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ON A SIX-POINT CIRCLES FAMILY FOR THE TRIANGLE

DARIO PELLEGRINETTI

Abstract. The author presents three special six-point circles pertaining
to the triangle geometry. Each circle passes through four feature points of
the generalized Bride’s Chair configurations of a given triangle [2], and the
midpoints of two sides of the triangle.
In the present work, the author, first calls to mind The Six-Point Circle
Theorem For The Quadrangle, then, with a reasoning based on a continous
transformation of the quadrangle configuration, presents the new triangle
six-point circles.
The direct synthetic proofs of the theorems, presented in section 2, are given
in section 3 for completeness.

1. The Six-Point Circle Theorem For The Quadrangle

Looking at figures 1 and 2, we recall the following:

Theorem 1.1 (The Six-Point Circle Theorem For The Quadrangle). In any
given quadrangle ABCD, the midpoints of the quadrangle diagonals, E and
F, the first and second Van Aubel points [5], V and V’, and the midpoints
of the Van Aubel segments [5], X and Y, lie on a circle.

Corollary 1.1. The Newton segment [5], EF, and the segment connecting
the midpoints of the Van Aubel segments, XY, are two mutually orthogonal
diameters of the circle.

Remark 1.1. The center of the circle, O, coincides with the quadrangle
centroid [1].

The circle is shown in figures 1 and 2. A synthetic proof of the theorem
can be found in [5].

The following results hold true as a consequence of the Van Aubel Theo-
rem [6][5]:
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• the Van Aubel segments O1O3 and O2O4 (intersecting at V) are of
equal length and mutually orthogonal;

• the Van Aubel segments O’1O’3 and O’2O’4 (intersecting at V’ on
the extension of segment O’1O’3) are of equal length and mutually
orthogonal (see figure 2).

Figure 1. The Six Point Circle For The Quadrangle is pass-
ing through the midpoints of the quadrangle’s diagonals, E
and F, the midpoints of the Van Aubel segments, X and Y,
and the Van Aubel points, V and V’. The definitions for the
Van Aubel segments and the Van Aubel points are given in
[5].

1.1. Abuse of notation. In reference [5], the author has abused notation
regarding the concept of line segments’ intersection. While two segments do
not always intersect (i.e. O’1O’3 and O’2O’4 represented in figure 2), the
author assumed that the intersection point of any Van Aubel segment pair
is always defined.
The abuse of notation is resolved in the following way: when the two seg-
ments of a Van Aubel pair do not intersect, their extensions have to be
considered. These segment extensions (also referred to as produced line seg-
ments) do intersect because they are orthogonal to each other, as stated by
the Van Aubel theorem. The intersection point of the produced line seg-
ments is therefore always defined and it can be identified with a Van Aubel
point.
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Figure 2. The Six Point Circle For The Quadrangle - en-
largement showing the construction for the second Van Aubel
point. The internal squares are not shown for the sake of
clarity, their centers are represented by the points O’i, with
i=1,2,3,4.

2. Three New Six-Point Circles For The Triangle

Definition 1. In any given triangle, on each side construct a square external
to the triangle. The obtained configuration will be named as the generalized
external Bride’s Chair configuration [2].

Definition 2. In any given triangle, on each side construct a square internal
to the triangle. The obtained configuration will be named as the generalized
internal Bride’s Chair configuration.

Theorem 2.1. In any generalized Bride’s Chair configuration, the segment
obtained connecting the centers of two squares constructed on any two sides
of the triangle is of equal length and orthogonal to the segment obtained
connecting the center of the square constructed on the other side with the
triangle vertex opposite to this side.

For instance, looking at figure 3, which portrays a generalized external
Bride’s Chair configuration, segments O2O3 and O1C are of equal length
and mutually orthogonal. Considering the other two possible combinations,
the following results hold true:

• segments O1O2 and O3B, represented in figure 3 in green, are of
equal length and mutually orthogonal and,

• segments O1O3 and O2A, represented in figure 3 in red, are of equal
length and mutually orthogonal.

Incidentally, it is worth noticing that the three segments O1C, O2A and O3B
concurr at a point, represented as K in figure 3, as they superimpose to the



50 Dario Pellegrinetti

altitudes of triangle O1O2O3.
A synthetic proof of theorem 2.1 for the generalized external Bride’s Chair
configuration can be found in [3]. A proof of the same theorem for the
generalized internal Bride’s Chair configuration can be developed in the
same way as the one for the generalized external Bride’s Chair configuration.
The author presents another synthetic proof in section 3.
The theorem can also be inferred after applying a continous transformation
to any given quadrangle. For instance, starting from a given quadrangle
ABCD, move the vertex C continuosly in the plane until it superimposes to
the vertex D. A generic triangle ABC is obtained at the end of this process
with the full square DCMN (see figure 1) reducing and turning into point C.
It can be noticed that the Van Aubel segments O1O3 and O2O4 end up into
the Bride’s Chair segments O1C and O2O3, respectively, shown in figure 3
and figure 4. As these Van Aubel segments, during the transformation, will
always be of equal length and mutually orthogonal, as dictated by the Van
Aubel Theorem, the generalized Bride’s Chair configuration segments O1C
and O2O3 will retain the same mutual relation.
Incidentally, notice that the diagonals AC and BD of the quadrangle end up
into the triangle sides AC and BC respectively.
By symmetry, the same reasoning can be applied focusing on the A vertex
of the quadrangle: letting the vertex A superimpose to the vertex D, the
equality and orthogonality relation between segments O1O3 and O2A is
deduced. In the same way, it can be shown that the same relation holds
true for segments O1O2 and O3B.
Regarding the generalized internal Bride’s Chair configuration an analogous
reasoning can be applied, so that, for instance, segments O’1C and O’2O’3,
shown in figure 4, are of equal length and mutually orthogonal.

Figure 3. The generalized external Bride’s Chair configu-
ration relative to the given triangle ABC.
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Figure 4. A Triangle Six Point Circle - The internal squares
are not shown for the sake of clarity, their centers are repre-
sented by the points O’i, with i=1,2,3.

The following nomenclature is introduced to simplify the exposition of
the following results:

• considering the generalized external Bride’s Chair configuration, the
three couples of equal and orthogonal segments will be referred to
as the external Bride’s Chair segment pairs;

• considering the generalized internal Bride’s Chair configuration, the
three couples of equal and orthogonal segments will be referred to
as the internal Bride’s Chair segment pairs.

In order to distinguish an external or internal Bride’s Chair segment pair
from another one of the same kind, it is convenient to consider the triangle
vertexes as references: the external and internal Bride’s Chair segment pairs,
represented in figure 4, will be referred to as the C-vertex Bride’s Chair
segment pairs or the Bride’s Chair segment pairs relative to the vertex C.

Taking into consideration all the geometrical elements pertaining to the
Six-Point Circle Theorem For The Quadrangle, and applying the foremen-
tioned transformation reasoning, the following results can be stated:

Theorem 2.2. Each segment of any external (internal) Bride’s Chair seg-
ment pair which connects a vertex of the triangle to the center of the square
constructed on the opposite side, is bisected by the segment of the inter-
nal (external) Bride’s Chair segment pair that connects the centers of the
squares constructed on the other two sides.

For instance, looking at figure 4, segment O1C (obtained connecting the
triangle vertex C with the center of the square constructed external to the
triangle over the opposite side AB) and segment O’2O’3 (obtained connecting



52 Dario Pellegrinetti

the centers of the squares constructed internal to the triangle over the sides
BC and AC) bisect each other at point X, as shown in figure 4.
Also, segment O’1C (obtained connecting the triangle vertex C with the
center of the square constructed internal to the triangle over the opposite
side AB) and segment O2O3 (obtained connecting the centers of the squares
constructed external to the triangle over the sides BC and AC) bisect each
other at point Y, as shown in figure 4.

In order to simplify the exposition of the following theorem, the midpoints
of the segments which belong to a given Bride’s Chair segment pair will be
referred to as the midpoints of the given Bride’s Chair segment pair. As
a consequence of theorem 2.2, the midpoints of the external Bride’s Chair
segment pair, relative to a given vertex, coincide with the midpoints of
the internal Bride’s Chair segment pair, relative to the same vertex. The
midpoints of the Bride’s Chair segment pairs relative to the vertex C are
represented in figure 4 by points X and Y.
The point of intersection of the two mutually orthogonal segments of a
given Bride’s Chair segment pair will be simply referred to as the point of
intersection of the segment pair. For instance, the intersection point of the
external Bride’s Chair segment pair relative to the vertex C is represented
by point V in figures 3 and 4. When the segments do not intersect, the lines
through their end points (briefly the segments’ extensions) do intersect.
The intersection point of the segments’ extensions will still be referred to as
the intersection point of the Bride’s Chair segment pair. For instance, the
intersection point of the internal Bride’s Chair segment pair relative to the
vertex C is represented by point V’ in figure 4. Taking the other Bride’s
Chair segment pairs into consideration, there are six points of this kind in
total for the internal and external Bride’s Chair configurations of the given
triangle.

Theorem 2.3 (The Three Six-Point Circles Theorem For The Triangle). In
any given triangle the midpoints of any two sides, the midpoints of both the
internal and the external Bride’s Chair segment pairs relative to the common
vertex of the sides, and the intersection points of the very same internal and
external Bride’s Chair segment pairs lie on a circle.

Corollary 2.1. The segment connecting the midpoints of the triangle sides
and the segment connecting the midpoints of the Bride’s Chair segment pairs
are two mutually orthogonal diameters of the circle.

For instance, looking at figure 4, the midpoints of the triangle sides AC
and BC, E and F, the midpoints of both the internal and the external Bride’s
Chair segment pairs relative to the vertex C of the triangle, X and Y, and
the intersection points of the internal and external Bride’s Chair segment
pairs relative to the vertex C, V and V’, lie on a circle.
The segments EF and XY are two mutually orthogonal diameters of the
circle.

The same reasoning applies considering the midpoints of the triangle sides
AB and BC and the Bride’s Chair segment pairs relative to the vertex B,
and, the midpoints of the triangle sides AC and AB and the Bride’s Chair
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segment pairs relative to the vertex A, leading to the two remaining circles
of the family.

Remark 2.1. The three circles correspond to the circles constructed with
the sides of the medial triangle of triangle ABC as diameters. It is quite
straightforward to deduce that they meet, two at a time, at a vertex of the
medial triangle and at the foot of the altitude drawn from that vertex to
the opposite side (see figure 5). The proof of this fact is omitted as it is a
simple application of the converse of Thales theorem [7] and can be left to the
reader. It follows that the radical center of the three circles coincides with
the orthocenter of the medial triangle, which, incidentally, coincides with
the circumcenter of the given triangle ABC (point R in figure 5). A deeper
study of the circles configuration and the properties of triangles O1O2O3 (see
figure 3) and O’1 O’2O’3 (vertexes shown in figure 4) goes beyond the scope
of this paper and can be carried out in a future work.

Figure 5. The radical center of the three six-point circles
coincides with the circumcenter of the given triangle ABC.

3. Proofs

This section might appear a bit pedantic as it is quite similar to the
Proofs section of reference [5]. It has been included for completeness as the
deductions of the theorems, presented in section 2, cannot be considered
rigorous proofs.
Theorem 2.1 will be proved below for the generalized external Bride’s Chair
segment pair constituted by segments O2O3 and O1C. For the other pairs,
including the generalized internal Bride’s Chair segment pairs, the proof is
essentially the same.
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Figure 6. Diagram for the theorem 2.1 proof.

3.1. Theorem 2.1. Proof. Looking at figure 6, we deduce that segments
HC and AI are of equal length and orthogonal to each other. This fact fol-
lows from the relation between the congruent triangles HBC and ABI: this
latest triangle can be obtained from a right angle clockwise rotation around
point B of triangle HBC.
If we apply the Midsegment Theorem [8] to triangles CAH and AIC, we
deduce that segments O1E and O2E are of equal length and orthogonal to
each other at point E, the midpoint of the triangle side AC. In addition,
segments EC and EO3 are of equal length and orthogonal to each other.
We deduce that triangles O1EC and O2EO3 are congruent according to
the SAS (Side-Angle-Side) rule: the included angles O1EC and O2EO3 are
equal, as they both measure the right angle plus the shared angle O2EC.
Moreover, triangle O1EC can be obtained from a right angle clockwise ro-
tation around point E of triangle O2EO3.
It follows that segments O1C and O2O3 are of equal length and orthogonal
to each other.

For theorem 2.2, We take into consideration segments O2O3 and O’1C,
and prove that they bisect each other at point Y. An analogous proof can
be elaborated to prove that segments O’2O’3 and O1C bisect each other at
point X (see figure 4).

3.2. Theorem 2.2. Proof. Looking at figure 7, if we apply the Midseg-
ment Theorem to triangle AH’P, we deduce that segment PH’ is parallel to
the O3O’1 segment and its length is twice the length of the O3O’1 segment.
We further deduce that segments AC and H’I are of equal length and orthog-
onal to each other. This fact follows from the relation between the congruent
triangles ABC and H’BI: This latest triangle can be obtained from a right
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Figure 7. Diagram for the theorem 2.2 proof. The diagram
shows the necessary geometrical elements to prove that quad-
rangle O3O’1O2C is a parallelogram.

angle clockwise rotation around point B of triangle ABC. As segment PC
is of equal length and orthogonal to AC, we have proven that CIH’P is a
parallelogram (opposites sides CP and IH’ are of equal length and parallel).
So, segment PH’ is of equal length and parallel to segment CI. But segment
CI superimposes segment CO2 and its length is twice the length of segment
CO2. We can conclude that quadrangle O3O’1O2C is a parallelogram (oppo-
site sides O3O’1 and O2C are of equal length and parallel) and its diagonals
bisect each other at point Y.

Theorem 2.3 will be proven for the generalized Bride’s Chair configura-
tions relative to the vertex C, showing that the points E, X, V’, F, Y and
V are concyclic. For the other generalized Bride’s Chair configurations, we
would proceed exactly in the same way.
The proof is equivalent to the proof of the Six-Point Circle Theorem For The
Quadrangle presented in reference [5]: the reasoning that revolved around
the iso-ortho-diagonal quadrangle O1O2O3O4 applies now to the iso-ortho-
diagonal quadrangle O1O2CO3, represented in figure 8.
According to the Four Concurring Circles’ Lemma [5], we have that point
V is the common point of circles (Ci, CiV), for i = 1,2,3,4 and Ci a given
midpoint of a given side of quadrangle O1O2CO3 (we adopt the same con-
vention for representing circles as in reference [5], providing the center and
a segment radius).
Moreover, it can be easily deduced (in the same way as in [5]) that segments
EV and VF are the common chords of the circles constructed with the oppo-
site sides of the iso-ortho-diagonal quadrangle O1O2CO3 as diameters (see
figure 8).



56 Dario Pellegrinetti

Figure 8. Diagram for the theorem 2.3 proof.

3.3. Theorem 2.3. Proof. According to theorem 2.1 and the converse of
Thales Theorem, it follows that quadrangle XV’YV (vertexes represented in
figures 4 and 8) is cyclic, and XY is a diameter of its circumscribed circle.
The center of the circle, O, is the midpoint of segment XY. By definition,
point O is the centroid of the iso-ortho-diagonal quadrangle O1O2CO3 [1].
Segment OV, also represented in figure 8, is a radius of the circle.
Segments EV and VF are the common chords of the circles constructed with
the opposite sides of the iso-ortho-diagonal quadrangle as diameters (see fig-
ure 8). Therefore, segment EV is bisected orthogonally by segment C1C3,
and segment VF is bisected orthogonally by segment C2C4. Segments C1C3

and C2C4 are the segments which connect the midpoints of the opposite
sides of the iso-ortho-diagonal quadrangle O1O2CO3.
They bisect each other at point O forming a right angle.
The fact that they bisect each other forming a right angle is a very well
known property of any iso-ortho-diagonal quadrangle: quadrangle C1C2C3C4

is indeed a square, so its diagonals bisect each other orthogonally.
The fact that the segments which connect the midpoints of the opposite
sides of any quadrangle bisect each other at the quadrangle centroid (point
O for the O1O2CO3 quadrangle) is another quite known property [1].
With segments C1C3 and C2C4 being the segment bisectors of the EV and
FV segments, respectively, we deduce that:
– EVF is a right angle. Again, according to the converse of Thales Theorem,
segment EF is a diameter of the circumscribed circle of triangle EVF, also
shown in red in figure 8.
– The center of the circle coincides with point O. OV is a radius of the circle.
Thus, all six points E, X, V’, F, Y and V lie on the same circle (O, OV) and
segments EF and XY are two diameters of the circle.
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The corollary proof follows hereafter.

3.4. Corollary 2.1. Proof. This proof can be carried out via angles in-
spection. Looking at figure 8 we notice that angle EVX measures half of a
right angle.
Indeed, angle EVX is equal to angle O1O2E which measures half of a right
angle as both angles subtend arc O1E of circle (C1, C1E).
As a consequence of theorem 2.3, we know that angle EVX subtend the EX
arc of circle (O, OV) and thus angle EOX is a right angle according to the
Inscribed Angle Theorem [4].
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Just like The Almighty
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so does the Six Point Circle
at the Quadrangle’s fall
and the new backdrop is acknowledged in the tumble
not a Segment nor a trifle. A Triangle.
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