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APOLLONIUS PROBLEM:

IN PURSUIT OF A NATURAL SOLUTION

Liliana Gabriela Gheorghe

Abstract. We give a geometric solution to Apollonius problem, that
consist in (geometrically) construct all the circles that tangent three given
circles. This method works either if the circles are mutually disjoint, or
not. The centres of all the tangent circles are obtained by (geometrically)
intercepting conics, which restores the whole merit of Romanus ideas.

The key ingredient is the method of polar reciprocals, crafted by V. Pon-
celet in order to solve his Porisma.

Our approach is natural, robust and have purely geometric roots.

1. Introduction

Apollonius classic problem consists in finding (and drawing) all the circles
that are tangent to three given circles whose interiors are disjoint. Variations
of Apollonius problem allows the circles to have non void intersection, and
degenerate cases deals with the same problem in which lines and points
substitute some (or all) of the circles.

Anyone - even those who think never hear of it- must have solved at least
a first instance of a degenerate Apollonius problem: to construct all the
circles that pass through three distinct points. There are either one (the
circumcircle) or no solution (when the three points are collinear). Another
(degenerate) Apollonius problem ask to construct all the circles tangent to
three lines. There will be four circles (the inscripted and the ex-inscripted
circles of a triangle), if the lines are in general position, two circles, if two
of the lines are parallel and no solution if the three lines are either parallel,
or concurrent.

In these elementary cases, the circles are easy to construct, and the num-
ber of solutions is obvious. But in the general setting, solving this problem
is not a trivial task. The proper Apolonius problem, in which we have to
construct all the tangent circles to three given circles that have disjoint in-
teriors, admits eight solutions, corresponding to each tangency type: (eee),
(iii), (eei), (iie), (eie), (iei), (iee) and (eii).
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Here, the label (eie) denotes a circle that tangent externally the first and
the third circle and internally, the second one.

The Apollonius problem requires to draw them: to construct them with
a line and a compass only.

Nowadays, there is a lot of accessible literature on Apollonius problem;
see e.g. [1],[2] and the references therein; as a matter of fact, any curios
reader can easily find an abundance of approaches and references by simply
making a ”search.”

The approach we propose here is new and combines the straightforward-
ness of Romanus solutions, with inversive methods and polar reciprocity.

Romanus (a latinized name of the flemish mathematician Adriaan van
Roomen) used the fact that the loci of the centres of circles that tangent a
pair of external circles, are branches of hyperbolas; hence, by intercepting
these branches of hyperbolas he claimed to obtain the centres of the circles
that tangents three circles. The problem was that he did not showed how
to intercept these hyperbolas with line and compass only.

Unlike Romanus, we use ellipses, instead of hyperbolas; ellipses will do a
better job, since any intersection of any pair of such ellipses will lead to a
proper centre of a solution circle of the packed problem. And we also show
how we may intercept these conics, with line and compass only (we perform
the whole geometric construction).

The approach we give here is natural, fluid and enables a purely geometric
construction; it works essentially in the same manner whether the circles are
external, tangent, secant or internal, or are reduced to mere points; the same
technique easily adapts to solve degenerate cases of Apollonius problem, in
which the three elements are chosen arbitrarily between circles, lines or
points, and their relative position is arbitrary.

The main ingredients of our proof are the method of polar reciprocals of
Poncelet and common sense.

2. The virtues of the packed problem

The (classic) Apollonius problem is the following: given three mutually
disjoint circles, to draw all the circles that tangent them all.

One inconvenient of drawing all these circles, is that some of them may be
very small, other very big, and will look like lines; except for the rare case,
in which the given circle have comparable radius and their centres determine
a triangle that is ”almost” equilateral, that will be the case.

An inversion w.r. to any of the given circles, transforms this problem into
a simpler one and its drawing, into a nicer one.

2.1. The packed Apolonius problem. The packed Apollonius problem
is the following: given three circles, two of which are mutually disjoints and
contained into a third circle, to draw all the circles that tangent (simulta-
neously) all.

There is a lot of gain by performing this inversion, w.r to one of the circles.

• The first is simply logistic (or aesthetic): all the tangent circles are
easy to visualise, they are all contained into the inversion circle.
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• The second is that such an inversion eliminates the external tan-
gency type, w.r. to one of the three given circles: all the solutions
will automatically tangent the inversion circle internally! And this
facilitates the drawing itself.
• The third gain is that this new configuration led to intersection of

pairs of ellipses, instead of branches of hyperbolas, as Romanus solu-
tion; and ellipses are more accountable, since their intersection point
never led to false positive results, as the branches of hyperbolas do.

When we perform back the inversion w.r. to the external circle, we obtain
the full solution to the (original) Apollonius problem.

2.2. The locus of the centres of tangents circles. Let O0,O1,O2 be
three circles centred in O0, O1, O2, such that the circles O1,O2 are mutually
disjoint and contained into O0.

By convention, we say that two tangent circles tangent internally, if their
interior have non void intersection, and externally, if their interiors are dis-
joint.

With this convention, all the tangent circles of the packed problem will
tangent internally the bigger (external) circle, and may tangent either ex-
ternally, or internally the internal one.

Let us look closer to the location of the centres of all the circles that
tangent a pair of circles O0 and O1, where the circle O1 is contained into
O0.

Figure 1. the locus of the centres of all tangent circles (ie)

Lemma 2.1. i) The locus of the centres of all circles that tangent internally
the circle O0 and externally the circle O1 is an ellipse, whose foci are in O0

and O1, and whose main axis is 2a = R0 +R1.
ii) The locus of the centres of all circles that tangent internally both the

circle O0 and the circle O1 is an ellipse, whose foci are in O0 and O1, and
whose main axis is 2a = R0 −R1.

The proofs are straightforward and we omit it.
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Figure 2. the locus of the centres of all tangent circles (ii)

2.3. Drawing the solution. At this point, any geometric software, such
as Geogebra, that we employed here, is able to ”intercept” any two such
ellipses and thus ”to solve” the packed Apollonius problem; thus, we are
able to draw all the circles that tangent internally the circle O0, and that
tangents (either internally or externally) the other two circles, O1 and O2.

The centres of these tangent circles are precisely the intersection points
of four ellipses:

• two ellipses with foci in O0, O1 and main axis R0 +R1 and R0−R1;
• two ellipses with foci in O0, O2 and main axis R0 +R2 and R0−R2.

There will be eight interception points, say o1, o2, . . . , o8; these are the
centres of the tangent circles of the packed problem. All these circles will
tangent internally the circle O0; therefore, their tangency points with O0,
say T1, T2, . . . , T8 are the interception of the half-line O0ok, with the circle
O0 itself. The solution of the packed problem will therefore be the circles
o1, o2, . . . o8, centred at ok, and of radius rk = okTk, k = 1, 2, . . . 8.

The solution of the Apollonius (original) problem are the inverse w.r. to
the (external) circle O0 of all these circles.

The next pictures shows either how to obtain the packed solution, as well
as the original one.

Here, we adopt the folllowing convention. The inversion circle O0 is
common black; the circles O1,O2, as well as their inverse w.r. to O0, are
solid coloured in grey scale; the solid coloured circles are the solution of the
packed problem, while the coloured circles, their inverses w.r. to O0, are
the solution of the original problem.

For convenience, we shall proceed in pairs (see Fig 3 to Fig 8).
The reader must be aware that this does not provide yet a geometric

solution, since we did not show how to intercept these ellipses with a line
and compass only.

3. The main tool: polar reciprocity

The solution of the Apolonius packed problem, described above, only
became legitimate if we are able to provide a geometric construction for the
intersection point of those remarkable ellipses, with a line and a compass
only!
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Figure 3. the first packed and unpacked pair of tangent circles

Figure 4. the second packed and unpacked tangent circles

Figure 5. the third pair of packed and unpacked circles

We show how this is possible, by using polar reciprocity, a tool crafted by
Poncelet, in order to solve his Porisma (see [3] or [4]), but that was never
use in order to intercept conics.

From now on, let Γ be a circle centred in Ω and of ray R, which we shall
call the inversion circle.
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Figure 6. the fourth pair of packed and unpacked circles

Figure 7. The packed solution

Definition 3.1. The reciprocal of a given curve, w.r. to an inversion circle,
is the curve whose points are the poles of its tangents.

Due to the fundamental theorem on poles and polars, there is also a dual
(equivalent) definition.

Definition 3.2. The reciprocal of a given curve, w.r. to an inversion circle,
is the curve whose tangents are the polars of its points.

Polar reciprocity extends the definition of polarity: the ”reciprocal” of a
line, w.r. to a circle, is a point: its pole! Also, the reciprocal of a reciprocal
curve is the original.

One of the most remarkable facts, that we shall heavily use, is the follow-
ing.
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Figure 8. The solution of the Apolonius problem: eight
tangent circles

Theorem 3.1. (see [4]) The reciprocal of a circle γ = C(O, r), w.r. to an
inversion circle Γ0 = C(Ω,R) is a conic, Γ. To be specific:

• Γ is an ellipses, if r < ΩO;
• Γ is a parabola, if r = ΩO;
• Γ is a hyperbola, if r > ΩO.

Moreover,

• one of the foci of Γ is precisely Ω, the centre of the inversion circle;
• the polar of O, is the directrix of Γ;
• the eccentricity of the reciprocal conic Γ is e = r

OΩ .

This result is not new, but since the references are somehow scarce and
since the result lack the popularity if fully deserves, we give here its full
(elementary) proof.

Our proof is a variation of the one in art. 309, [4], and is based on the
following elementary fact.

Lemma 3.1. Let O,P two points and let o, p, be their polars w.r. to an

inversion circle centred in Ω. Then ΩO
ΩP = d(O,p)

d(P,o) .

Proof: With the notations in Fig. 9, we have to prove that ΩO
ΩP = OT

PP1
.

Let PB′ ⊥ OΩ and B be the intersection between OΩ and p, the polar of
P. First note that 4ΩPB′ ∼ 4ΩBP ′; hence ΩP

ΩB = ΩB′

ΩP ′ ; this implies that
ΩP ·ΩP ′ = ΩB ·ΩB′, so B and B′ are symmetric w.r. to the inversion circle.

Since, by construction, OT and ΩP are perpendicular to p, they are par-
allel hence, by Thales theorem, 4ΩP ′B ∼ 4OTB; this guarantees that
OT
ΩP ′ = OB

ΩB .
Since (PP1O

′B′) is a rectangle,

PP1 = B′O′ = B′Ω + ΩO′ =
R2

ΩB
+
R2

ΩO
= R2BΩ + ΩO

ΩO · ΩB
= R2 OB

ΩO · ΩB
.

Hence PP1 ·ΩO = R2 ·OB
ΩB . On the other hand, OT ·ΩP = OT · R2

ΩP ′ = R2 ·OB
ΩB ,

hence OT · ΩP = PP1 · ΩO, and this ends the proof of Lemma.
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Figure 9. the reciprocal of a circle: the key lemma

Finally, in order to proof the theorem, consider a circle γ centred in O
and radius r, (the reciprocated circle, the solid green in Fig. 9) let p be a
current tangent to that circle and P its pole w.r. to the inversion circle.
Then OT = r, and by the lemma above,

ΩP

PP1
=

ΩO

r
= constant.

This mean that the point P is contained into a conic that have a focus in Ω
and whose directrix is the line o, the polar of O.

The reverse inclusion is similar and we omit it.
This theorem has a very useful consequence, that we shall use systemati-

cally.

Corrolary 3.1. The reciprocal of a conic Γ, w.r. to an inversion circle
centred into its focus, F, is a circle, γ.

The symmetric of the vertices of the conic Γ, are a pair of diametrically
opposite points of the reciprocal circle, γ.

The pole of the directrix of Γ, is the centre of the circle γ.

At this point, the reader may convince himself that is able to draw, with
a line and compass only, the reciprocal of a conic, w.r. to a circle centred
into one of its foci: it will be a circle, whose diameter are the symmetric of
the vertices of that conic (or a circle centred at the pole of the directrix and
passing through the symmetric of one vertex).

The second basic result, that is also a consequence of the fundamental
propriety poles and polars is the following (see [S])

Proposition 3.1. The intersection of two conics that shares a common
focus, are the poles, w.r. to an arbitrary inversion circle centred at their
(common) focus, of the common tangents their reciprocal circles have.

The figure 10 illustrates how to (geometrically) intercept, two ellipses that
have a common focus; but the procedure is the same for any pair of conics:

• chose an inversion circle centred into the common focus of the conics
and perform the reciprocal of each conic;
• draw the common tangents to these reciprocal circles;
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Figure 10. the interception of two ellipses are the poles of
their common tangents to their reciprocal circles

• the interception points of the given conics, are the poles of the com-
mon tangents to their reciprocal circles.

4. Apolonius problem for secant circles

Now we study the Apolonius problem when some of the three circles may
intercept. As in the classic setting, we first need to find the loci of the
centres of all circles that tangents a pair of secant circles.

Lemma 4.1. Let (O0,O1) be a pair of secant circles.
i) The locus of the centres of the circles that have distinct tangency type

with respect to a given pair of secant circles, is an ellipses with focus in the
centres of the circles and that pass through their intersection point.

ii) The locus of the centres of the circles that have the same tangency
type, w.r. to a pair of secant circles is a hyperbola, with focus in the centres
of the circles and that pass through their intersection point.

To be specific, the branch closer to the smaller circle, is the locus of the
centres of circles that either tangents both circles externally, or are contained
into their common set and tangent both internally.

The branch closer to the bigger circle, is the locus of the centres of circles
that tangents both circles internally.

When the two given circles have same radius, this hyperbola reduces to
the mediatrix of the segment O1O2.

There exists two exceptional points on these branches of these hyperbolas
or on ellipses, that led to circles of null radius: the intersection point of the
two given circles.

A final detail. As we already point out earlier, the loci of the centres of
the tangent circles to a pair of secant circles that have the same radius is the
mediatrix of the segment determined by their centres. A scrupulous reader,
may object, at this point, that it is not clear how to draw, with a line and
a compass only, the intersection between a conic and a line. Proceed as
follows:
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Figure 11. the locus of the centres of the circles that have
opposite tangency type, with respect to a pair of secant cir-
cles is an ellipse

Figure 12. the locus of centres of circles that have the same
tangency type, with respect to a pair of secant circles, is a
hyperbola

• choose an inversion circle centred at the focus of the conic;
• reciprocate the conic into a circle;
• find the pole of the line;
• draw the tangents from the pole to the circle;
• draw the poles of these tangents.

The poles of these common tangents are the interception points between the
conic and the line.

4.1. Apollonius problem for one pair of secant circles. Assume that
the circles (O1,O2) are secant, while (O0,O1), (O0,O2), are disjoint. By
an inversion w.r. to O0, we may always assume that both O1 and O2 are
contained into O0. We therefore repeat the procedure employed earlier, in
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the disjoint case: we find the loci of the centres of the tangent circles to the
disjoint pairs (O0,O1) and (O0,O2), (that are ellipses) and intercept them.
The solution of the packed problem is illustrated in the figure 13 below.

Figure 13. Apollonius problem for a pair of secant circles;
four circles; the packed solution

4.2. Apollonius problem for two pairs of secant circles. If the pairs
(O0,O1) and (O1,O2) are secant and (O0,O2) are disjoint, perform an
inversion w.r.to O0.

This reduce the problem to one in which one circle is contained into
another, (say O2 contained into O0), while the circle O1 intercept both O0

and O2, and it is not contained into O0.
Any admissible solution will tangent O0 internally, and the other two

circles, externally; this observation facilitates the drawing; in any case, the
centres of the tangent circles are interception points of the ellipses, that
correspond to the pair (O0,O2), with ellipse and hyperbola, that correspond
to the pair (O0,O1). The solution of the packed problem, is in figure 14.

Figure 14. Apollonius problem for two pairs of secant cir-
cles: there are four circles; the packed solution
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Figure 15. Apollonius problem for three mutually tangent
circles: the centres are the interception of three conics

4.3. Three pairs of secant circles. There exists only one instance of
Apollonius that does not benefit itself by an inversion with respect to a
circle: it is when the given circles are mutually secant and still do no have
one common point.

Any inversion with respect to any of the circles, will led to a same con-
figuration.

In this case, proceed straightforwardly: intercept all possible conics that
carry the centres of the tangent circles to each pair of circles. The centres
of the tangent circles will be precisely the intersection points of three such
conics. Be aware that the intersection points of two conics only, led to ”false
positive” points. See figure 15.

Of course, there are also some other cases left, that can be handle easily
by inversion.

• If the three circles have a common point and are pairwise secant,
then an inversion w.r. to a circle centred into their common point,
transform the problem into a familiar problem: to draw the circles
that tangents three given lines. There will be four solutions: the
i-circle and the three ex-icircles.
• If the circles have one commune tangency point, there are an infinity

of solutions.
• If two of the circles are tangent, and the third is secant, then an

inversion with respect to a circle centred into the tangency point,
transform the problem into that of constructing circles that tangents
two parallel lines and a secant circle. There will be four solutions.
• If all the three circles have two common points, there will be no

common tangent circle; to see that, perform an inversion w.r. to
a circle centred at one of the common points, transform the three
circles into three concurrent lines.
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5. Final Remarks

We provide a geometric solution to the Apollonius problem for three cir-
cles. With few exceptions, this method works no matter what the relative
position of the three given circles of the Apollonius problem is (either ex-
ternal, tangent, secant or internal). By sticking to it, one can easily solve
degenerate instances of Apollonius problem, those that involve lines and
points, as well, instead of circles, only. What will change in those cases will
be the number of solutions; the conics that are the loci of the corresponding
tangent circles, will always have a common focus, so that our strategy, that
uses the method of polar reciprocity in order to intercept them, is applicable.

The whole algorithm that allows to perform the solution, consists in draw-
ing some circles, their common tangents and some poles. No conic need to
be drawn in the process: only their vertices and foci really matter. The
computer-aided solution, that enable us to visualise all these centres of the
circles solutions of Apollonius problem, as intersection points of these conics
that carries the centres of tangent circles, turn this geometric approach, into
a natural solution and accessible to any reader.

References

[1] Bruen, A., Fischer, J.C. and Wilker, J.B. Apollonius by inversion Mathematics Mag-
azine (56) 1983, 97-103.

[2] Muirhead, R.F. On the number and the nature of the solutions of the Apollonius contact
problem, Proceedings of the Edinburgh Mathematical Society (attached Figures 44-
114), (14) 1896, 135-147.

[3] Poncelet, J.V. Traite des proprietes projective des figures, Gauthier-Villars, Paris, 1865.
[4] Salmon, G A treatise on Conic Sections, Longmans, Brown, Green and Co., London,

1856.

DEPARTMENT OF MATHEMATICS
FEDERAL UNIVERSITY OF PERNAMBUCO,
BRAZIL
E-mail address: liliana@dmat.ufpe.br


