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REFACTORING EQUIAFFINITIES

PARIS PAMFILOS

Abstract. In this article we show how to refactor an equiaffinity, which is a composi-
tion of two affine reflections. The refactoring replaces the two affine reflections with two
other, in the same way an euclidean rotation is represented as a product by an infinity of
pairs of appropriate euclidean reflections.

1 Introduction

This article was inspired by Coxeter’s ingenious proof of the property of “equiaffinities”
to be representable as a product (composition) of two affine reflections ([5, p.33]), in com-
bination with an old unpublished result of mine on generating hyperbolas. The property
rises immediately the question on the possible number of such decompositions of a given
equiaffinity and I saw that I could apply a special case of my result to answer this ques-
tion. There is here an analogy to euclidean rotations, which can be written in an infinity
of ways as a composition of two euclidean reflections ([8, I,p.50]), whose mirrors {α,β}
make an angle half the angle ω of rotation (See Figure 1). The corresponding problem
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Figure 1: Parallelograms with sides parallel to arbitrary directions {α,β}

for “equiaffinities”, i.e. compositions of two “affine reflections” ([5, p.17]) and the enumera-
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tion of the possibilities of such a representation, as far as I know, seems to have not been
handled yet. In section 2 we discuss the aforementioned generation of hyperbolas and its
special case, corollary 2, which in section 3 is used to prove the main result, theorem 2.

2 Lines mapping to hyperbolas

Next theorem is useful in our context for its subsequent corollary 2. Probably, the proof of
the corollary could be given directly, without the intervention of the theorem. I decided
though to go through the more general theorem, since this reflects my personal path, and
also adds, I hope, an interesting aspect, to the problem we are discussing.

The basic configuration here is a triangle ABC with {D,E,F} the middles of corre-
sponding opposite sides and a line ε on which varies a point P (See Figure 2). For each
position of P on ε we consider the intersection point M = PF ∩ED and the symmetric
G of D w.r. to M.

Theorem 1. The intersection point Q = PE ∩AG describes a hyperbola as P varies on line ε.
The hyperbola passes through the points {A,E} and the two intersection points with the side-lines
{A′ = ε ∩BC,C′ = ε ∩BA}. In addition, one of its asymptotes is parallel to the side BC.
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Figure 2: Hyperbola from a triangle and a line

Proof. We notice first that lines {PF,AG,BC} are concurrent at a point S. This follows
from the trapezium ABDG, since these lines are: the line joining the middles of the par-
allel sides and the two non parallel side-lines. Thus, we may consider the two lines
{AG,EP} intersecting at Q, as two rays of the pencils {A∗,E∗}, defined respectively by
points {S,P}, which are related by a line (PS) turning about the fixed point F. But such
a correspondence P↔ S of points on two lines {ε,BC}, through a line turning about a
fixed point (F), defines a homographic relation ([2, p.67]) which, for coordinates {x,y}
on these lines, is represented by an invertible relation of the form

y =
ax+b
cx+d

, with constants satisfying: ad−bc 6= 0.

It follows ([2, p.66]) that the correspondence EP↔ AS between the rays of the pencils
{E∗,A∗} is also a homographic relation. Thus, by applying the Chasles-Steiner principle
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of generation of conics ([3, p.5], [1, p.72], [6, p. 259]), we conclude that the intersection
points Q of the two homographically related rays of the pencils {A∗,E∗} will generate a
conic section passing through the centers {A,E} of the two pencils.

The claim about the nature of the conic and its asymptote follows by taking P ∈ ε at
the position ε ∩EF. Then AG becomes parallel to BC and the two lines {EP,AG} intersect
at the point at infinity of line BC.

That the conic passes through {A′,C′} follows by taking into account that Q is always
on line AS and realizing that for the positions of P at {A′,C′} point S obtains respectively
the positions {A′,B}, implying that Q coincides then respectively with {A′,C′}.
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Figure 3: Line-locus from a triangle and a line

Corollary 1. Given a triangle ABC with middles of sides {D,E,F}, we consider a line ε pass-
ing through C. For a variable point P on ε we consider the intersection points: the fixed:
C′ = ε ∩AB, and the variable: {S = BC∩PF,Q = AS∩PE}. Then, point Q describes a line ζ

parallel to BC and passing through C′.

Proof. This is a special case of theorem 2, resulting from it when line ε moves parallel
to itself until to pass through point C. Then, the corresponding hyperbola-locus of Q,
guaranteed by the theorem, passes through C. Thus, the hyperbola contains the three
collinear points {A,E,C}, hence it degenerates to a product of lines, one of which is AC.
The other line is the one parallel to BC passing through C′. This line is also the limit of
the asymptote of the hyperbolas passing through the point at infinity of line BC.
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Figure 4: Locus of point I

Corollary 2. With the definitions and notation of corollary 1, let G = ED∩AQ and GI be the
segment parallel to AC, and such that its middle J is on line PE. Then, the middle N of ID is
on the line ε.
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Proof. In fact, consider the intersection point C′′ = ζ ∩ED. Since PJ joins the middles of
parallel sides of the trapezium AGIC, it passes through the intersection of the non parallel
sides. Hence lines {PJ,GA, IC} concur at Q and we have the equality of ratios:

CI
CQ

=
AG
AQ

=
C′C′′

C′Q
.

From this follows that lines η = IC′′ and ε are parallel. Since the segments {C′C′′,DC}
are parallel and equal, it follows that all segments DI with I ∈ ζ have their middle on
line ε.

3 Affine reflections

Affine reflections ([4, p.203]) are invertible transformations fµ,u of the plane, defined by a
line µ, called the “axis” and a “direction” called “conjugate direction” which is represented
by a line u or a parallel to it. The transformation associates to each point X of the plane
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Figure 5: Affine reflection

the point Y (See Figure 5), such that XY : (i) is parallel to u, and (ii) has its middle M on
line µ. Affine reflections generalize the usual euclidean reflections, which are defined in
the same way with the only restriction that the lines {µ,u} are orthogonal.

Affine reflections, as do all affine transformations, preserve the parallelity of lines and
the ratio BA/BC of three collinear points {A,B,C}. Obviously also they are “involutive”
coinciding with their inverse transformation and satisfying f 2 = e, where e is the iden-
tity transformation of the plane. According to a theorem of Veblen ([7, II,p.110], [5, p.17])
the compositions of two reflections represent all “equiaffinities” i.e. all affine transforma-
tions preserving the area. Thus, our problem could be formulated as follows: “In how
many different ways can we represent an equiaffinity?” An equivalent variation could be the
following: “starting from a pair of reflections ( f1, f2) , find all other pairs (g1,g2) satisfying
f2 ◦ f1 = g2 ◦g1.” This, given the involutive character of reflections, is equivalent with the
problem of finding a reflection g2 such that the product g1 ◦g2 ◦ f2 ◦ f1 = e is the identity.
Next theorem settles this question.

Theorem 2. For a pair of affine reflections ( f1, f2) and a given line µ through the intersection
point P of their axes, there is another pair ( f , f3) of affine reflections, such that the axis of f is
the line µ and the composition

f ◦ f3 ◦ f2 ◦ f1 = e ⇔ f3 ◦ f = f2 ◦ f1. (1)

Proof. Assume first that the intersection point P = µ1∩µ2 of the axes of the reflections
{ f1, f2} is a finite point and the corresponding conjugate directions {u1,u2} are not paral-
lel. Let C ∈ µ be a variable point on the given line µ through P. Applying the reflections
{B = f1(C), A = f2(B)} we obtain a triangle ABC, which is easily seen to remain simi-
lar and similarly placed to itself as C varies on µ (See Figure 6). Thus, the middles E
of the sides AC of these triangles {ABC} vary on a line µ3 , while the sides AC remain
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Figure 6: Refactoring the composition f2 ◦ f1 (I)

parallel to a fixed direction u3. By corollary 2, taking the middle D of BC and defining
{G = f2(D), I = f3(G)}, where f3 is the affine reflection with axis µ3 and conjugate direc-
tion u3, we obtain triangle GDI, whose side ID has its middle N on µ. As point C varies
on µ, the direction u of DI remains constant and this defines the reflection f with axis
µ and conjugate direction u.

The composition of transformations g = f ◦ f3 ◦ f2 ◦ f1, applied to points C ∈ µ, gives
obviously g(C) = C. The same is easily seen to be true for points D ∈ µ1 : g(D) = D.
Thus, the affine transformation g coincides with the identity along the lines {µ,µ1},
hence also at three non-collinear points, and consequently ([4, p.203]) coincides every-
where with the identity transformation, thereby proving the theorem in the case P is a
finite point.
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Figure 7: Refactoring the composition f2 ◦ f1 (II)

The remaining three particular cases, that may occur, are much easier to handle and I
describe them briefly, leaving some details as exercises. From these cases, the first occurs
when the intersection point P = µ1∩µ2 is at infinity, i.e. the axes are parallel, and the
conjugate directions {u1,u2} are not parallel, then an arbitrary line µ through P and the
corresponding line µ3 are parallels to these two lines (See Figure 7). The proof in this case
results with minor changes by the same arguments, and a simpler argument that point
M is on line µ which can avoid the use of corollary 2.
The second particular case occurs when the axes {µ1,µ2} intersect at P but the conjugate
directions coincide with the direction of the line u through P (See Figure 8). Then the
composition f1, f2 is a “shear” with axis u ([4, p.203]). It is then easily seen that every line
µ intersecting u at a point P′ defines another line µ3 through P′, such that the corre-
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Figure 8: Refactoring the composition f2 ◦ f1 (III)

sponding reflections with axes µ,µ3 and conjugate directions coinciding with u, define
the same shear: f3 ◦ f = f2 ◦ f1.

Finally, the third case occurs when the reflections have parallel axes {µ1,µ2} and the
same conjugate direction u. Then, it is trivially seen that their product f2 ◦ f1 is a “transla-
tion” by the vector 2EF, where {E,F} are the intersections of {µ1,µ2}with a line parallel
to u. Then, every parallel translates {µ,µ3} of these two lines and the same conjugate
direction u will satisfy the theorem.
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