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NEW CHARACTERIZATIONS OF

TANGENTIAL QUADRILATERALS

MARTIN JOSEFSSON and MARIO DALCÍN

Abstract. We prove 13 new necessary and sufficient conditions for when
a convex quadrilateral can have an incircle.

1. Introduction

A tangential quadrilateral is a convex quadrilateral that can have an in-

circle, that is, a circle inside of itself that is tangent to all four sides. It has
been known since antiquity that all triangles have the capacity of having an
incircle, but this is not the case for quadrilaterals.

Figure 1. ABCD is tangential ⇔ AB + CD = BC +DA

As late as in 2008, there were only about ten known characterizations of
tangential quadrilaterals, but since then, that number has increased rapidly.
The papers [12, 5, 6, 7, 8] contain a total of approximately 37 different
necessary and sufficient conditions for when a convex quadrilateral can have
an incircle, all with proofs or references (where the exact number depends
on if very similar corollaries are considered different or not).
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Of all of these previously known characterizations we just remind the
reader that two famous and important characterizations (probably the two
oldest) are that a convex quadrilateral ABCD can have an incircle if and
only if the angle bisectors of all four vertex angles are concurrent; or if and
only if the sides satisfy Pitot’s theorem (see Figure 1):

(1) AB + CD = BC +DA.

Different proofs of this last theorem as well as some historical background
were recently discussed in [10]. Half of the characterizations in this paper
will be proved by showing that they are equivalent to (1).

Considering the large number of known characterizations of tangential
quadrilaterals, one might think this topic is exhausted. But that is far from
the truth. In fact, in the present paper we will prove 13 more that we have
not seen published before, making it a total of 50 known necessary and
sufficient conditions for when a convex quadrilateral can have an incircle.
Almost all of these new characterizations were discovered by the second
author using a dynamic geometry computer program, while the first author
provided their proofs.

2. Subtriangle incircles

We start with a stronger version of Theorem 2 in [5].

Theorem 2.1. The incircles in the four overlapping triangles formed by

the diagonals in a convex quadrilateral are tangent to the sides in eight

points, two per side, making one distance between tangency points for each

side. Two adjacent such distances are equal if and only if it is a tangential

quadrilateral.

Figure 2. ABCD is tangential ⇔ V ′W ′ = X ′Y ′

Proof. We use notations as in Figure 2. Then, by the two tangent theorem
(the two tangents to a circle from an external point have equal lengths), we
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have

V ′W ′ = V ′D −DW ′

= C ′D −DX ′

= A′C ′ +A′D −DX ′

= A′C ′ + Y ′D −DX ′

= A′C ′ +X ′Y ′.(2)

In the same way
Z ′S′ = B′D′ +X ′Y ′.

But

(3) A′C ′ = B′D′ = 1
2
|AB −BC + CD −DA|

in all convex quadrilaterals according to the proof of Theorem 1 in [5], which
proves that V ′W ′ = Z ′S′ in all convex quadrilaterals.

From (2), we get V ′W ′ = X ′Y ′ if and only if A′C ′ = 0, which holds if
and only if ABCD is tangential according to (3) and (1). �

Theorem 2.2. In a convex quadrilateral, the incircle in one of the trian-

gles created by a diagonal and the incircles in the two triangles created by

the other diagonal are tangent to two of the sides of the first triangle in

four points, creating two lines that do not intersect within the quadrilateral.

These lines are parallel if and only if it is a tangential quadrilateral.

Figure 3. ABCD is tangential ⇔ U ′V ′||T ′W ′

Proof. With notations as in Figure 3, we have by the intercept theorem
and its converse that

U ′V ′||T ′W ′ ⇔
CU ′

U ′T ′
=

CV ′

V ′W ′
⇔ U ′T ′ = V ′W ′

which by Theorem 2.1 is equivalent to that the quadrilateral is tangential.
We used that CU ′ = CV ′ according to the two tangent theorem. �

To prove the next characterization we need a property of a right kite, that
is, a kite with two opposite right angles.
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Lemma 2.1. In a right kite, the length of the diagonal that divides it into

two isosceles triangles is equal to the length of the other diagonal times sine

of any one of the two angles between the sides of equal length.

Proof. Let a right kite with consecutive sides a, a, b, b and diagonals p, q
have the angle α between the sides of length a. Its area can be calculates in
two ways as

1
2
pq = 1

2
a2 sinα+ 1

2
b2 sin (π − α)

which is simplified into
pq = (a2 + b2) sinα

and further as
pq = p2 sinα

according to the Pythagorean theorem. We get q = p sinα, as claimed. �

Theorem 2.3. In a convex quadrilateral ABCD where the diagonals inter-

sect at P , the incircles in triangles ABP , BCP , CDP , DAP are tangent

to each of the diagonals, making one chord per circle between such tangency

points. The product of the lengths of opposite chords are equal if and only if

ABCD is a tangential quadrilateral.

Figure 4. ABCD is tangential ⇔ S1T1 ·W1X1 = U1V1 · Y1Z1

Proof. Suppose the points of tangency are S1, T1, U1, V1, W1, X1, Y1,
Z1, and let I1, I2, I3, I4 be the incenters of these circles (see Figure 4).
In [14] it was proved that ABCD is tangential if and only if I1I2I3I4 is a
cyclic quadrilateral. According to the intersecting chords theorem and its
converse, I1I2I3I4 is cyclic if and only if PI1 ·PI3 = PI2 ·PI4. By applying
Lemma 2.1 in the right kites PS1I1T1, PW1I3X1, PU1I2V1 and PY1I4Z1,
this is equivalent to

S1T1

sin θ
·
W1X1

sin θ
=

U1V1

sin (π − θ)
·

Y1Z1

sin (π − θ)

which is simplified as

S1T1 ·W1X1 = U1V1 · Y1Z1.
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The last equality is the stated product of the lengths of opposite chords.
Since there are equivalence in all the steps, this concludes the proof. �

3. Subtriangle excircles

An excircle to a triangle is a circle that is tangent to one of the sides
and the extensions of the other two sides. We will need a formula for the
distance between a vertex of the triangle and one of the tangency points of
the excircle.

Figure 5. An excircle to a triangle

Suppose the excircle to side AB in a triangle ABC is tangent to the
extensions of BC, CA at E, F respectively and to AB at D. We seek a
formula for AF = AD. Applying the two tangent theorem, we get

CA+AF = BC +BE = BC +BD = BC +AB −AD = BC +AB −AF

so

(4) AF = 1
2
(AB +BC − CA) = AD.

For the other part of side AB, we get

BD = AB −AD = 1
2
(AB −BC + CA) = BE.

These formulas are well-known, but we included them since they are crucial
tools in the proofs of the next three characterizations as well as one later
on.

The following is an excircle version of Theorem 1 in [5].

Theorem 3.1. In a convex quadrilateral, the excircles to the two triangles

formed by a diagonal are tangent to each other on that diagonal if and only

if it is a tangential quadrilateral.

Proof. Suppose the excircles to triangles ABD and BCD are tangent to
diagonal BD at Q1 and Q2 respectively (see Figure 6). Then

BQ1 =
1
2
(BD +DA−AB), BQ2 =

1
2
(BD + CD −BC),

so
2(BQ2 −BQ1) = AB −BC + CD −DA.
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Figure 6. ABCD is tangential ⇔ Q1Q2 = 0

We have that

Q1 ≡ Q2 ⇔ BQ1 = BQ2 ⇔ AB + CD = BC +DA

which proves the theorem for triangles ABD and BCD according to Pitot’s
theorem. In the same way it is proved true for triangles ACD and ABC. �

In the next two characterizations we have different excircle versions of
Theorem 2.1 in this paper.

Theorem 3.2. In a convex quadrilateral there are four excircles to the four

overlapping triangles created by the diagonals that are tangent to the diago-

nals. The distance between tangent points on the extensions of two adjacent

sides are equal if and only if it is a tangential quadrilateral.

Proof. In a convex quadrilateral, we have (see Figure 7)

S′′Z ′′ = S′′A+AB +BZ ′′

= 1
2
(−AB +BC + CA) +AB + 1

2
(−AB +BD +DA)

= 1
2
(AC + CB +BD +DA)

and in the same way

V ′′W ′′ = 1
2
(AC + CB +BD +DA)

so S′′Z ′′ = V ′′W ′′. Similarly, it holds that

X ′′Y ′′ = 1
2
(BD +DC + CA+AB) = U ′′T ′′.

Hence

S′′Z ′′ −X ′′Y ′′ = 1
2
(CB +DA−DC −AB)

so the distance between tangent points on the extensions of two adjacent
sides are equal if and only if it is a tangential quadrilateral according to
Pitot’s theorem. �



58 Martin Josefsson and Mario Dalćın

Figure 7. ABCD is tangential ⇔ S′′Z′′ = X ′′Y ′′

Theorem 3.3. In a convex quadrilateral there are eight excircles to the four

overlapping triangles formed by the diagonals that are tangent to the sides of

the quadrilateral. Two adjacent distances between tangency points on each

side are equal if and only if it is a tangential quadrilateral.

Figure 8. ABCD is tangential ⇔ S3S4 = V3V4

Proof. We use notations as in Figure 8. Then

AS4 =
1
2
(AB +BD −DA), AS3 =

1
2
(AB +BC −AC)
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so
S3S4 = |AS4 −AS3| =

1
2
|BD +AC −DA−BC|.

In the same way

U3U4 =
1
2
|BD +AC −DA−BC| = S3S4

and
T3T4 =

1
2
|BD +AC −AB − CD| = V3V4.

Here we see that opposite distances between tangency points on each side
are always equal, but for adjacent distances we have that

S3S4 = V3V4 ⇔ AB + CD = BC +DA

which according to Pitot’s theorem is true if and only if ABCD can have
an incircle. �

Next we have an excircle version of Theorem 2.2.

Theorem 3.4. In a convex quadrilateral, consider the excircle to one of

the triangles created by a diagonal that is tangent to that diagonal, and the

excircles to the two triangles created by the other diagonal that are tangent

to this second diagonal. These three excircles are tangent to the extensions

of two adjacent sides of the quadrilateral in four points, creating two lines

of which one connects two tangent points on the first mentioned excircle.

These lines are parallel if and only if it is a tangential quadrilateral.

Figure 9. ABCD is tangential ⇔ U ′′V ′′||W ′′T ′′

Proof. Using notations as in Figure 9, where T ′′, U ′′, V ′′, W ′′ are tangent
points on the extensions of sides BC, CD and Q3, Q4 are tangent points on
diagonal AC, then the lines U ′′V ′′ and W ′′T ′′ are parallel if and only if the
angles U ′′V ′′W ′′ and T ′′W ′′V ′′ are equal. Since triangle CU ′′V ′′ is isosceles,
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this is equivalent to that triangle CT ′′W ′′ is also isosceles with CT ′′ = CW ′′.
This in turn is (according to the two tangent theorem) equivalent to that
CQ4 = CQ3, which is equivalent to that ABCD is tangential according to
Theorem 3.1. �

The following is an excircle version of Theorem 2.3.

Theorem 3.5. In a convex quadrilateral ABCD where the diagonals inter-

sect at P , the excircles to triangles ABP , BCP , CDP , DAP that are tan-

gent to the quadrilateral sides, make one chord per circle between their tan-

gency points on the extensions of the diagonals. The product of the lengths of

opposite chords are equal if and only if ABCD is a tangential quadrilateral.

Figure 10. ABCD is tangential ⇔ ST ·WX = UV · Y Z

Proof. Suppose the points of tangency are S, T , U , V , W , X, Y , Z, and
let J1, J2, J3, J4 be the excenters of the excircles (see Figure 10). Theorem
5 in [5, p. 73] states that ABCD is tangential if and only if J1J2J3J4 is a
cyclic quadrilateral. According to the intersecting chords theorem and its
converse, J1J2J3J4 is cyclic if and only if PJ1 ·PJ3 = PJ2 ·PJ4. By applying
Lemma 2.1 in the right kites PSJ1T , PWJ3X, PUJ2V and PY J4Z, this is
equivalent to

ST

sin θ
·
WX

sin θ
=

UV

sin (π − θ)
·

Y Z

sin (π − θ)

which is simplified as

ST ·WX = UV · Y Z.

The last equality is the stated product of the lengths of opposite chords.
Since there are equivalence in all the steps, this concludes the proof. �
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4. Areas and radii

The three points where an excircle is tangent to a side of a triangle and
the extensions of the adjacent two sides determine a new triangle that is
called the contact triangle. If the original triangle has area S, circumradius
R and the considered excircle has radius ra, then this contact triangle has
area

(5) Sa =
ra

2R
S.

Several different proofs of this formula can be found at [3].

Theorem 4.1. In a convex quadrilateral, the product of the areas of opposite

triangles determined by the points of tangency of the excircles to the two

triangles created by a diagonal which are tangent to a side of the quadrilateral

are equal if and only if it is a tangential quadrilateral.

Figure 11. ABCD is tangential ⇔ SaSc = SbSd

Proof. In a convex quadrilateral ABCD, let triangles ABC, CDA have
areas S1, S2 and circumradii R1, R2 respectively. Let the excircles tangent
to sides a = AB, b = BC, c = CD, d = DA have radii ra, rb, rc, rd and
their corresponding contact triangles have areas Sa, Sb, Sc, Sd respectively
(see Figure 11). Applying (5) yields

SaSc − SbSd =
raS1

2R1

·
rcS2

2R2

−
rbS1

2R1

·
rdS2

2R2

=
S1S2

4R1R2

(rarc − rbrd) .

Now we use the well-known formula for the radius of an excircle to a triangle
(ra = S

s−a
where S is the triangle area and s is the semiperimeter) to get

rarc − rbrd =
2S1

−a+ b+ p
·

2S2

−c+ d+ p
−

2S1

−b+ p+ a
·

2S2

−d+ p+ c
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where p = AC is the length of one of the diagonals. The right hand side is
factorized as

8S1S2p(a− b+ c− d)

(−a+ b+ p)(−c+ d+ p)(−b+ p+ a)(−d+ p+ c)
.

Thus we have derived that

SaSc − SbSd =
2S2

1S
2
2p(a− b+ c− d)

R1R2(−a+ b+ p)(−c+ d+ p)(−b+ p+ a)(−d+ p+ c)

where the denominator is never zero according to the triangle inequality.
Hence

SaSc = SbSd ⇔ a+ c = b+ d

which proves this characterization according to Pitot’s theorem (1). �

There is a similar version for the excircles related to the triangles created
by the other diagonal. We also note that the theorem could be stated in
terms of the product of the considered exradii instead (see Figure 12):

Theorem 4.2. In a convex quadrilateral, the product of the radii in opposite

excircles to those triangles created by a diagonal which are tangent to a side

of the quadrilateral are equal if and only if it is a tangential quadrilateral.

Figure 12. ABCD is tangential ⇔ rarc = rbrd

Proof. In the previous proof, we showed that

rarc − rbrd =
8S1S2p(a− b+ c− d)

(−a+ b+ p)(−c+ d+ p)(−b+ p+ a)(−d+ p+ c)
.

Hence

rarc = rbrd ⇔ a+ c = b+ d

completing the proof of this exradii characterization. �
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Note that the excircles we just considered are all tangent to one side in
the quadrilateral, the extension of an adjacent side and the extension of one
diagonal. There is an identical looking characterization for the excircles that
are tangent to one side in the quadrilateral and both of the adjacent sides,
which was proved as Theorem 5 in [6].

5. Cyclic quadrilaterals

A cyclic quadrilateral is a quadrilateral whose vertices all lie on a circle.
Detailed studies of their characterizations were conducted in [9, 11, 2]. The
following theorem is an excircle version of Theorem 8 in [7], which in turn
is a generalization of a theorem proved in [15, pp. 197–198].

Theorem 5.1. In a convex quadrilateral ABCD, the excircles to the two

triangles formed by a diagonal that are tangent to that diagonal are also tan-

gent to the extensions of all four sides. These last four points are the vertices

of a cyclic quadrilateral if and only if ABCD is a tangential quadrilateral.

Figure 13. If ABCD is tangential, then EFGH is cyclic

Proof. We consider the excircles to triangles ABD and BCD. Let E,
F , G, H be their tangency points on AB, BC, CD, DA respectively (see
Figure 13). Then AE = AH and CF = CG according to the two tangent
theorem.

(⇒) If ABCD is tangential, then AB+CD = BC+DA. ThusDA−AB =
CD −BC and we have that BE = BF and DH = DG since

BE = 1
2
(BD +DA−AB), BF = 1

2
(BD + CD −BC)

and

DH = 1
2
(BD +AB −DA), DG = 1

2
(BD +BC − CD).

This implies that the triangles HAE, FCG, EBF , GDH are all isosceles,
so their angle bisectors to the angles HAE, FCG, EBF , GDH are also
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perpendicular bisectors to the bases EH, GF , FE, HG. Since the angle
bisectors in the tangential quadrilateral ABCD are concurrent, then so are
the perpendicular bisectors in quadrilateral EFGH, confirming that it is
cyclic.

Figure 14. If ABCD is not tangential, then EFGH is not cyclic

(⇐) We do an indirect proof of the converse. If ABCD is not tangential,
we shall prove that EFGH cannot be cyclic. We have that ∠CGF = 1

2
(π−

∠C) and ∠AEH = 1
2
(π − ∠A). Assume without loss of generality that the

point Q2 where the excircle to triangle ABD is tangent to BD is closer to
D than the point Q1 where the excircle to triangle BCD is tangent to that
diagonal (see Figure 14). Then

DG = DQ2 < DQ1 = DH ⇒ ∠CGH = ∠DGH > 1
2
(π − ∠D)

since a longer side in a triangle is opposite a larger angle. In the same way

BE = BQ1 < BQ2 = BF ⇒ ∠AEF = ∠BEF > 1
2
(π − ∠B).

Hence for two opposite angles in EFGH, we have

∠FGH + ∠FEH >
4π − (∠A+ ∠B + ∠C + ∠D)

2
=

2π

2
= π

which proves that EFGH is not cyclic.
The same is true for the four tangency points on the extended sides related

to the two excircles tangent to AC of the triangles formed by that diagonal.
�

From the first part of the proof we get that when ABCD is tangential,
then its incircle is concentric with the circumcircle of EFGH.

Next we return to the configuration of Theorem 2.1 in this paper.

Theorem 5.2. In a convex quadrilateral ABCD, let the incircles in tri-

angles ABC, BCD, CDA, DAB be tangent to the sides AB, BC, CD,

DA, AB at points S′, T ′, U ′, V ′, W ′, X ′, Y ′, Z ′ respectively. The lines

Z ′U ′, T ′W ′, V ′Y ′, X ′S′ create a quadrilateral, which is cyclic if and only if

ABCD is a tangential quadrilateral.
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Figure 15. ABCD is tangential ⇔ KLMN is cyclic

Proof. (⇒) Let KLMN be the quadrilateral created by the lines Z ′U ′,
T ′W ′, V ′Y ′, X ′S′. When ABCD has an incircle (see Figure 15), we have

∠K = π −

(

π − ∠B

2
+

π − ∠A

2

)

=
∠A+ ∠B

2

since AS′ = AX ′ and BZ ′ = BU ′ according to the two tangent theorem
and Theorem 2.1. In the same way

∠M =
∠C + ∠D

2
.

Thus

∠K + ∠M =
∠A+ ∠B + ∠C + ∠D

2
= π

confirming that KLMN is cyclic.
(⇐) We do an indirect proof of the converse. When ABCD is not tan-

gential, suppose without loss of generality that Z ′S′ > X ′Y ′. This implies
AS′ > AX ′, so

∠KS′Z ′ <
π − ∠A

2
, ∠KZ ′S′ <

π − ∠B

2
,

∠MV ′W ′ <
π − ∠D

2
, ∠MW ′V ′ <

π − ∠C

2

since a longer side in a triangle is opposite a larger angle. Hence

∠K + ∠M = 2π − (∠KS′Z ′ + ∠KZ ′S′ + ∠MV ′W ′ + ∠MW ′V ′)

> 2π −
π − ∠A+ π − ∠B + π − ∠D + π − ∠C

2

=
∠A+ ∠B + ∠C + ∠D

2
= π

proving that the quadrilateral created by the four lines Z ′U ′, T ′W ′, V ′Y ′,
X ′S′ is not cyclic. �
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We conclude by studying an excircle version of the previous theorem.

Theorem 5.3. In a convex quadrilateral ABCD, let the excircles to trian-

gles ABC, BCD, CDA, DAB that are tangent to the diagonals, be tangent

to the sides AB, BC, CD, DA, AB at points S′′, T ′′, U ′′, V ′′, W ′′, X ′′,

Y ′′, Z ′′ respectively. The lines U ′′Z ′′, W ′′T ′′, Y ′′V ′′, S′′X ′′ create a quadri-

lateral, which is cyclic if and only if ABCD is a tangential quadrilateral.

Figure 16. ABCD is tangential ⇔ K′L′M ′N ′ is cyclic

Proof. Let K ′L′M ′N ′ be the quadrilateral created by the lines U ′′Z ′′,
W ′′T ′′, Y ′′V ′′, S′′X ′′. When ABCD is tangential, the excircles to trian-
gles ABC and ADC are tangent to diagonal AC at the same point, say Q

(see Figure 16), according to Theorem 3.1. Then AS′′ = AQ = AX ′′, so
∠AX ′′S′′ = 1

2
(π − ∠A). Similarly, we have ∠BZ ′′U ′′ = 1

2
(π − ∠B), so in

triangle K ′S′′Z ′′, we get

∠K ′ = π −

(

π − ∠B

2
+

π − ∠A

2

)

=
∠A+ ∠B

2
.

In the same way

∠M ′ =
∠C + ∠D

2
;

thus

∠K ′ + ∠M ′ =
∠A+ ∠B + ∠C + ∠D

2
= π



New characterizations of tangential quadrilaterals 67

confirming that K ′L′M ′N ′ is cyclic.
The converse result can be proved with an indirect proof in a similar way

as in the proof of the previous theorem. We leave the details as an exercise
for the reader. �

6. Corrections

For those readers who want to study the history of known characteriza-
tions of tangential quadrilaterals (see the reference list), we note a few minor
corrections to previous papers.

In [7, p. 1] Simionescu’s theorem was misquoted. The correct formulation
is according to [13, p. 133]: Let ABCD be a convex quadrilateral which has

sides of lengths a, b, c, d and diagonals of lengths e and f , and let ϕ be the

measure of the angle between the diagonals which is opposite to the side of

length a. Then quadrilateral ABCD is tangential if and only if

ac− bd = ef cosϕ.

The first author of the present paper erroneously used an absolute value on
the left hand side when quoting this theorem, but that would also include the
possibility of quadrilaterals with an excircle (extangential quadrilaterals), as
has been noted by Jean-Pierre Ehrmann.

Theorem 1 in [7] needs a minor reformulation to be true: Let ABCD be a

convex quadrilateral where the interior bisectors of angles A and C intersect

at a point I that is inside the quadrilateral. Then

∠AIB + ∠CID = π = ∠AID + ∠BIC

if and only if it is a tangential quadrilateral. The original formulation ne-
glected to point out the necessity of I being an internal point of the quadri-
lateral. This slip was found by Rudolf Fritsch at Munich university.

As stated, Theorem 3 in [5] is not a valid characterization of tangential
quadrilaterals, since the property of the subtriangle incircles it addresses is
also true in parallelograms. However, the equation T ′

1T
′

3 = T ′

2T
′

4, which was
derived first in the same proof, is a correct characterization of tangential
quadrilaterals.

Finally, regarding Theorem 5 in [5]: It was claimed that this theorem is
due to N. Dergiades in 2004, but since the publication of that paper, we
have found out that the theorem stating that the excenters are the vertices
of a cyclic quadrilateral if and only if the original quadrilateral is tangential
was in fact the first problem on the Iranian Team Selection Test in 2002
according to [1].
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