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THE SIX-POINT CIRCLE FOR THE QUADRANGLE

DARIO PELLEGRINETTI

Abstract. While seeking a pure-axiomatic proof for the Van Aubel’s
theorem [6], the author discovered a hitherto unknown, curious property.
The discovered property is that six points involved in the geometrical con-
figuration of the forementioned theorem lie on a circle, as represented in
figure 1.
In the following paper, the author, first calls to mind the Van Aubel’s theo-
rem, then, proposes a convenient nomenclature to describe the geometrical
elements pertinent to the configuration, and finally, presents the original
six-point circle theorem for the quadrangle.
The pure-axiomatic proofs of the various theorems are elaborated in section
3.

1. VAN AUBEL’S THEOREM

Theorem 1.1 (Van Aubel’s theorem [6]). Given a convex quadrangle, on
each side construct a square external to the quadrangle. Connect the centers
of the squares constructed over the opposite sides. The obtained segments
are of equal length and orthogonal to each other.

The theorem holds true also for re-entrant quadrangles [3], and when the
squares are constructed internal to the given quadrangle.

Looking at figure 2, the equal and orthogonal segments are represented
by O1O3 and O2O4, and they intersect at V. For the internal constructed
squares, the equal and orthogonal segments are represented by O’1O’3 and
O’2O’4, and they intersect at V’ on the extension of segment O’1O’3.
The external and internal constructions for the squares are not definable
for crossed quadrangles [3].
For crossed quadrangles, the theorem holds true when the constructions are
carried out in the more general way:
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Figure 1. The six-point circle for the quadrangle is passing
through the midpoints of the quadrangle’s diagonals, E and
F, the midpoints of the Van Aubel’s segments, X and Y, and
the Van Aubel’s points, V and V’. The definitions for the
Van Aubel’s segments and the Van Aubel’s points are given
at the end of section 1.

• Follow the quadrangle’s vertexes in a sequential direction (starting
for example from the lower left vertex, point A, towards point B)
and construct each square on the right hand side of each side of the
given quadrangle.

• Follow the quadrangle’s vertexes in the same sequential direction
and construct each square on the left hand side of each side of the
given quadrangle.

For the rest of the work, the author will focus on convex quadrangles, as
the diagrams are easier to interpret than in the other cases.
The presented theorems remain true also for re-entrant and crossed quad-
rangles as the various proofs can be carried out essentially in the same way
as for the convex case.
The following nomenclature is defined in order to simplify the exposition.

• Any segment that joins the centers of either internal or external
squares that are constructed on opposite sides of the quadrangle will
be referred to as a Van Aubel’s segment.

• The pair of the resulting equal and orthogonal Van Aubel’s seg-
ments, from the external construction, will be named as the first
Van Aubel’s segment pair.

• The intersection of the first Van Aubel’s segment pair, point V, will
be named as the first Van Aubel’s point.

• The pair of the equal and orthogonal segments, from the internal
construction, will be named as the second Van Aubel’s segment pair.
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Figure 2. The six-point circle for the quadrangle - enlarge-
ment showing the construction for the second Van Aubel’s
point. The internal squares are not shown for the sake of
clarity, their centers are represented by the points O’i, with
i=1,2,3,4.

• The intersection of the second Van Aubel’s segment pair, Point V’,
will be named as the second Van Aubel’s point.

• The segment joining the midpoints of the quadrangle’s diagonals,
represented as E and F in figure 2, will be named as the Newton’s
segment because the line through those points is known as the the
Newton line [4].

• Any quadrangle with equal and orthogonal diagonals will be referred
to as an iso-ortho-diagonal quadrangle. For example, quadrangle
O1O2O3O4 is an an iso-ortho-diagonal quadrangle as a consequence
of the Van Aubel’s theorem.

For crossed quadrangles, an equivalent nomenclature can be defined that
distinguishes the geometrical elements obtained with the right hand side
construction from the ones obtained with the left hand side construction.

1.1. An interesting related theorem.

Theorem 1.2. Each segment of a Van Aubel’s segment pair is bisected by
the Van Aubel’s segment of the other pair that connects the centers of the
squares constructed on the other couple of opposites side.

For instance, the Van Aubel’s segment O1O3 (obtained connecting the
centers of the squares constructed external to the quadrangle over the op-
posites sides AB and DC) and the Van Aubel’s segment O’2O’4 (obtained
connecting the centers of the squares constructed internal to the quadrangle
over the opposites sides AD and BC) bisect each other at point X, as shown
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in figure 2.
The midpoints of the Van Aubel’s segments are represented as X and Y in
figures 1 and 2.
This theorem was found independently by the author while seeking the pos-
sible relations between the elements pertaining to both the external and in-
ternal constructions. After extensive research, the same theorem was found
on the Alexander Bogomolny’s website [2].

2. THE SIX-POINT CIRCLE THEOREM FOR THE
QUADRANGLE

Theorem 2.1. The midpoints of the quadrangle’s diagonals, E and F, the
first and second Van Aubel’s points, V and V’, and the midpoints of the Van
Aubel’s segments, X and Y, lie on a circle.

Corollary 2.1. The Newton’s segment, EF, and the segment connecting the
midpoints of the Van Aubel’s segments, XY, are two mutually orthogonal
diameters of the circle.

Remark 2.1. The center of the circle, O, coincides with the quadrangle’s
centroid [1].

The circle is shown in figures 1, 2 and 7. The results expressed by this
theorem and its corollary are original contributions by the author.

3. PROOFS

Figure 3. Diagram for the Van Aubel’s theorem proof. The
construction revolves around the midpoint E of the quadran-
gle’s diagonal AC.
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3.1. Van Aubel’s theorem. Proof. Looking at figure 3, we deduce that
segments AI and CH are of equal length and orthogonal to each other. This
fact follows from the relation between the congruent triangles ABI and HBC:
triangle HBC can be obtained from a right angle counterclockwise rotation
around point B of triangle ABI.
If we apply the midsegment theorem [8] to triangles HAC and IAC respec-
tively, we deduce that segments O1E and O2E are of equal length and meet
at E orthogonally.
An analogous argument can be applied to show that segments O3E and O4E
are of equal length and meet at E orthogonally.
Therefore, triangles O1EO3 and O2EO4 are congruent according to the SAS
(Side-Angle-Side) rule: the included angles O1EO3 and O2EO4 are equal as
they both measure the right angle plus the shared angle O2EO3.
Moreover, triangle O2EO4 can be obtained from a right angle counterclock-
wise rotation around point E of triangle O1EO3.
It follows that segments O1O3 and O2O4 are of equal length and orthogonal
to each other.

Remark 3.1. The proof would have proceeded exactly in the same way if we
would have considered the other diagonal midpoint (F, represented in figures
1 and 2).

Remark 3.2. The proof for the internal Van Aubel’s configuration is exactly
the same.

Figure 4. Diagram for the theorem 2 proof. The diagram
shows the necessary geometrical elements to prove that quad-
rangle O1O’2O3O’4 is a parallelogram.

3.2. Theorem 1.2. Proof. Looking at figure 4, we deduce that segments
HI’ and AC (a quadrangle’s diagonal) are of equal length and orthogonal
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Figure 5. Diagram for the theorem 2 proof. The diagram
shows the paralelogram O1O’2O3O’4 and its bisecting diag-
onals.

to each other. This fact follows from the relation between the congruent
triangles HI’B and CAB: triangle HI’B can be obtained from a right angle
counterclockwise rotation around point B of triangle CAB.
An analogous argument can be applied to show that segment NP’ and the
very same quadrangle’s diagonal AC are of equal length and orthogonal to
each other.
Therefore, segments HI’ and NP’ are of equal length and parallel, so that
quadrangle HP’NI’ is a parallelogram.
If we apply the midsegment theorem to triangles HAP’ and NCI’ respec-
tively, we deduce that segments O1O’4 and O’2O3 are of equal length and
parallel so that quadrangle O1O’2O3O’4 is a parallelogram.
It follows that the parallelogram O1O’2O3O’4 diagonals, O1O3 and O’2O’4,
bisect each other at point X as shown in figure 5.

3.3. The four concurring circles’ lemma.

Definition 3.1. A circle will be defined by its center and radius. For in-
stance, looking at figure 6, the circle, constructed with segment O1O2 as a
diameter, will be referred to as the (C1, C1E) circle or equivalently as the
(C1, C1V) circle, the (C1, C1O1) circle and so on.

The following lemma is central for the six-point circle theorem proof de-
velopment.

Lemma 3.1. The four circles, constructed with the sides of the obtained iso-
ortho-diagonal quadrangle O1O2O3O4 (figure 6) as their diameters, concurr
in the first Van Aubel’s point, V.
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Figure 6. The four concurring circles’ lemma.

Proof. The circumscribed circles of the right-angled triangles O1VO2,
O2VO3, O3VO4 and O1VO4 concurr at point V (see figure 6). If we apply
the converse of Thales’s theorem [7] to any of these triangles, i.e. triangle
O1VO2, we deduce that its hypotenuse, i.e. O1O2, coincides with a diameter
of its circumscribed circle, i.e. (C1, C1V).
Incidentally, we notice that point E (the midpoint of the ABCD quadran-
gle’s diagonal AC) is the other point of intersection of circles (C1, C1V)
and (C3, C3V). This statement is a direct consequence of the converse of
Thales’s theorem applied to the right-angled triangles O1EO2 and O3EO4,
represented in figures 3 and 6: quadrangles O1O2VE and O3O4EV are cyclic
quadrangles inscribed in circles (C1, C1V) and (C3, C3V), respectively. An
analogous argument can be applied to show that point F (the midpoint of
the ABCD quadrangle’s diagonal BD) is the other point of intersection of
circles (C2, C2V) and (C4, C4V).

Remark 3.3. The centers of the four circles, represented in figures 6 and
7 as C1, C2, C3 and C4, coincide with the midpoints of the sides of the
iso-ortho-diagonal quadrangle O1O2O3O4.

Remark 3.4. Segments EV and VF are the common chords of the cir-
cles constructed with the opposite sides of the iso-ortho-diagonal quadrangle
O1O2O3O4 as diameters (see figures 6 and 7).

Remark 3.5. The analogous result holds for the second Van Aubel’s point.

3.4. The six-point circle theorem for the quadrangle. Proof. Ac-
cording to the Van Aubel’s theorem and the converse of Thales’s theorem,
it follows that quadrangle XV’VY (vertexes represented in figure 2) is cyclic,
and XY is a diameter of its circumscribed circle. The center of the circle,
O, is the midpoint of segment XY. By definition, point O is the centroid of
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Figure 7. Diagram for the six-point circle theorem proof development.

the iso-ortho-diagonal quadrangle O1O2O3O4 [1]. Segment OV, represented
in figure 7, is a radius of the circle.
With lemma 1, we noted that segments EV and VF are the common chords
of the circles constructed with the opposite sides of the iso-ortho-diagonal
quadrangle as diameters (see figure 7). Therefore, segment EV is bisected
orthogonally by segment C1C3, and segment VF is bisected orthogonally
by segment C2C4. Segments C1C3 and C2C4 are the segments which con-
nect the midpoints of the opposite sides of the iso-ortho-diagonal quadrangle
O1O2O3O4.
They bisect each other at point O forming a right angle.
The fact that they bisect each other forming a right angle is a very well
known property of any iso-ortho-diagonal quadrangle: applying the mid-
segment theorem to triangles O1O3O4, O1O3O2, O2O4O3 and O2O4O1, we
deduce that quadrangle C1C2C3C4 is indeed a square.
The fact that the segments which connect the midpoints of the opposite sides
of any quadrangle bisect each other at the quadrangle’s centroid (point O
for the O1O2O3O4 quadrangle) is another quite known property [1].
With segments C1C3 and C2C4 the segment bisectors of the EV and FV
segments, respectively, we deduce that:
– EVF is a right angle. Again, according to the converse of Thales’s theo-
rem, segment EF is a diameter of the circumscribed circle of triangle EVF,
also shown in figure 7.
– The center of the circle coincides with point O. Trivially, OV is a radius
of the circle.
Thus, all six points E, X, V’, F, V and Y lie on the same circle (O, OV) and
segments EF and XY are two diameters of the circle.
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Remark 3.6. Point O (the centroid of the obtained iso-ortho-diagonal quad-
rangle) coincides with the centroid of the generic quadrangle ABCD as it
bisects the Newton’s segment EF.

The corollary proof follows hereafter.

3.5. Corollary 2.1. Proof. This proof can be carried out via angles in-
spection. Looking at figure 7 we notice that angle EVX measures half of a
right angle.
Indeed, angle EVX is equal to angle O1O2E which measures half of a right
angle (see the Van Aubel’s theorem proof) as both angles subtend arc O1E
of circle (C1, C1E).
As a consequence of the the six-point circle theorem for the quadrangle, we
know that angle EVX subtend the EX arc of circle (O, OV) and thus angle
EOX is a right angle according to the inscribed angle theorem [5].
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