s_1 + 1/2)s_2 + 1/2us_1(s_1 + 1) - 1/2s_2^2(s_2 + s_1))]y$$
$$- us_1^2v_2 + (vs_2^2 + (-1 + u)uv_2^2 - us_2)s_1 + vs_2^2 - (2u^2 - 2u + 1)uv_2^2 = 0$$

Using the above equations it is straightforward to show that the axes of E_9 and asymptotes of F and J_{exc} are parallel.

APPENDIX C. CIRCUMELLIPSES WITH PARALLEL AXES

Consider a triangle with vertices $A = (u, v), B = (-1, 0)$ and $C = (1, 0)$.

Let $s_2 = |A - B|$ and $s_3 = |B - C|$. The equation of F_{med} is given by:

$$F_{med}(x, y) = 4uv^3(x^2 - y^2)(2u - 1)s_3s_2 - (2(u - 1)s_3^2 - 2(u^2 + v^2 - 1)s_3)s_2$$
$$2(u^2 - 1)^2 + 2v^2(4u^2 - v^2)]xy$$

(11) $$+ (-(u^2 + v^2 - 1)s_3 + s_3^2(u - 1))vs_2 + s_3^2(u + 1)vs_3$$
$$- vu^3 + (u^2 - 1)^2)x$$
$$+ (2u^2 + 2v^2 - 2)uv^2 y = 0$$

A one parameter family of circumellipses passing through A, B, C and X_{100} is given by:

$$E_b(x, y) = uv^3(bxy - 4x^2)$$
$$+ ((b(u^2 + v^2 - 1)s_3 + b(u - 1)s_2^2)s_2 - b(u + 1)s_2^2s_3$$

(12) $$- v^2(4u^2 - v^2) + 4uv) - b(u^2 - 1)^2)xy$$
$$- v((b(u^2 + v^2 - 1)s_2 - b(u + 1)s_2^2)s_3 + b(u - 1)s_3^2s_2$$
$$- b(u^2 + v^2 - 1)(u^2 - v^2 + uv - 1))y + 4uv^3 = 0$$

It is straightforward to verify that the family E_b is axis aligned (independent of b). Denoting the center of E_b by (x_c, y_c) it follows, using CAS, that $F_{med}(x_c, y_c) = 0$.

The reciprocal follows similarly.
Appendix D. Table of Symbols

Tables 3 and 4 list most Triangle Centers and symbols mentioned in the paper.

<table>
<thead>
<tr>
<th>Center</th>
<th>Meaning</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_1</td>
<td>Incenter</td>
<td>Locus is Ellipse</td>
</tr>
<tr>
<td>X_2</td>
<td>Barycenter</td>
<td>Perspector of Steiner Circum/Inellipses</td>
</tr>
<tr>
<td>X_3</td>
<td>Circumcenter</td>
<td>Locus is Ellipse, Perspector of M</td>
</tr>
<tr>
<td>X_4</td>
<td>Orthocenter</td>
<td>Exterior to EB when 3-periodic is obtuse</td>
</tr>
<tr>
<td>X_5</td>
<td>Center of the 9-Point Circle</td>
<td></td>
</tr>
<tr>
<td>X_6</td>
<td>Symmedian Point</td>
<td>Locus is Quartic [9]</td>
</tr>
<tr>
<td>X_6^*</td>
<td>X_9 of Orthic</td>
<td>Detached from X_6 locus for obtuse triangles</td>
</tr>
<tr>
<td>X_7</td>
<td>Gergonne Point</td>
<td>Perspector of Incircle</td>
</tr>
<tr>
<td>X_8</td>
<td>Nagel Point</td>
<td>Perspector of I_9, X_1 of ACT Incircle</td>
</tr>
<tr>
<td>X_9</td>
<td>Mittenpunkt</td>
<td>Center of (Circum)billiard</td>
</tr>
<tr>
<td>X_{10}</td>
<td>Spieker Point</td>
<td>Incenter of Medial</td>
</tr>
<tr>
<td>X_{11}</td>
<td>Feuerbach Point</td>
<td>on confocal Caustic</td>
</tr>
<tr>
<td>X_{40}</td>
<td>Bevan Point</td>
<td>X_3 of Excentral</td>
</tr>
<tr>
<td>X_{69}</td>
<td>X_6 of the ACT</td>
<td>Perspector of I_3</td>
</tr>
<tr>
<td>X_{100}</td>
<td>Anticomplement of X_{11}</td>
<td>On Circumcircle and EB, J_{exc} center</td>
</tr>
<tr>
<td>X_{125}</td>
<td>Center of Jerabek Hyperbola J</td>
<td></td>
</tr>
<tr>
<td>X_{142}</td>
<td>X_9 of Medial</td>
<td>Midpoint of X_9X_7, lies on $L(2, 7)$</td>
</tr>
<tr>
<td>X_{144}</td>
<td>Anticomplement of X_7</td>
<td>Perspector of ACT and its Intouch Triangle</td>
</tr>
<tr>
<td>X_{168}</td>
<td>X_9 of the Excentral Triangle</td>
<td>Non-elliptic Locus</td>
</tr>
<tr>
<td>X_{190}</td>
<td>Focus of the Yff Parabola</td>
<td>Intersection of E_2 and the EB</td>
</tr>
<tr>
<td>X_{264}</td>
<td>Isotomic Conjugate of X_3</td>
<td>Perspector of I_5</td>
</tr>
<tr>
<td>X_{649}</td>
<td>Cross-difference of X_1, X_2</td>
<td>Perspector of J_{exc}</td>
</tr>
<tr>
<td>X_{664}</td>
<td>Trilinear Pole of $L(2, 7)$</td>
<td>Intersection of E_1 and E_2 [19]</td>
</tr>
<tr>
<td>X_{650}</td>
<td>Cross-difference of X_1, X_3</td>
<td>Perspector of F</td>
</tr>
<tr>
<td>X_{1156}</td>
<td>Isogonal Conjugate of Schröder Point X_{1155}</td>
<td>Intersection of F with EB</td>
</tr>
<tr>
<td>X_{1742}</td>
<td>Mimosa Transform of X_{212}</td>
<td>Perspector of I'_5</td>
</tr>
<tr>
<td>X_{2951}</td>
<td>Excentral-Isogonal Conjugate of X_{57}</td>
<td>Perspector of I'_3</td>
</tr>
<tr>
<td>X_{3035}</td>
<td>Complement of X_{11}</td>
<td>Center of F_{med}</td>
</tr>
<tr>
<td>X_{3659}</td>
<td>X_{11} of Excentral Triangle</td>
<td>Center of F_{exc}</td>
</tr>
<tr>
<td>$L(2, 7)$</td>
<td>ACT-Medial Mittenpunkt Axis</td>
<td>Line L_{063} [17]</td>
</tr>
<tr>
<td>$L(1, 3)$</td>
<td>Isogonal Conjugate of F and J_{exc}</td>
<td>Line L_{050} [17]</td>
</tr>
</tbody>
</table>

Table 3. Kimberling Centers and Central Lines mentioned in paper
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>a, b</td>
<td>EB semi-axes</td>
<td>$a > b > 0$</td>
</tr>
<tr>
<td>P_i, s_i</td>
<td>Vertices and sidelengths of 3-periodic invariant</td>
<td>$\sum s_i$</td>
</tr>
<tr>
<td>P'_i</td>
<td>Vertices of the Excentral Triangle</td>
<td></td>
</tr>
<tr>
<td>a_c, b_c</td>
<td>Semi-axes of confocal Caustic</td>
<td></td>
</tr>
<tr>
<td>a_9, b_9</td>
<td>Semi-axes of Poristic Circumbilliard</td>
<td></td>
</tr>
<tr>
<td>r, R, ρ</td>
<td>Inradius, Circumradius, ρ is invariant</td>
<td></td>
</tr>
<tr>
<td>δ</td>
<td>Oft-used constant</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>Distance $</td>
<td>X_1X_3</td>
</tr>
<tr>
<td>α</td>
<td>EB aspect ratio</td>
<td></td>
</tr>
<tr>
<td>α_4</td>
<td>a/b threshold for obtuse 3-Periodics</td>
<td></td>
</tr>
<tr>
<td>α_{eq}</td>
<td>a/b for equilateral Orthic</td>
<td></td>
</tr>
<tr>
<td>P_{\perp}</td>
<td>Obtuse 3-periodic limits on EB</td>
<td></td>
</tr>
<tr>
<td>$x^, y^$</td>
<td>where X_{4i}^* detaches from X_4 locus</td>
<td></td>
</tr>
<tr>
<td>F, J</td>
<td>Feuerbach, Jerabek Hyperbola</td>
<td></td>
</tr>
<tr>
<td>F_{exc}</td>
<td>F of Excentral Triangle</td>
<td></td>
</tr>
<tr>
<td>J_{exc}</td>
<td>J of Excentral Triangle</td>
<td></td>
</tr>
<tr>
<td>F', J'_{exc}</td>
<td>F, J_{exc} translated by $-X_{11}, -X_{100}$</td>
<td></td>
</tr>
<tr>
<td>F_{med}</td>
<td>F of Medial</td>
<td></td>
</tr>
<tr>
<td>E_i</td>
<td>Circumellipse centered on X_i</td>
<td></td>
</tr>
<tr>
<td>E'_i</td>
<td>Excentral MacBeath Circumellipse</td>
<td></td>
</tr>
<tr>
<td>$I_{3, 5}$</td>
<td>Inellipses Centered on X_3, X_5</td>
<td></td>
</tr>
<tr>
<td>$I_{3, 5}$</td>
<td>Excentral Inellipse</td>
<td></td>
</tr>
<tr>
<td>I'_5</td>
<td>Excentral I_3</td>
<td></td>
</tr>
<tr>
<td>I''_5</td>
<td>Excentral I_5</td>
<td></td>
</tr>
<tr>
<td>$\eta'_{i, i}, \eta_i$</td>
<td>Major and minor semiaxis of E_i</td>
<td></td>
</tr>
<tr>
<td>$\mu'_{i, i}, \mu_i$</td>
<td>Major and minor semiaxis of I'_i</td>
<td></td>
</tr>
<tr>
<td>λ', λ</td>
<td>Focal lengths of J_{exc}, F (and $J'_{exc}, F'\dots$)</td>
<td></td>
</tr>
</tbody>
</table>

| Table 4. Symbols used in paper |

REFERENCES

Circuminvariants of 3-Periodics in the Elliptic Billiard