Two new refinements of a linear geometric inequality

Jian Liu

Abstract. For a consequence of the Erdős-Mordell inequality, we establish two new refinements with the help of Maple software. Some applications are also given by new results. Several interesting conjectures checked by computer are presented as well.

1. Introduction

The famous Erdős-Mordell inequality is a beautiful linear geometric inequality, which can be stated as follows:

Let P be an interior point of the triangle ABC. Denote by R_1, R_2, R_3 the distances from P to the vertices A, B, C respectively, and denote by r_1, r_2, r_3 the distances from P to the sides BC, CA, AB respectively. Then

\[
R_1 + R_2 + R_3 \geq 2(r_1 + r_2 + r_3),
\]

with equality if and only if $\triangle ABC$ is equilateral and P is its center.

There exist various proofs, generalizations, sharpness and refinements of the Erdős-Mordell inequality in the literature. Some recent results on the Erdős-Mordell inequality can be found in [2],[6]-[10].

By the Erdős-Mordell inequality, it is easy to obtain the following inequality:

\[
R_1 + R_2 + R_3 \geq \frac{2}{3}(h_a + h_b + h_c),
\]

where h_a, h_b, h_c are the altitudes of the triangle ABC. In fact, by the triangle inequality we have

\[
R_1 + r_1 \geq h_a
\]

and two similar relations. Adding $2(R_1 + R_2 + R_3)$ to both sides of (1) and then using inequality (3) etc., we obtain one inequality equivalent with (2) immediately.

Clearly, inequality (2) can be regarded as a consequence of the Erdős-Mordell inequality. We wish to point out that it is valid for any point P in the plane of the triangle ABC, because we have the following conclusion:

Keywords and phrases: the Erdős-Mordell inequality, Triangle, Point, Altitude, Median

(2010)Mathematics Subject Classification: 51M16

For any point Q outside triangle ABC, there exist a point P inside triangle ABC such that $QA \geq PA, QB \geq PB, QC \geq PC$ at the same time. This conclusion is not difficult to be proved, we omit here.

From [12], we know that Ji Chen conjectured that the following inequality stronger than (2) holds:

\[(4) \quad R_1 + R_2 + R_3 \geq \frac{2}{3}(w_a + w_b + w_c),\]

where w_a, w_b, w_c are the lengths of angle bisectors of triangle ABC.

In [16], Xiao-Guang Chu proved inequality (4). As $w_a \geq h_a$ etc., thus we have the following refinement of inequality (2):

\[(5) \quad R_1 + R_2 + R_3 \geq \frac{2}{3}(w_a + w_b + w_c) \geq \frac{2}{3}(h_a + h_b + h_c).\]

In [4], the author and Xiao-Guang Chu established the following inequality:

\[(6) \quad R_1 + R_2 + R_3 \geq \frac{1}{2}(m_a + m_b + m_c + 3r),\]

where m_a, m_b, m_c are the lengths of medians of $\triangle ABC$ and r is the inradius of ABC.

By inequality (6), we can further obtain the following refinement of inequality (2):

\[(7) \quad R_1 + R_2 + R_3 \geq \frac{1}{2}(m_a + m_b + m_c + 3r) \geq \frac{1}{3}(h_a + h_b + h_c).\]

where the second inequality has been proved in [4] and the last inequality is obvious by $m_a \geq h_a$ etc.

Our aim of this paper is to give two new refinements of the linear geometric inequality (2).

In what follows, we shall continue to use the previous symbols. Also, denote by a, b, c the side lengths of the triangle ABC and denote by s, R, r the semiperimeter, the circumradius and the inradius of the triangle ABC respectively.

The main results are as follows:

Theorem 1.1. For any point P in the plane of the triangle ABC, it holds:

\[(8) \quad R_1 + R_2 + R_3 \geq \frac{\sqrt{3}}{2}a + h_a \geq \frac{2}{3}(h_a + h_b + h_c),\]

where the first equality in (8) holds if and only if $b = c, P$ lies on the altitude from the vertex A to the side BC and $\angle BPC = \frac{2}{3}\pi$, the second inequality holds if and only if the triangle ABC is equilateral.

Theorem 1.2. For any point P in the plane of the triangle ABC, it holds:

\[(9) \quad R_1 + R_2 + R_3 \geq 2r + \frac{2}{3}\sqrt{a^2 + b^2 + c^2} \geq \frac{2}{3}\left(1 + \frac{r}{R}\right)\sqrt{a^2 + b^2 + c^2} \geq \frac{2}{3}(h_a + h_b + h_c),\]
where the first equality in (9) holds if and only if the triangle ABC is equilateral and P is its center, the others hold if and only if the triangle ABC is equilateral.

2. Proof of Theorem 1.1

Before proving Theorem 1.1, we first give the following lemma.

Lemma 2.1. In any triangle ABC, holds:

$$(10) \quad b + c \geq \frac{\sqrt{3}}{2}a + h_a,$$

with equality if and only if $b = c$ and $A = \frac{2}{3}\pi$.

Proof. By the known formula

$$(11) \quad h_a = \frac{\sqrt{s(s-a)(s-b)(s-c)}}{a}\,$$

(where $s = (a + b + c)/2$) and the fact that $\sqrt{(s-b)(s-c)} \leq 2a$, we have

$$(12) \quad h_a \leq \sqrt{s(s-a)}.$$

Squaring both sides and using $s = (a + b + c)/2$, we easily get

$$(13) \quad b + c \geq \sqrt{a^2 + 4h_a^2}.$$

But

$$(14) \quad a^2 + 4h_a^2 = \left(\frac{\sqrt{3}}{2}a + h_a\right)^2 + \left(\frac{1}{2}a - \sqrt{3}h_a\right)^2,$$

thus from (13) and (14) we see that (10) holds. Observe that the equality in (10) holds if and only if $b = c$, thus by (13) and (14) one sees that the equality in (10) holds if and only if $b = c$ and $a/2 - \sqrt{3}h_a = 0$, from which and $ah_a = 2S$ (S being the area of ABC) it follows that $a^4 = 12S^2$. Further, by the equivalent form of Heron’s formula:

$$(15) \quad 2b^2c^2 + 2c^2a^2 + 2a^2b^2 - a^4 - b^4 - c^4 = 16S^2,$$

we get

$$2b^2c^2 + 2c^2a^2 + 2a^2b^2 - a^4 - b^4 - c^4 = \frac{4}{3}a^4.$$

Substituting $b = c$ into the above identity, we easily get $a = \sqrt{3}c$ and then conclude that $B = C = \pi/3$ and $A = 2\pi/3$. Hence the equality condition of (10) is just as mentioned as in Lemma 2.1. This completes the proof of Lemma 2.1.

Next, we prove Theorem 1.1.

Proof. Firstly, we prove the first inequality of (9), i.e.,

$$(16) \quad R_1 + R_2 + R_3 \geq \frac{\sqrt{3}}{2}a + h_a.$$

Applying inequality (10) to triangle BPC, we have

$$(17) \quad R_2 + R_3 \geq \frac{\sqrt{3}}{2}a + r_1.$$
Adding R_1 to both sides of this inequality and then using inequality (3), one obtains inequality (16) immediately. Note that the equality in (3) holds if and only if P lies on the altitude from the vertex A to the side BC. Thus by the equality condition of (10), we further know that the equality condition of (16) is just as mentioned in Theorem 1.1.

Next, we prove the second inequality of (8), i.e.,

\begin{equation}
\sqrt{3}a + h_a \geq \frac{2}{3}(h_a + h_b + h_c).
\end{equation}

This inequality is equivalent to

\begin{equation}
\frac{3\sqrt{3}}{2}a + h_a \geq 2(h_b + h_c).
\end{equation}

Taking squares on both sides and then using $ah_a = 2S = 2sr$, it becomes

\begin{equation}
\frac{27}{4}a^2 + h_a^2 + 6\sqrt{3}rs \geq 4(h_b + h_c)^2.
\end{equation}

Multiplying both sides by 4 and noticing the following known inequality

\begin{equation}s \geq 3\sqrt{3}r;
\end{equation}

we only need to prove that

\begin{equation}27a^2 + 4h_a^2 + 216r^2 \geq 16(h_b + h_c)^2,
\end{equation}
i.e.,

\begin{equation}27a^2 + \frac{16S^2}{a^2} + \frac{216S^2}{s^2} \geq 64S^2 \left(\frac{1}{b} + \frac{1}{c}\right)^2.
\end{equation}

And, by Heron formula:

\begin{equation}S = \sqrt{s(s-a)(s-b)(s-c)},
\end{equation}

we easily know again the inequality is equivalent to

\begin{equation}Q_0 \equiv 4(s-a)(s-b)(s-c) \left[16b^2c^2s^2 + 216(abc)^2 - 64s^2a^2(b + c)^2\right]
+ 108sa^4b^2c^3 \geq 0.
\end{equation}

Substituting $s = (a + b + c)/2$ into (24) and then arranging with the help of Maple software, we know again that (24) is equivalent to

\begin{align*}
Q_0 &\equiv 4(b + c)^2a^7 + 4(b + c)^3a^6 - (8b^4 + 16b^3c + 44b^2c^2 + 16bc^3 + 8c^4)a^5 \\
&- 8(b + c)(b^4 + 2b^3c - 8b^2c^2 + 2bc^3 + c^4)a^4 + (4b^6 + 8b^5c + 52b^4c^2 \\
&- 124b^3c^3 + 52b^2c^4 + 8bc^5 + 4e^5)a^3 + 4(b + c)(b^6 + 2b^5c - 14b^4c^2 \\
&+ 23b^3c^3 - 14b^2c^4 + 2bc^5 + c^6)a^2 - (b - c)^2(b + c)^2b^2c^2a
\end{align*}

(25)

which is required to prove.

Now, we let $b + c - a = 2x, c + a - b = 2y, a + b - c = 2z$, then $a = y + z, b = z + x, c = x + y$. Substituting them into Q_0 and using Maple software, it is easy to get the following identity:

\begin{equation}Q_0 = 2Q_1,
\end{equation}
where

\[Q_1 = 16yzx^7 + 64(y + z)yzx^6 + (27y^4 + 164y^3z + 306y^2z^2 + 164yz^3 + 27z^4)x^5 + (y + z)(81y^4 + 52y^3z + 38y^2z^2 + 52yz^3 + 81z^4)x^4 + (81y^6 - 60y^5z - 441y^4z^2 - 584y^3z^3 - 441y^2z^4 - 60yz^5 + 81z^6)x^3 + (y + z)(27y^6 - 114y^5z - 235y^4z^2 - 156yz^3)x^2 - 235y^2z^4 - 114yz^5 + 27z^6)x - yz(10y^4 + 13y^3z - 226y^2z^2 + 13yz^3 + 10^4)(y + z)x + 27(y + z)^5y^2z^2. \]

Thus, it remains to prove that \(Q_1 \geq 0 \) holds for positive real numbers \(x, y, z \). Since \(Q_1 \) is symmetric in \(y \) and \(z \), we may assume without loss of generality that \(y \geq z \) and let \(y = z + m(m \geq 0) \). Substituting \(y = z + m \) into \(Q_1 \) and using Maple software, we immediately obtain the following identity:

\[
Q_1 = (27z^2 - 10zx + 27x^2)m^7 + (324z^3 - 103z^2x + 102zx^2 + 81x^3)m^6 + (1647z^4 - 218z^3x - 304z^2x^2 + 426zx^3 + 81x^4)m^5 + (4590z^5 + 531z^4x - 2490z^3x^2 + 474z^2x^3 + 538zx^4 + 275x^5)m^4 + 8z(945z^5 + 348z^4x - 780z^3x^2 - 166z^2x^3 - 179zx^4 + 34z^5)x^3 + 16z(459z^6 + 268z^5x - 506z^4x^2 - 264z^3x^3 + 123z^2x^4 + 60zx^5 + 4x^6)m^2 + 16z(z - x)(z + x)(243z^5 + 180z^4x - 107z^3x^2 - 87z^2x^3 - 12zx^4 - x^5)m + 16(54z^3 + 45z^2x)x^2
+ 8zx^2 + x^3(z - x)^2(z + x)^2z^2.
\]

To show that inequality \(Q_1 \geq 0 \) is valid for \(y > 0, z > 0 \) and \(m \geq 0 \), we shall consider two cases to finish the proof.

Case 1. \(z \geq x. \)

In this case, we set \(z = x + n(n \geq 0) \) and substitute it into (27), then the inequality \(Q_1 \geq 0 \) becomes

\[
Q_2 = (2304m^2 + 6912mn + 6912n^2)x^7 + 128(m + 2n)(35m^2 + 146mn + 146n^2)x^6 + (3664m^4 + 33472m^3n + 119104m^2n^2 + 171264mn^3 + 85632n^4)x^5 + (3364mn^3 + 1682n^4)x^4 + (404m^6 + 5752m^5n + 42072m^4n^2 + 152752m^3n^3 + 276656m^2n^4 + 240336mn^5 + 80112n^6)x^3 + 4(m + 2n)(11m^6 + 195m^5n + 1841m^4n^2 + 7700m^3n^3 + 14870m^2n^4 + 13224mn^5 + 4408n^6)x^2 + n(m + n)(44m^4 + 649m^3n + 2773m^2n^2 + 4248mn^3 + 2124n^4)(m + 2n)x
+ 27(m + n)^2(m + 2n)^5n^2 \geq 0.
\]

Since \(m \geq 0, n \geq 0 \) and \(x > 0 \), we see that \(Q_2 \geq 0 \) holds.

Case 2. \(x > z. \)
In this case, we set \(x = z + n(n \geq 0) \) and substitute it into (27), then the inequality \(Q_1 \geq 0 \) becomes

\[
Q_3 \equiv (2304m^2 - 6912mn + 6912n^2)z^7 + (4480m^3 - 11520m^2n \\
+ 7680mn^2 + 11008n^3)z^6 + (3664m^4 - 6592m^3n + 1600m^2n^2 \\
+ 19968mn^3 + 6528n^4)z^5 + 16(3m + 4n)(34m^4 - 61m^3n + 104m^2n^2 \\
+ 164mn^3 + 28n^4)z^4 + (404m^6 + 776m^5n + 2424m^4n^2 + 7120m^3n^3 \\
+ 7728m^2n^4 + 2864mn^5 + 240n^6)z^3 + 4(m + n)(11m^6 + 75m^5n \\
+ 290m^4n^2 + 434m^3n^3 + 264m^2n^4 + 72mn^5 + 4n^6)z^2 \\
+ mn(44m^4 + 257m^3n + 192m^2n^2 + 32mn^3 + 16n^4)(m + n)^2z
\]

(29) \[+ 27(m + n)^3m^4n^2 \geq 0. \]

Since

\[
2304m^2 - 6912mn + 6912n^2 > 0,
\]

\[
4480m^3 - 11520m^2n + 7680mn^2 = 640m(7m^2 - 18mn + 12n^2) > 0,
\]

\[
3664m^4 - 6592m^3n + 1600m^2n^2 = 16m^2(229m^2 - 412mn + 100n^2) > 0,
\]

\[
34m^4 - 61m^3n + 104m^2n^2 = m^2(34m^2 - 61mn + 104n^2) > 0,
\]

we conclude that \(Q_3 \geq 0 \) holds for \(m \geq 0, n \geq 0, \) and \(z > 0 \) from (29).

Combining the arguments of the above two cases, inequality \(Q_1 \geq 0 \) is proved for all positive numbers \(x, z \) and non-positive real number \(m \). Hence, inequality \(Q_0 \geq 0 \) and inequality (18) are proved too. Also, it is easy to conclude that the equality in (18) holds if and only if \(a = b = c \), i.e., \(\triangle ABC \) is equilateral. This completes the proof of Theorem 1.1.

Remark 2.1. By inequality (17), we have

\[
\frac{R_2 + R_3 - r_1}{a} + \frac{R_3 + R_1 - r_2}{b} + \frac{R_1 + R_2 - r_3}{c} \geq \frac{3\sqrt{3}}{2}
\]

which is a special case of a conjecture posed by the author in [5].

Remark 2.2. By inequality (17) and Gerber’s inequality (see [3]):

\[
r_2r_3 + r_3r_1 + r_1r_2 \leq \frac{S}{\sqrt{3}},
\]

we easily obtain the following known inequality (see [11]):

\[
R_1(r_2 + r_3) + R_2(r_3 + r_1) + R_3(r_1 + r_2) \geq (r_3 + r_1)(r_1 + r_2) + (r_1 + r_2)(r_2 + r_3) + (r_2 + r_3)(r_3 + r_1).
\]

3. **Proof of Theorem 1.2**

In order to prove Theorem 1.2, we shall use the following known result (see [1, inequality 12.55]):

Lemma 3.1. Let \(P \) be a point in the plane of the triangle \(ABC \).

(i) If \(A \geq \frac{2}{3} \pi \), then

\[
R_1 + R_2 + R_3 \geq b + c,
\]

(33)
Two new refinements of a linear geometric inequality

with equality if and only if $P = A$.

(ii) If $A < \frac{2\pi}{3}$, then

$$R_1 + R_2 + R_3 \geq \sqrt{\frac{1}{2}(a^2 + b^2 + c^2) + 2\sqrt{3}S},$$

with equality if and only if $\angle BPC = \angle CPA = \angle APB$.

Lemma 3.2. In triangle ABC, if $\max\{A, B, C\} \leq \frac{2\pi}{3}$ then

$$\sqrt{3}s \geq 2R + 5r,$$

with equality if and only if $\triangle ABC$ is equilateral.

Inequality (35) can be obtained by Xue-Zhi Yang’s result in [15], which was used to prove inequality (4) by Xiao Chu in [16].

We are now read to prove Theorem 1.2.

Proof. We first prove the first inequality of (9), i.e.,

$$R_1 + R_2 + R_3 \geq 2r + \frac{2}{3}\sqrt{a^2 + b^2 + c^2}.$$

Based on Lemma 1, we divide the following two cases to complete the proof.

Case 1. $A > \frac{2\pi}{3}$.

In this case, by Lemma 1 we only need to prove that

$$b + c > 2r + \frac{2}{3}\sqrt{a^2 + b^2 + c^2}.$$

Note that $b + c > 2h_a > 4r$, thus we only need to show that

$$9(b + c - 2r)^2 - 4(a^2 + b^2 + c^2) > 0,$$

i.e.,

$$9(b + c)^2 + 36r^2 - 4a^2 - 4b^2 - 4c^2 > 36r(b + c).$$

Multiplying both sides by s and using $S = rs$ and the known identity

$$(s - a)(s - b)(s - c) = sr^2,$$

we know that inequality (38) is equivalent to

$$s(5b^2 + 5c^2 + 18bc - 4a^2) + 36(s - a)(s - b)(s - c)$$

$$> 36(b + c)\sqrt{s(s - a)(s - b)(s - c)}.$$

For proving the above inequality, we set $s - a = x, s - b = y, s - c = z$, then $a = y + z, b = z + x, c = x + y, s = x + y + z(x, y, z > 0)$ and we see that inequality (40) is equivalent to

$$(x + y + z) [5(z + x)^2 + 5(x + y)^2 + 18(z + x)(x + y) - 4(y + z)^2]$$

$$+ 36xyz > 36(2x + y + z)\sqrt{xyz(x + y + z)},$$

i.e.,

$$28x^3 + 56(y + z)x^2 + (29y^2 + 102yz + 29z^2)x + (y + z)(y^2 + 10yz + z^2)$$

$$> 36(2x + y + z)\sqrt{xyz(x + y + z)}.$$
Thus, we need to prove
\[
[28x^3 + 56(y + z)x^2 + (29y^2 + 102yz + 29z^2)x + (y + z)(y^2 + 10yz + z^2)]^2
- 36^2xyz(2x + y + z)^2 > 0.
\]

Expanding out and collecting like terms gives
\[
784x^6 + 3136(y + z)x^5 + (4760y^2 + 6800yz + 4760z^2)x^4
+ 8(y + z)(413z^2 + 202yz + 413y^2)x^3 + (953y^2 + 780y^3 + 1590y^2z^2 + 2(y + z)(29y^2 - 256yz)x^2
+ 2(y + z)(29y^2 - 256yz - 218y^2z^2 - 256y^4z + 29z^4)x
+ (y + z)^2(y^2 + 10yz + z^2)^2 > 0.
\]

Obviously, to prove this inequality it is enough to prove that
\[
(953y^2 + 780y^3 + 1590y^2z^2 + 2(y + z)(29y^2 - 256yz - 218y^2z^2 - 256y^4z + 29z^4)x
\]
so that
\[
3yz((561(y^2 + z^2) + 157(y^2 + yz + z^2)(y - z)^2) > 0,
\]

so that \(F_x < 0 \), thus we conclude that inequality (42) holds and inequality (37) is proved.

Case 2 \(A \leq \frac{2}{3}\pi \).

In this case, by Lemma 2, to prove inequality (36) we only need to prove that
\[
\sqrt{\frac{1}{2}(a^2 + b^2 + c^2) + 2\sqrt{3}S} \geq 2r + \frac{2}{3}\sqrt{a^2 + b^2 + c^2}.
\]

Squaring both sides, it becomes
\[
\frac{1}{2}(a^2 + b^2 + c^2) + 2\sqrt{3}S \geq 4r^2 + \frac{4}{9}(a^2 + b^2 + c^2) + \frac{8}{3}\sqrt{a^2 + b^2 + c^2},
\]
that is
\[
(a^2 + b^2 + c^2) + 36\sqrt{3}rs \geq 72r^2 + 48r\sqrt{a^2 + b^2 + c^2}.
\]

Squaring both sides again, we have to prove that
\[
(a^2 + b^2 + c^2)^2 + 3888r^2s^2 + 72\sqrt{3}r(a^2 + b^2 + c^2)
\]
\[
\geq 5184r^4 + 2304r^2(a^2 + b^2 + c^2) + 6912r^3\sqrt{a^2 + b^2 + c^2}.
\]

According to Lemma 3 and the following known identity:
\[
a^2 + b^2 + c^2 = 2(s^2 - 4Rr - r^2),
\]
we only need to prove the following inequality:
\[
4(s^2 - 4Rr - r^2)^2 + 3888s^2r^2 + 144(R + 5r)r(s^2 - 4Rr - r^2)
\]
\[
\geq 5184r^4 + 4608s^2(s^2 - 4Rr - r^2) + 6912r^3\sqrt{2(s^2 - 4Rr - r^2)},
\]
Two new refinements of a linear geometric inequality

i.e.,
\[4s^4 + (256Rr - 8r^2)s^2 - 1088R^2r^2 + 15296Rr^3 - 1292r^4 \]
\[\geq 6912r^3\sqrt{2(s^2 - 4Rr - r^2)}. \]

(46)

According to the Gerretsen inequality (see [1, inequality 5.8])
\[s^2 \geq 16Rr - 5r^2 \]
and Euler inequality \(R \geq 2r \), we have
\[4s^4 + (256Rr - 8r^2)s^2 - 1088R^2r^2 + 15296Rr^3 - 1292r^4 \]
\[> 4(16Rr - 5r^2)^2 + (256Rr - 8r^2)(16Rr - 5r^2) - 1088R^2r^2 \]
\[+ 15296Rr^3 - 1292r^4 \]
\[= 576r^2(7R^2 + 23Rr - 2r^2) > 0. \]

Thus, to prove (46) we only need to prove that
\[\left[4s^4 + (256Rr - 8r^2)s^2 - 1088R^2r^2 + 15296Rr^3 - 1292r^4 \right]^2 \]
\[- \left[6912r^3\sqrt{2(s^2 - 4Rr - r^2)} \right]^2 \geq 0. \]

After arranging, it becomes
\[Q_0 \equiv 16s^8 + 64r(32R - r)s^6 + 96(592R^2 + 1232Rr - 107r^2)r^2s^4 \]
\[- 64(8704R^3 - 122640R^2r + 14160Rr^2 + 1492669r^3)r^3s^2 \]
\[+ 16(73984R^4 - 2080256R^3r + 14798688R^2r^2 \]
\[+ 21417568Rr^3 + 6076297r^4) - 2r^2) > 0, \]

which is required to prove.

Putting
\[e = R - 2r, \]
\[g_1 = s^2 - 16Rr + 5r^2, \]
\[g_2 = 4R^2 + 4Rr + 3r^2 - s^2, \]

then we have \(e \geq 0 \) and Gerretsen inequalities \(g_1 \geq 0, g_2 \geq 0 \)(see [1]).

Through analysis, we obtain the following identity:
\[Q_0 = m_1g_2 + e(m_2g_1 + m_3) + m_4g_1^2, \]

where
\[m_1 = 35831808r^6, \]
\[m_2 = 55296(56R^3 + 289Rr + 539r^2)r^3, \]
\[m_3 = 331776(49R^3 + 420R^2r + 909Rr^2 - 434r^3)r^4, \]
\[m_4 = 16 \left[s^4 + 2r(80R - 7r)s^2 + (8416R^2 + 5504Rr - 527r^2)r^2 \right]. \]

Therefore, by Euler inequality \(R \geq 2r \) and Gerretsen inequalities \(g_1 \geq 0, g_2 \geq 0 \), we see that \(Q_0 \geq 0 \) holds true.

Combining the arguments of the above two cases, we finish the proof of inequality (36).

The last two inequalities of (9) are easily proved.
The second inequality of (9) is actually equivalent to
\[(50) \sqrt{a^2 + b^2 + c^2} \leq 3R,\]
which is also equivalent to the simple known inequality \(a^2 + b^2 + c^2 \leq 9R^2\). Since \(bc = 2Rh_a\), we see that the third inequality of (9) is equivalent to
\[(51) (R + r)\sqrt{a^2 + b^2 + c^2} \geq bc + ca + ab.\]
In view of \(a^2 + b^2 + c^2 \geq bc + ca + ab\) and the following known inequality (see [1, inequality 5.17]):
\[(52) bc + ca + ab \leq 4(R + r)^2,\]
we conclude that inequality (51) holds and finish the proof of inequality chain (9). In addition, we can easily determine the equality conditions of (9). This completes the proof of Theorem 1.2.

4. Corollaries and Conjectures

In this section, we give several corollaries of Theorem 1.1 and Theorem 1.2 and present a few relevant conjectures.

Since\[(\frac{\sqrt{3}}{2}a + h_a)^2 \geq 2\sqrt{3}ah_a = 4\sqrt{3}S,\]
thus by the first inequality of (8) we get the following known inequality (see [1, inequality 12.18]):

Corollary 4.1. For any point \(P\) in the plane of \(\triangle ABC\), it holds:
\[(53) R_1 + R_2 + R_3 \geq 2\sqrt{3S}.\]

Let \(P\) be the centroid of \(\triangle ABC\), then \(R_1 = \frac{2}{3}m_a, R_2 = \frac{2}{3}m_b, R_3 = \frac{2}{3}m_c\).
Thus by the first inequality of (8) we have

Corollary 4.2. In any triangle \(ABC\), holds:
\[(54) m_a + m_b + m_c \geq \frac{3\sqrt{3}}{4}a + \frac{3}{2}h_a.\]

For the acute triangle \(ABC\), the author conjectures that the following stronger inequality holds.

Conjecture 4.1. In the acute triangle \(ABC\), holds:
\[(55) m_a + m_b + m_c \geq \frac{3\sqrt{3}}{4}a + \frac{3}{2}w_a.\]

For the first inequality of (8), i.e., (10), we also have two similar inequalities. Adding these three inequalities gives

Corollary 4.3. For any point \(P\) in the plane of \(\triangle ABC\), it holds:
\[(56) R_1 + R_2 + R_3 \geq \frac{1}{3}(\sqrt{3}s + h_a + h_b + h_c).\]

Let \(P\) be the centroid of \(\triangle ABC\), then by (56) we can obtain
Corrolary 4.4. In any triangle ABC, holds:
\begin{equation}
2(m_a + m_b + m_c) \geq \sqrt{3s} + h_a + h_b + h_c.
\end{equation}

It follows from inequalities (19) and (17) that
\begin{equation}
3(R_2 + R_3) \geq 2(h_b + h_c) - h_a + 3r_1.
\end{equation}

Adding R_1 and then using the previous inequality (3), the following linear inequality is obtained:

Corrolary 4.5. For any point P in the plane of $\triangle ABC$, it holds:
\begin{equation}
R_1 + 3(R_2 + R_3) \geq 2(r_1 + h_b + h_c),
\end{equation}

Remark 4.1. The previous inequalities (3) and (16) are both actually valid for any point P in the plane, thus inequality (59) holds in the same situation too.

For inequality (59), we present the following stronger inequality.

Conjecture 4.2. For any point P in the plane of $\triangle ABC$, it holds:
\begin{equation}
R_1 + 3(R_2 + R_3) \geq 2(r_1 + w_b + w_c).
\end{equation}

Let P be the centroid of $\triangle ABC$, then by the first inequality of (9) we get

Corrolary 4.6. In any triangle ABC, holds:
\begin{equation}
m_a + m_b + m_c \geq 3r + \sqrt{a^2 + b^2 + c^2}.
\end{equation}

Inspired by this inequality, we pose the following conjecture:

Conjecture 4.3. In any triangle ABC, holds:
\begin{equation}
3r + \sqrt{a^2 + b^2 + c^2} \geq k_a + k_b + k_c,
\end{equation}
where k_a, k_b, k_c are the symmedians of $\triangle ABC$.

Remark 4.2. If (62) is true then by Theorem 2 we conclude that the following linear inequality similar to (2) and (4) holds:
\begin{equation}
R_1 + R_2 + R_3 \geq \frac{2}{3}(k_a + k_b + k_c),
\end{equation}
which was proved by Xiao-Guang Chu in [16].

Remark 4.3. For the acute triangle ABC, the author has already proved the following inequality:
\begin{equation}
3r + \sqrt{a^2 + b^2 + c^2} \geq w_a + w_b + w_c,
\end{equation}
which shows that the first inequality of (9) is stronger than inequality (4) for the acute triangle ABC.

Adding inequality (17) and its two analogues gives
\begin{equation}
2(R_1 + R_2 + R_3) - (r_1 + r_2 + r_3) \geq \sqrt{3s},
\end{equation}
which is valid for any interior point P of triangle ABC. Here, we put forward the following similar conjecture:

Conjecture 4.4. For any interior point P of $\triangle ABC$, it holds:
\begin{equation}
2(R_1 + R_2 + R_3) - (r_1 + r_2 + r_3) \geq m_a + m_b + m_c.
\end{equation}
Remark 4.4. If the above inequality holds, then by inequality (3) one easily obtains
\[R_1 + R_2 + R_3 \geq \frac{1}{3}(m_a + m_b + m_c + h_a + h_b + h_c), \]
which follows from the previous inequality chain (7).

Finally, we present an inequality which is stronger than the Erdős-Mordell inequality (1).

Conjecture 4.5. For any interior point \(P \) of \(\triangle ABC \), it holds:
\[R_1 + R_2 + R_3 \geq 2 \left(\sqrt{\frac{m_a}{h_a} r_1} + \sqrt{\frac{m_b}{h_b} r_2} + \sqrt{\frac{m_c}{h_c} r_3} \right). \]

References