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CONICS ON THE SPHERE

AHMED MOHSIN MAHDI

Abstract. We prove that if the focus of a conic on the sphere is not
the pole of the conic’s directrix, then the conic can only be quadratic if
it is parabolic, and it can not be symmetric.

1. Introduction

On the unit sphere Sn−1 of Rn (n ≥ 3) a set

(D1) CεF,H :={X ∈ Sn−1 : εδ̂(X,H) = δ(F,X)} is called a conic,

where δ̂ is the spherical metric, H, the directrix, is a great sphere of Sn−1,
F /∈ H is a point, the focus, and ε > 0 is a number, the numeric eccentricity.
A conic is said to be elliptic, parabolic and hyperbolic, if ε < 1, ε = 1 and
ε > 1, respectively.

It is proved in [2, Theorem 4.2 and Theorem 4.3] that if a conic is sym-
metric in a Minkowski plane, then the Minkowski plane is Euclidean, and
further, in [2, Theorem 5.1], that if a conic is quadratic in a Minkowski
plane, then the Minkowski plane is Euclidean. At the end of [2] Kurusa con-
jectures that neither quadratic, nor symmetric conic may exist in projective
metric spaces other than the Euclidean one.

In this article we consider the similar problem on the sphere. We support
Kurusa’s conjecture by proving in Theorem 3.1 that if the focus of a conic
on the sphere is not the pole of the conic’s directrix, then it can only be
quadratic if it is parabolic, and by proving in Theorem 4.1 that if the focus
of a conic on the sphere is not the pole of the conic’s directrix, then it can
not be symmetric.

2. Preliminaries

Points of Rn are denoted as A,B, . . . , vectors are
−−→
AB or a, b, . . . , but

we use these latter notations also for points if the origin is fixed. The open
segment with endpoints A and B is denoted by AB = (A,B), AB is the
open ray starting from A passing through B and the line through A and B
is denoted by AB.

Notations uϕ = (cosϕ, sinϕ) and u⊥ϕ := (cos(ϕ+ π/2), sin(ϕ+ π/2)) are
frequently used. A curve in the plane is called quadratical, if it is part of a
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quadric

(Dq) Qσs :=

{
(x, y) :

{
1=x2 + σy2, if σ ∈ {−1, 1},
x=y2, if σ = 0,

}}
,

where s is an affine coordinate system. A quadric is called ellipse (affine
circle), parabola and hyperbola, if σ = 1, σ = 0 and σ = −1, respectively.

A set S on the sphere is called symmetric about a point C, if X ∈ S if

and only if Y ∈ S, where C is in the shorter arc X̂Y of the great circle
determined and divided into two arcs by X and Y , and S is the metric
midpoint of the arc XY .

We use the gnomonic projection [5] ΓO : Sn−1 → TOSn−1, where O ∈
Sn−1 and TOSn−1 is the tangent hyperplane of Sn−1 at point O.

O = (0, 0, 1)

(0, 0, 0)

P = (p1, p2, 1)

Q = (q1, q2, 1)
δ(P,Q

)

ΓO projects the spherical metric δ̂ to the metric

δ : Rn−1 × Rn−1 → [0, π) (P,Q) 7→ δ̂(P,Q) = arccos
( 〈P,Q〉
|P | |Q|

)
. (2.1)

Let ` be a great circle in (Sn−1, δ̂) and let P ∈ Sn−1 \ `. The point S ∈ `
is the `-foot of P , if δ̂(P,X) ≥ δ̂(P, S) for every X ∈ `. A great circle `′

intersecting the great circle ` in a point S is said to be perpendicular to `
if S is an `-foot of P for every P ∈ `′ \ {S}. It is easy to see that this
perpendicularity is symmetric. Further, `′ and ` are perpendicular to each
other if and only if the 2-dimensional subspaces they span are orthogonal.

From now on we work only in dimension 2 if not explicitly stated otherwise.

We usually consider a conic Ĉε
δ̂;F̂ ,ˆ̀

on S2, and denote the foot of F̂ on the

great circle ˆ̀ by F̂⊥. If the focus F of Ĉε
δ̂;F̂ ,ˆ̀

is not the pole of ˆ̀, then F̂⊥ is

unique. In the other case we just pick a point on ˆ̀for F̂⊥. The correspondent
elements obtained by a gnomonic projection Γ will be denoted without the
hat ˆ.

3. Quadratic conics on the sphere

Let Ô be the polar of the great circle ˆ̀ on the S2. Let F̂ be in the half
sphere S2

Ô
of ˆ̀ that contains Ô. Let P̂ be on the half circle G2

Ô
of the great

circle of Ô and F̂ that is contained by S2
Ô

. Fix the coordinate system in the

plane of G2
Ô

such that (0, 0) is the center of G2
Ô

, Ô = (0, 1), F̂ = (cosϕ, sinϕ)

and P̂ = (cos$, sin$) for some ϕ ∈ (0, π/2) and $ ∈ (−π/2, π/2). Then
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P̂ ∈ Ĉε
δ̂;F̂ ,ˆ̀

if and only if

ε =


$−ϕ
π/2−$ , if $ ∈ (ϕ, π/2),
ϕ−$
π/2−$ , if $ ∈ (0, ϕ),
ϕ−$
π/2+$ , if $ ∈ (−π/2, 0].

If $ ∈ (ϕ, π/2), then $−ϕ
π/2−$ = π/2−ϕ

π/2−$ − 1 is a strictly monotone increasing

function of $ that vanishes when $ = ϕ and tends to infinity when $ →
π/2.

So there is exactly one $ ∈ (ϕ, π/2) for which P̂ ∈ Ĉε
δ̂;F̂ ,ˆ̀

.

If $ ∈ (0, ϕ), then ϕ−$
π/2−$ = 1− π/2−ϕ

π/2−$ is a strictly monotone decreasing

function of $ that tends to ϕ
π/2 when $ → 0 and vanishes when $ = ϕ.

If $ ∈ (−π/2, 0], then ϕ−$
π/2+$ = π/2+ϕ

π/2+$ −1 is a strictly monotone decreas-

ing function of $ that tends to infinity when $ → π/2 and is ϕ
π/2 when

$ → 0.
Thus there is exactly one $ ∈ (−π/2, ϕ) for which P̂ ∈ Ĉε

δ̂;F̂ ,ˆ̀
.

Let CεF,` := ΓÔ(Ĉε
δ̂;F̂ ,ˆ̀

), O := ΓÔ(Ô), F := ΓÔ(F̂ ), and ` := ΓÔ(ˆ̀). Choose

the coordinate system so that O = (0, 0, 1) and F = (f, 0, 1), where f > 0.
Figure 1 shows what we have on the plane P := TÔS

2 = {(x, y, z) : z = 1}.

CεF,`

y = xq/p

p
O

P

(p, q, 1)

f

F

Figure 1. Projected conic CεF,`, if the directrix ` is in the infinity

and the focus F is at (f, 0), where f > 0.

To calculate the points (p, q, 1) = P = ΓÔ(P̂ ) of CεF,` we have to calculate

δ(P, `) and δ(F, P ), where P ∈ CεF,`. Observe that the line through O and

P is the gnomonic image of the great circle that is perpendicular to ˆ̀ and
going through Γ−1

Ô
(P ). Thus, by (2.1), we have

δ(P, `) =
π

2
− δ(P,O) =

π

2
− arccos

1√
p2 + q2 + 1

. (3.1)

For the distance of P from the focus we obtain from (2.1) that

δ(P, F ) = δ(P, (f, 0, 1)) = arccos
pf + 1√

f2 + 1
√
p2 + q2 + 1

. (3.2)

According to D1 equations (3.1) and (3.2) give that

ε
(π

2
− arccos

1√
p2 + q2 + 1

)
= arccos

pf + 1√
f2 + 1

√
p2 + q2 + 1

(3.3)
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is the equation of CεF,`. Figure 2 shows how CεF,` looks like for different values
of ε.

Figure 2. An elliptic (ε = 0.90), parabolic (ε = 1), and hyperbolic
(ε = 1.1) conic in the projected model of the sphere.

We say that a conic is quadratic if it fits on a quadric (Dq), hence satisfies
an equation of the form āx2+b̄xy+c̄y2+d̄x+ēy+f̄ = 0, where the coefficients
are real and ā ≥ 0.

The parabolic conics (i.e. ε = 1) are quadratic, because taking the cosine
of (3.3) results in√

1− 1

p2 + q2 + 1
=
∣∣∣ pf + 1√

f2 + 1
√
p2 + q2 + 1

∣∣∣,
hence by squaring we obtain the clearly quadratic equation (p2+q2)(f2+1) =
pf + 1. To find all the quadratic conics,

from now on we assume that CεF,` is quadratic.

As every conic CεF,` is symmetric in the x-axis, the quadratic equation should

be invariant under changing y to −y, so b̄ = ē = 0 follows. Then the equation
is of the form āx2 + c̄y2 + d̄x + ḡ = 0, hence c̄ 6= 0, because otherwise the
curve will degenerate into straight lines. So the quadratic equation simplifies
to

ax2 + y2 + bx+ c = 0, a ≥ 0. (3.4)

As this is an ellipse, because it is bounded and intersect line OP in exactly
two point, we deduce that

a > 0 and b2 > 4ac. (3.5)

Thus, for a point P of CεF,` we have q2 = −ap2 − bp − c. Putting this into

(3.3) gives the identity

ε
(π

2
− arccos

1√
(1− a)p2 − bp+ 1− c

)
= arccos

(pf + 1)/
√
f2 + 1√

(1− a)p2 − bp+ 1− c
.

(3.6)
Differentiating this with respect to p gives

ε
− 2(1−a)p−b

2((1−a)p2−bp+1−c)3/2√
1− 1

(1−a)p2−bp+1−c

= −
− (2(1−a)p−b)(1+fp)

2
√

1+f2((1−a)p2−bp+1−c)3/2
+ f√

1+f2
√

(1−a)p2−bp+1−c√
1− (1+fp)2

(1+f2)((1−a)p2−bp+1−c)

.

(3.7)
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Simplifying the ratios and multiplying both sides by 2(1−c− bp+(1−a)p2)
give the equivalent form

ε
2(1− a)p− b√

(1− a)p2 − bp− c

=
−(2(1− a)p− b)(1 + fp) + 2f((1− a)p2 − bp+ 1− c)√

((1− a)p2 − bp+ 1− c)(1 + f2)− (1 + fp)2
.

(3.8)

After the additions and multiplications are completed this becomes

ε
2(1− a)p− b√

(1− a)p2 − bp− c
=

−(fb+ 2(1− a))p+ 2f(1− c) + b√
((1− a)p2 − bp+ 1− c)(1 + f2)− (1 + fp)2

.

(3.9)

Multiplying both sides of (3.9) by the product of the denominators and
squaring gives

ε2(2(1− a)p− b)2((1− a(1 + f2))p2 − (2f + b(1 + f2))p+ (f2 − c(1 + f2)))

= ((fb+ 2(1− a))p− (b+ 2f(1− c)))2((1− a)p2 − bp− c).
(3.10)

This equation is valid on an interval of p, so the coefficients of the polyno-
mials on the sides are equal, hence

4ε2(1− a)2(1− a(1 + f2)) = (1− a)(fb+ 2(1− a))2(p4)

4ε2
(
(1− a)2(2f + b(1 + f2)) + b(1− a)(1− a(1 + f2))

)
(p3)

= b(fb+ 2(1− a))2 + 2(1− a)(b+ 2f(1− c))(fb+ 2(1− a))

ε2
(
b2(1− a(1 + f2)) + 4b(1− a)(2f + b(1 + f2))+(p2)

+ 4(1− a)2(f2 − c(1 + f2))
)

= −c(fb+ 2(1− a))2 + 2b(b+ 2f(1− c))(fb+ 2(1− a))+

+ (1− a)(b+ 2f(1− c))2

4ε2
(
b(1− a)(f2 − c(1 + f2)) + b2(2f + b(1 + f2))

)
(p1)

= b(b+ 2f(1− c))2 − 2c(b+ 2f(1− c))(fb+ 2(1− a))

ε2b2(f2 − c(1 + f2)) = −c(b+ 2f(1− c))2,(p0)

where ε, f > 0 are fixed, and a > 0, b2 > 4ac by (3.5).
If b = 0, then (p4) implies a = 1, and (p0) implies c = 0 or c = 1. In both

cases CεF,` is empty by (3.4), and this contradiction proves b 6= 0.

If c = 0, then (p0) implies b = 0, a contradiction, so c 6= 0.
If a = 1, then (p3) gives b = 0, a contradiction, so a 6= 1.
Dividing (p4) with 1− a gives

4ε2(1− a)(1− a(1 + f2)) = (fb+ 2(1− a))2, (3.11)

Multiplying the sides of (3.11) with the opposite sides of (p0), respectively,
we obtain

−4c(1− a)(b+ 2f(1− c))2(1− a(1 + f2))

= b2(f2 − c(1 + f2))(fb+ 2(1− a))2.
(3.12)
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Multiplying (3.11) with b and subtracting the result from (p3) give, after a
light simplification, that

2ε2(1− a)(2f + b(1 + f2)) = (b+ 2f(1− c))(fb+ 2(1− a)). (3.13)

The right-hand side of the square of (3.13) multiplied by −c is the product
of the right-hand sides of (p0) and (3.11), so we get

− 4c(1− a)(2f + b(1 + f2))2 = b2(f2 − c(1 + f2))(1− a(1 + f2)). (3.14)

Multiplying (3.13) by 2b and subtracting the product from (p2) give

ε2
(
b2(1− a(1 + f2)) + 4(1− a)2(f2 − c(1 + f2))

)
= (1− a)(b+ 2f(1− c))2 − c(fb+ 2(1− a))2.

(3.15)

Multiplying (3.11) by c and adding to this give

ε2
(
(b2 + 4c(1− a))(1− a(1 + f2)) + 4(1− a)2(f2 − c(1 + f2))

)
= (1− a)(b+ 2f(1− c))2.

(3.16)

Multiplying this with c and adding to the product of (p0) and (1− a) result
in

c(b2 + 4c(1−a))(1−a(1 +f2)) + (1−a)(b2 + 4c(1−a))(f2− c(1 +f2))) = 0,

hence

b2 + 4c(1− a) = 0 or 1 = a+ c. (3.17)

Add (p1) times 1 − a, (3.16) times −b and (3.13) times 2c(1 − a). The
result is

4(b2 + c(1− a))(1− a)(2f + b(1 + f2)) = b(b2 + 4c(1− a))(1− a(1 + f2)).

(3.18)

• Assume that 1 = a+ c fulfills in (3.17).
Then b2 + 4a(1 − c) = b2 + 4a2 > 0, and it is also easy to show that
f2−c(1+f2) = −(1−a(1+f2)). Further, (3.12) gives 4c2(b+2f(1−c))2 =
b2(fb+ 2c)2, hence

0 = b2(fb+ 2c)2 − 4c2(b+ 2f(1− c))2

= (b(fb+ 2c)− 2c(b+ 2f(1− c)))(b(fb+ 2c) + 2c(b+ 2f(1− c)))
= f(b2 − 4c(1− c))(b(fb+ 2c) + 2c(b+ 2f(1− c))).

Since b2 > 4c(1− c) by (3.5), we obtain

− b(fb+ 2c) = 2c(b+ 2f(1− c)). (3.19)

From (p3) we obtain

4ε2c
(
c(2f + b(1 + f2))− b(f2 − c(1 + f2))

)
= b(fb+ 2c)2 + 2c(fb+ 2c)(b+ 2f(1− c))).

(3.20)

The right-hand side of this equation vanishes by (3.19), so we arrive at

c(2f + b(1 + f2)) = b(f2 − c(1 + f2)). (3.21)
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Since 1− a = c, (3.13) reads

2ε2c(2f + b(1 + f2)) = (b+ 2f(1− c))(fb+ 2c). (3.22)

Multiplying this with 2c and using (3.19) results in

4ε2c2(2f + b(1 + f2)) = 2c(b+ 2f(1− c))(fb+ 2c) = −b(fb+ 2c)2. (3.23)

Using (3.21) and then (3.11) this gives

4ε2cb(f2 − c(1 + f2)) = −(fb+ 2c)2b = 4ε2c(1− (1− c)(1 + f2))b. (3.24)

i.e. f2 − c(1 + f2) = 1− (1− c)(1 + f2), so, by (3.17) and (3.21), we have

c =
f2

1 + f2
, a =

1

1 + f2
, and b =

−2f

1 + f2
. (3.25)

This, however gives b2 = 4ac that contradicts (3.5).
• Assume that 1 6= a+ c and b2 + 4c(1− a) = 0 fulfills in (3.17).
As a first consequence, we get from (3.18) that

b2 + c(1− a) = 0 or 2f + b(1 + f2) = 0. (3.26)

In the former case the assumption implies c(1 − a) = 0, so either c = 0 or

a = 1, which was already closed out, so we deduce b = −2f
1+f2

. From this

(3.14) implies immediately that 0 = (f2 − c(1 + f2))(1− a(1 + f2)), so

c =
f2

1 + f2
or a =

1

1 + f2
. (3.27)

Then, by the assumption we respectively obtain that

a =
4c+ b2

4c
=

2 + f2

1 + f2
and c =

−b2

4(1− a)
=
−1

1 + f2
. (3.28)

In the first case we get

b2−4ac =
4f2

(1 + f2)2
−4

2 + f2

1 + f2
f2

1 + f2
=

4f2

(1 + f2)2
(1−(2+f2)) =

−4f2

1 + f2
< 0

that contradicts (3.5), so we deduce

c =
−1

1 + f2
, a =

1

1 + f2
, and b =

−2f

1 + f2
. (3.29)

With these values (p0) gives ε = 1. (p1) gives also ε = 1.
Thus the second case in (3.17) implies contradiction, while it follows from

the first case of (3.17) that the conic is parabolic.
The contradiction means that the system of equations (p0)–(p4) does not

have solution, so the polynomials of the sides in (3.10) are different, hence
the conics in this case are not quadratic.

We conclude our first theorem:

Theorem 3.1. A conic on the sphere is quadratic if and only if either the
focus is the pole of the directrix, or the focus is not the pole of the directrix,
but the conic is parabolic, i.e. ε = 1.



12 A. M. MAHDI

4. Symmetric conics on the sphere

Firstly we notice that the conic on the sphere is a hypersphere, hence
symmetric if the focus is the pole of the directrix, so we assume for the sake
of a later contradiction that

F̂ is not the pole of ˆ̀, and Ĉε
δ̂;F̂ ,ˆ̀

is symmetric in a point Ĉ.

Such a point of symmetry Ĉ clearly is on the great circle of F̂ F̂⊥, where F̂⊥

is the unique foot of F̂ on the great circle ˆ̀.
Take the gnomonic projection ΓĈ . Let CεF,` := ΓĈ(Ĉε

δ̂;F̂ ,ˆ̀
), P := ΓĈ(P̂ )

and P⊥ := ΓĈ(P̂⊥) for any point P , and ` := ΓĈ(ˆ̀). Choose the coordinate
system so that C = (0, 0, 1), F = (f, 0, 1), and ` = {(x, y, z) : x = m∧z = 1}.
Figure 3 shows what we have on the plane P := TĈS

2 = {(x, y, z) : z = 1}.

`
CεF,`

q
P⊥ = (m, r, 1)

p
F⊥ = (m, 0, 1)

P

(p, q, 1)

C (0, 0, 1)f

F

Figure 3. Projected conic CεF,`, if the directrix ` is parallel to the

y-axis and the focus F is at (f, 0), where f < 0.

The advantage of taking the gnomonic projection ΓĈ is that Ĉε
δ̂;F̂ ,ˆ̀

is

symmetric about Ĉ in the spherical meaning if and only if CεF,` is symmetric
about C in the Euclidean meaning.

Since F̂⊥P̂⊥P̂ is a right triangle on the sphere, the cosine rule for the
spherical triangle [6] gives cos δ̂(F̂⊥, P̂ ) = cos δ̂(F̂⊥, P̂⊥) cos δ̂(P̂⊥, P̂ ). Then
(2.1) gives

cos(δ̂(F̂⊥, P̂ ))=
〈F̂⊥, P̂ 〉
|F̂⊥| |P̂ |

, cos(δ̂(F̂⊥, P̂⊥))=
〈F̂⊥, P̂⊥〉
|F̂⊥| |P̂⊥|

, cos(δ̂(P̂⊥, P̂ ))=
〈P̂⊥, P̂ 〉
|P̂⊥| |P̂ |

,

so we obtain 〈F̂⊥, P̂ 〉 |P̂⊥|2 = 〈F̂⊥, P̂⊥〉 〈P̂⊥, P̂ 〉, i.e.

(mp+ 1)(m2 + r2 + 1) = (m2 + 1) (mp+ rq + 1).

This equation is equivalent to equation r(r(mp + 1) − q(m2 + 1)) = 0 that
gives

r =
q(m2 + 1)

mp+ 1
. (4.1)
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Thus, by (2.1), we have

δ(P, `)=δ(P, (m, r, 1))

=arccos
mp+ rq + 1

√
m2 + r2 + 1

√
p2 + q2 + 1

=arccos
(mp+ 1)

√
m2 + r2 + 1

(m2 + 1)
√
p2 + q2 + 1

=arccos

√
(mp+ 1)2 + q2(m2 + 1)
√
m2 + 1

√
p2 + q2 + 1

,

(4.2)

where we used (4.1) and its predecessor. For the distance of P from the
focus we have (3.2).

According to (D1) equations (4.2) and (3.2) give

ε arccos

√
(mp+ 1)2 + q2(m2 + 1)
√
m2 + 1

√
p2 + q2 + 1

= arccos
pf + 1√

f2 + 1
√
p2 + q2 + 1

. (4.3)

Figure 4 shows how these conics look like by (3.3).

Figure 4. An elliptic (ε = 0.90), parabolic (ε = 1), and hyperbolic
(ε = 1.1) conic in projected model of the sphere.

We now that there exist exactly two solutions of (4.3) for q = 0, and by
the symmetry these are ±p0. Thus ±p0 satisfies

ε arccos
|mp+ 1|

√
m2 + 1

√
p2 + 1

= arccos
pf + 1√

f2 + 1
√
p2 + 1

. (4.4)

Let m = tanµ, f = tanϕ, and p0 = tan$. Substituting these values into
(4.4) results in

ε arccos
|1± tanµ tan$|√

1 + tan2 µ
√

1 + tan2$
= arccos

1± tanϕ tan$√
1 + tan2 ϕ

√
1 + tan2$

,

(4.5)
i.e.

ε arccos | cosµ cos$± sinµ sin$| = arccos(cosϕ cos$± sinϕ sin$), (4.6)

hence by the angle sum and difference identities [7] we get

ε arccos | cos(µ∓$)| = arccos(cos(ϕ∓$)), (4.7)

Thus, εµ− ϕ = ±$(1− ε), hence $(1− ε) = 0. Since $ 6= 0, we get ε = 1,
so µ = ϕ that is a contradiction.

In sum, we have proved the following theorem.

Theorem 4.1. A conic on the sphere is symmetric if and only if the focus
is the pole of the directrix.
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cussing all parts of this paper.
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